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Abstract

Generalization of Boosting Algorithms and Applications of Bayesian

Inference for Massive Datasets
by Gregory Kirk Ridgeway

Co-Chairs of Supervisory Committee

Professor David Madigan
Statistics

Professor Thomas Richardson
Statistics

In recent years statisticians, computational learning theorists, and engineers have
developed more advance techniques to learn complex non-linear relationships from
datasets. However, not only have models increased in complexity, but also datasets
have outgrown many of the computational methods for fitting the models that are
in standard statistical practice. The first several sections of this dissertation show
how boosting, a technique originating in computational learning theory, has wide
application for learning non-linear relationships even when the datasets are potentially
massive. [ describe particular applications of boosting for naive Bayes classification
and regression, and exponential family and proportional hazards regression models.
I also show how these methods may easily incorporate many desirable properties
including robust regression, variance reduction methods, and interpretability. On
both real and simulated datasets and in a variety of modeling frameworks, boosting

consistently outperforms standard methods in terms of error on validation datasets.






In separate but related work, the last chapter presents ideas for utilizing Bayesian
methods for inference in massive datasets. Modern Bayesian analysis relies on Monte
Carlo methods for sampling from complex posterior distributions, a Bayesian hier-
archical model perhaps. These methods experience tremendous slowdown in compu-
tation when the posterior distribution conditions on a large dataset and the dataset
cannot be summarized in terms of a small number of sufficient statistics. I develop
an adaptive importance sampling algorithm that efficiently simulates draws from a
posterior distribution conditioned on a massive dataset. Subsequently, I also propose
a method for approximate Bayesian inference using likelihood clustering for data re-

duction.
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Chapter 1

INTRODUCTION

This dissertation investigates some of the recent trends where the fields of statis-
tics, machine learning, and data mining meet. These trends involve the fitting of
accurate, possibly non-linear, prediction models to massive and noisy datasets. This
chapter serves as an overview to the thesis and gives some background details and

traditions that show the need for the research that generated this dissertation.

The largest part of this dissertation discusses and develops methods involving
boosting. This chapter will provide some background on boosting some of which
overlaps with the research presented in chapters 2 and 3. Chapter 2 introduces the
boosted naive Bayes classifier one of the earliest boosting algorithms to admit an in-
terpretable form. Chapter 3 presents one of the first practical algorithms for creating
boosting for regression problems, the boosted naive Bayes regression model. Chap-
ter 4 represents the latest in boosting methodology and expands the applicability
of boosting methods to the exponential family and proportional hazards regression

models.

Although the problem of analyzing massive datasets is a theme through the earlier
chapters, chapter 5 considers this problem directly. In it I present two methods in
development that only use analysis of small manageable portions of the dataset to

compute parameter estimates.



1.1 Boosting methods

In many problem domains, combining the predictions of several models often results
in a model with improved predictive performance. Boosting is one such method that
has shown great promise. On the applied side, empirical studies have shown that
combining models using boosting methods produces more accurate classification and
regression models. These methods are extendible to the exponential family as well
as proportional hazards regression models. In this thesis I show that boosting, which
is still new to statistics, is widely applicable. I will introduce boosting, discuss the
current state of boosting, and show how these methods connect to more standard

statistical practice.

1.1.1  Introduction to boosting

The trend toward model mixing had a resurgence in economics (Bates and Granger
1969), has increased in the machine learning community, and is partially accepted
in the statistics community. Researchers in these fields often had different goals
in mind as they developed their methodology. Breiman (1996a) specifically wanted
to reduce the variance of prediction models and proposed bagging. Bayesian model
averaging (Madigan et al. 1996, Hoeting et al. 1999) hoped to alleviate the problems
associated with model selection and to account for the uncertainty involved in model
search. Other methods like stacking (Wolpert 1992) and bumping (Tibshirani and
Knight 1995) attempted simply to decrease prediction bias. Researchers found that
in all these cases a viable solution involved fitting several models and merging the
predictions that each model produced.

Boosting is one of the latest prediction methods that proponents believed, at least
initially, was the latest addition to the class of model mixing procedures. Boosting,
rapidly made popular in the machine learning community, is a topic slowly making

its way into mainstream statistics research. Computational learning theorists desired



a method for transforming a collection of weak classifiers into one strong classifier
(Schapire 1990, Freund 1995). For example, given three classifiers with misclassi-
fication rates €1, €5, and €3 where ¢; < % they searched for ways to combine these
classifiers in such a way that the combined classifier had error € < min{e;, €, €3}.

