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Abstract

In this paper | describe a probabilistic method for clustering discrete Markov processes
with a pre-specified number of clusters. | derive two algorithms for estimating the model
parameter; one based on a Gibbs sampler and the other based on an EM algorithm. The
Gibbs sampling algorithm is accurate at the expense of speed and a constrained EM
algorithm is optimized for speed at the expense of accuracy. A hybrid agorithm is also
formul ated.

1 Problem description

Consider an s-date discrete Markov process where the transition matrix for the process, T, is
unknown. Now assume that we believe that the process came from one of m distinct transition matrices so
that,

I=25|P| (1)

where d,=1 if the process came P, and otherwise &, =0. For example we may observe a set of N processes
with statesenumerated by 1, ..., s.

Process1: 47342543215
Process2: 537912
Process3:34132123

Prbc&ssN:41874321

From the start we do not know which of the m transition matrices generated each process, nor do we know
the initial state distribution, nor the transtion probabilities in the transition matrices. Despite our lack of
knowledge, estimation is reasonably tractable. In the Bayesian clustering framework the vector & is the
unobserved class variable. |f we have a collection of processes generated from T then we can compute
joint posterior dengities for the parameters in this model. Of particular interest are the dements of the P,
and the class variable.

This discrete Markov process clustering methodology is a potentially useful method for clustering
graph traversals, discovering task-related sequences, and next-step prediction.

1.1 Notation
The following notation will be used throughout thisreport.

i - index for the origin states

j - index for the destination states

k - index for the observed processes

¢ - index for the clusters

N - the number of observed processes

i - theinitial state of the process

n;; - the number of times a process transitioned from statei to state

m - the number of clusters

S - the number of states

p, - aprobahility vector of length s specifying cluster £'sinitial Sate digtribution

P, - an sxsmatrix of transition probabilities for cluster ¢.

¢ -k -indicatesthe event that cluster ¢ generated processk. Thisimpliesthat P, isthe transition matrix
underlying this process. Pr(¢ - k|3 isthe /" dement of 3 and Pr(¢ —k)=a,.



a - aprobability vector of length m that contains the proportion of processes coming from any particular
cluster.

3% - the probability vector containing the probability that cluster ¢ generated process k. The Gibbs
sampling algorithm (section 2.1) and the constrained EM algorithm (section 3.2) force this vector so
that the (" element is 1 if process k was generated from P, and all other elements are 0.

2 Gibbs sampling algorithm for process clustering

Under a Bayesian formulation where a prior distribution of the parameters can be specified the
likelihood density can be inverted by Bayes Theorem in order to obtain a posterior density of the model
parameters.  Although the posterior distribution can be quite complex, Gibbs sampling provides a means
for exploring the posterior distribution.

2.1 Likelihood function
P,isaMarkov transition matrix.
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N is the number of observed processes and njj’s indicate the observed number of transitions that process k
made from statei to statej. Therefore the likelihood is as follows

k)
N m s s o [T

f(n |E1E1é) = D rl E{I) P, |_| |_| 0) F’ijni(J ) g ©)
1 1=

=1 j=1

2.2 The algorithm

Specifying uninformative priors in this case is quite natural. Let a be vector of length m of the
mixture proportions. Then & will be digtributed multinomial(1,a). A Dirichlet(1) hyperprior for the
hyperparameter a corresponds to a uniform prior over the m-dimensional simplex. Similarly, every row in
every trandtion matrix will also have a Dirichlet prior over the s-dimensional simplex. In summary, the
prior distributions are

o™ ~Mult(L,a)

a ~ Dirichlet(1,,)

P~ Dirichlet(l,) @
o P. ~ Dirichlet(l,), where P, isthei” rowof ,P.

Thejoint distribution is proportional to the likelihood multiplied by the prior densities and easily follows.
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Assuming that the first order Markov assumption is correct, this distribution captures al of the information
about the process clustering that is contained in the data. However, this distribution israther complex and
al of the usua distribution summary values (mean, variance, etc.) are extremely difficult to extract.



Appealing to a Markov Chain Monte Carlo approach to sample from this distribution can avoid this
problem with a degree of computationa cost.

Markov Chain Monte Carlo agorithms provide a method for drawing from complicated
distribution functions. The form of the posterior distribution lends itself to a class of MCMC agorithms
known as Gibbs samplers. Implementations of a Gibbs sampler partition the parameter space into blocks or
sets of parameters where drawing from the distribution of the block given all of the other blocks is simple.
Iterations of the Gibbs sampler in turn draw new values for each block of parameters from these block
conditional distributions. An ergodic theorem assures us that the Gibbs sampler will produce a sample
from the target distribution function.

2.3 Block conditionals

The parameter space of the process clustering problem at hand partitions naturaly. The rows of
every trangtion matrix, the vector a, and each & will be block updated. The block conditionals are easily
found from the posterior shown in (5).
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These distributions have a rather intuitive interpretation as well. The row updates are drawn from a
distribution where the expected value is approximately the MLE for the row if the cluster assignments, 9,
were known. The vector a is drawn from a distribution where the expected value is approximately the
mixture proportions if, again, the cluster assignments were known. Ladly, the cluster assignments are
drawn such that probability of each cluster is proportional to the mixture probability times the likelihood of
the observation coming from the associated trangtion matrix.

2.4 Comments on the Gibbs sampling algorithm

The implementation of this algorithm initialy fillsin al of the transition matrices with s* and the
vector a with m™ and randomly assigns the & to one of the m dusters. The agorithm first updates the
initia state distribution, p, then each of the rows of P, then updates a, and lastly updates . This constitutes
one iteration. After alarge number of iterations (approximately 10,000, but this depends on the data and
dimension of the problem) the sequence of parameter values will approximate the joint posterior
distribution and hence, computation of arbitrary functionals of the posterior digtribution istrivial.

Aswith dl MCMC implementations of parameter estimation for mixture models, this method can
suffer from the "labd switching" problem. The posterior density for a particular labeling of the clustersis
equal for any other permutation of the labels. If the clusters are "far apart” then it is unlikely that "label
switching" would occur. However, with weak data or clusters that are very close "label switching" can be
common place. In normal mixture models constraints are often imposed to insure identifiability. However,
constraints alter the posterior distribution. A more appropriate method would detect switches in the labels
and make corrections. Stephens (1996) has proposed such a method. | have made no effort to correct this
problem and, therefore, rely on strongly informative data

2.5 Simulation Experiment

| performed a two cluster/four state simulation experiment. | generated 4829 processes from P, and 171
processes from P..

026 043 013 0.180
Plzg).% 037 019 0387
[0.86 005 004 0.050
.32 038 020 0.107
007 017 019 0570
, :gnz 0.15 008 0657
> [035 0.03 0.32 0.300
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The resulting posterior means (sandard deviation) - 10,000 iterations, 9.7 minutes on a Pentium 200 MHz
NT 4.0 machine.
[0.26(0.003) 0.43(0.004) 0.13(0.003) 0.18(0.003)0
_0.06(0002) 037(0.003) 0.19(0.003) 0.33(0.004)7
7 [0.86(0.004) 0.05(0.002) 0.05(0.002) 0.05(0.002)C
0.32(0004) 0.38(0.004) 0.20(0.004) 0.10(0.003)
[0.08(0.02) 0.17(0.03) 0.20(0.02) 0.56(0.04)0]
_[010(0.02) 0.14(0.03 0.10(0.02) 0.66(0.03)°
27 [0.38(0.04) 0.04(0.01) 0.34(0.03) 0.24(0.03)0
0.27(0.02) 018(0.02) 0.14(0.01) 0.41(0.02)F

The true value of the mixture proportions, a, is (0.97,0.03). The posterior mean (standard deviation) of a is
o3 =0.96 (0.02)

0, =0.04(0.02)

Processi is classified to the cluster to which it was most often assigned..
Py P,

P, | 4814 15 (0.3%) | 4829
(99.7%)

P, | 60 111 171
(35.1%) (64.9%)

Table 1: Misclassification table

2.6 Comments on the simulation experiment

The small standard deviations indicate that using the posterior means as point estimates for Pand a is
quite accurate. Process classification appears to have less accuracy. In this example, observations from
P2, from which fewer observations were generated, are frequently misclassified (35%).

2.7 Scalability of Gibbs sampling

With relatively few iterations of the Gibbs sampler and afairly small sample size the results were quite
accurate. Preliminary experimentation indicates that this method may not be scalable for large state spaces.
State spaces with 100 states and 10 clusters require about 3 seconds per iteration. Reasonable estimation
therefore takes about 8 hours.

3 An EM approach to Markov process clustering

This section describes a parameter estimation approach based on the algorithm that maximizes a likelihood
function that is dightly different than the one proposed in Section 2.1. EM agorithms iterate between
obtaining maximum likelihood estimates for the unknown parameters given the complete data and
computing the expected value of the missing data given the parameters. In this implementation, the
algorithm iterates between computing maximum likelihood estimates for the transition matrices and
reevaluating the cluster assignments.