This work culminated in Freund and Schapire (1997) that introduced the AdaBoost
algorithm, now commonly referred to as the Discrete AdaBoost algorithm. They
discovered an algorithm that sequentially fits “weak” classifiers to different weightings
of the observations in a dataset. Those observations that the previous classifier poorly
predicts receive greater weight on the next iteration. The final AdaBoost classifier is a
weighted average of all the weak classifiers where each weak classifier receives weight
dependent upon its accuracy. Many variants now exist for the AdaBoost algorithm,
but the one with the tightest upper bound on misclassification error in Freund and
Schapire’s original work is as follows.

Initialize the weights of each observation to wl(l) = % For t in 1 to T iterate the

following steps.
1. Learn model H,(x;) : X — [0, 1].

2. Compute ¢, = >N, w!” ly; — Hy(z;)| as the error for the model H;.

3. Let /Bt = &

1—€

(t+1) _ w(t)ﬂfl_‘yi—Hf(mi)“

i

4. Update the observation weights as w

t+1

5. Normalize w;"" so that they sum to one.

When the classifier performs better than random guessing on the weighted dataset
By < 1. If y; = H(x;) then the observation weight reduces by a factor of ;. If |y; —
Hy(x;)| = 1, or completely disagree, then the observation’s weight does not change.

For any other extent of disagreement, 0 < |y;—H,(z;)| < 1, the weight multiplier varies



between 3; and 1. When (3, > 1, or the classifier performs worse than random guessing,
the well-predicted observations receive more weight. After normalizing the weights
this has the effect of upweighting the poorly predicted observations and downweighting
the well predicted ones. The final boosted model suggested by Freund and Schapire
that combines the models of each iteration is

1 e <10g é) Hy(z)
= o where r(x) = T
L+ 1L 6 i—1log 5

H(x) (1.1)

Note that r(z) is a weighted average of each of the classifiers, the more accurate
classifiers receiving greater weight, and it alone may be a sensible classifier. When
B; > 1, indicating that the t" classifier has performed poorly, the sign on the classifier
weight is negative, in effect reversing the model’s predictions. Using the sigmoid
transform to compute H(x) results in an upper bound on misclassification that is
half that of the non-transformed classifier. H(z) puts out a real value that may be
interpretable as a class probability estimate. A classification to 0 or 1 will depend on
whether H(z) exceeds a threshold, 5 for instance.

Freund and Schapire provide little detail on the motivation behind some of the
algorithmic decisions, but I will present my understanding of the origin of these steps.
The first decision was to assume that one should reweight the observations in some
fashion to more heavily weight poorly predicted observations. Schapire 1990 first
proved that one could “boost” three weak classifiers into one strong classifier, the sce-
nario described earlier in this section. Freund 1995 improved upon Schapire’s work
but both solutions involved fitting the classifiers sequentially, each time presenting
reweighted observations to the learning algorithm. The second decision is to reweight
in a multiplicative fashion, w§t+1) = wgt)ﬂf (y"’7H"'(m"’))7 where ¢(y, H) is a loss function.
This primarily comes from the related field of on-line learning. The weighted ma-
jority algorithm (Littlestone and Warmuth 1994), a prominent work in the field of
on-line learning, combines the predictions from several fixed models or experts. As

data accumulate the models or experts receive more or less weight depending on how



well they predicted the latest observation. The model reweighting scheme used mul-
tiplicative weights, a scheme adopted also by AdaBoost to apply to the observations
in the dataset. Having settled on multiplicative weight updates and the loss function
ly,H) =1 — |y — H| Freund and Schapire sought to find an optimal value for ;.
They were able to bound the misclassification rate on the training dataset of the final

combined classifier to be

11— (1—¢)(1—
25 VB
Minimizing the upper bound 1.2 with respect to 0 results in the choice §; = T

With this choice for 3, the bound becomes

e < 2T*1f1:[1 Vel —e) (1.3)

Note that in 1.3 as long as the weighted misclassification rate does slightly better or
slightly worse than random guessing the bound decreases. If the weighted error is
always € = % — 7 then Freund and Schapire deduce the bound e < e 277 5o that the
misclassification rate on the training set goes exponentially fast to zero. Although in
practice ¢ does not stay constant, this does indicate that the algorithm may fit the
training dataset quickly.