3.1 Likelihood function

In the Gibbs sampling algorithm the 3%s were coerced to put probability 1 on one cluster and zero on
al of the others. Then assessment of Pr(¢ - k) comes directly from the distribution of the Monte Carlo
sample of 3. As opposed to the Gibbs sampling algorithm the &'s now represent a probability vector



where 9, indicates the probability that the process was generated from cluster ¢. Despite this difference,
strong smilarities between the Gibbs sampling algorithm and the EM algorithm will be evident.

The likelihood function has to be modified to adapt to this alternate interpretation of 8. This version
of the likelihood has the same meaning as (3) but its mathematical form would have been much more
difficult to handlein the Bayesian framework.
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3.2 The algorithm

To initialize the algorithm | randomly assign the processes to the m clusters. That is, the &'s are
randomly selected to represent assignment to one of the m clusters and a is the mean of the &'s. With this
complete data, MLEs for theinitial state distribution and the transition matrices are easy to calculate.
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Thisequation issmilar to (7). Conditioning on the values of p and P, the cluster probabilities can be
computed similar to (9).
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Each vector 3 is then normalized to sum to unity. Lastly, the mixture probability vector a is updated as
the mean of the &'s.

b= (11)

3.3 A constrained EM algorithm

The EM algorithm is known to converge slowly in some situations. An alternative to agorithm
proposed in section 3.2 is to force the &'s to assign probability one to one of the clusters and zero to the



remaining. Hartigan's k-means algorithm is an example of this type of constrained EM algorithm for
multivariate normal data. To make this modification, in lieu of equation (13), 3% is assigned to the cluster
from which has the highest probability of generating process k. The algorithm converges when an entire
iteration is completed with no processes being reassigned.

3.4 Comments on the EM approach

A major drawback to the EM approach is the lack of standard errors. Gibbs sampling produces the
estimates of the standard deviation of the margina posterior density for any parameter of interest. EM, on
the other hand, is solely a maximization method. Variants of the EM algorithm like the SEM agorithm
(Supplemented EM) rely on normal approximations to the sampling distribution of the parameter estimates.
In practice, these estimates are often quite reasonable. For the case a hand, however, the observed
information matrix can be quite difficult to calculate. The "label switching problem” does not exist for EM
algorithms.

3.5 A EM-Gibbs hybrid algorithm

The constrained EM algorithm lacks accuracy and detail but has the advantage of speed. The Gibbs
sampler on the other hand can be used to compute arbitrary functionals of the distribution quite easily but
takes several orders of magnitude longer to iterate to reasonable accuracy. Naturally a hybrid algorithm
may be useful to borrow from the strengths and diminish the affect of the weaknesses of both agorithms.

In my implementation used for applied process cluster problems | iterate the constrained EM
algorithm to convergence. The clugter assignments from the constrained EM algorithm provide initial
assignments for the Gibbs sampler. Then, with ardatively short burn-in period, the Gibbs algorithm runs
until it obtains decent estimates for the posterior means and variance of the parameters. Figure 1 shows the
results of an example run on smulated data. The green line indicates the true value and the red lines
indicate +20.
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Figure 1: Edimate of P, from simulated data. Constrained-EM 4.0 seconds,
Gibbs 3.0 minutes, 600 burn-in, 1000 draws, N=10,000, s=4, m=4.



Figure 1 shows that in a fairly short amount of time a large amount of information can be extracted from
the data with a high degree of accuracy. As noted previously experiments with the larger state spaces
required about 8 hours for 10,000 iterations. The first several thousand, however, were spent approaching
the part of the distribution with most of the mass. With s=100 and m=10 the congtrained EM algorithm
tends to converge on this region of the digribution in about one minute. Quick and dirty point estimates
are immediately available. The Gibbs sampler can then be run for a short amount of time (< 10,000
iterations) until confidence bands have reached a satisfactory level of accuracy.

4 Extensions
This section lists some useful extensions to the above algorithms

e Consider higher order Markov Chains using the linear model proposed by Raftery (1985) to constrain
parameter explosion.

* Reversible jump MCMC to incorporate information contained in the data about the number of clusters.
* Include a post-processing step to check or fix problems arising from label switching.

e Make numerical optimizations so that this method could handle 100 states, 10 clusters, and several
thousand observed sequencesin less than 3 seconds per iteration.
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