Although this training speed may be disconcerting for fears of rapid overfitting,
in a wide variety of classification problems, their weighting scheme and final classifier
merge have proven to be an effective method for reducing bias and variance, and im-
proving misclassification rates (Bauer and Kohavi 1999, Dietterich 1998). Empirical
evidence has shown that the base classifier can be fairly simplistic (shallow classifica-
tion trees) and yet, when boosted, can capture complex decision boundaries (Breiman
1998).

I began work in the area of boosting soon after Freund and Schapire (1997) ap-
peared in print. Chapter 2 reports the findings of my earliest work on the topic. The

model merging scheme in 1.1 appears complex. With the goal to combine AdaBoost’s



performance gains while maintaining interpretability, I showed that the boosted naive
Bayes classifier can achieve both. The computational learning theorists were primar-
ily concerned with boosting classification problems, but it is natural to consider their
applicability to regression problems. Chapter 3 proposes a method of directly trans-
ferring boosting from classification to regression via a transformation of the dataset.
I am able to use a variant of the interpretable boosted naive Bayes classifier derived
in chapter 2 to fit boosted regression models. The boosted naive Bayes classification
and regression work, following Charles Elkan’s lead (Elkan 1997), continued to make
connections between boosted models and non-linear additive models, a connection
made explicit in later work. Although these methods helped extend the practicality
of boosting, they did little to explain why boosting seemed to work.

From the statistician’s point of view, the breakthrough in boosting occured in
Friedman, Hastie, and Tibshirani (1998). Although still focused on classification
problems, they showed that Freund and Schapire’s AdaBoost algorithm is an opti-
mization method for finding a classifier that minimizes a particular exponential loss
function. Other authors have also made the connection between boosting and opti-
mization (Breiman 1997, Mason et al. 1999). Friedman et al. proceeded to show
that the exponential loss function used in AdaBoost is closely related to the Bernoulli
likelihood and developed a new boosting algorithm that finds a classifier to directly
maximize a Bernoulli likelihood. The important finding of this work is that it links
the work of the computational learning theorist to a likelihood method of standard
statistical practice.

Although boosting algorithms on the surface appear complex, closer inspection
will show that they have much in common with how a statistician might fit familiar
linear models. This similarity will lead directly into their application to exponential
family and proportional hazards regression models, all of which can admit a boosted
form. Also we can exploit the modular structure of boosting algorithms to ensure

that our model has the most desirable statistical properties, robustness, variance



reduction, interpretability, and scalability to massive datasets. Lastly, I will address
the question as to whether boosting algorithms belong in the class of model mixing

methods and where I believe the future of prediction models lies.

1.1.2  Boosting for classification

Even before it was published, Freund and Schapire’s Discrete AdaBoost was generating
great interest. It seemed that the performance of just about any classifier could be
improved both in terms of bias and variance. Furthermore, the procedure seemed
immune to overfitting. One would simply fit the classifier, hi(x), to the dataset,
upweight the observations it misclassified, and fit another classifier, hy(x), using the
new observation weights. The algorithm iterates several times piling more weight on
the difficult to classify observations. In the end all the classifiers participate in a
weighted vote for the final classification rule. Freund and Schapire developed their
particular weight and merge scheme to iteratively reduce an upper bound on the
training error.

Some early research investigated boosting specific types of classifiers using the
Discrete AdaBoost algorithm. Classification trees seem to dominate most boosting
research because of their flexibility and performance in high-dimensions. Furthermore,
boosting tends to improve classification trees greatly since they are often unstable,
slight variations in the dataset drastically changing their predictions. Leo Breiman
said that AdaBoost with trees is the best “off-the-shelf” classifier (Breiman 1998).

The Knowledge Discovery and Data mining conference in 1997 (KDD’97) helped
bring the topic of boosting to the attention of practical data analysis. Charles Elkan’s
application of boosted naive Bayes won first place out of 45 entries in the KDD'97
data mining competition (Elkan 1997). Many of the competitors used very complex
algorithms. However, the boosted naive Bayes classifier, though comparatively simple,
still outperformed them on the posed problem. My own interest in boosting began at

this point and lead to my first contribution to the topic. While the usual non-boosted



naive Bayes approach leads to elegant and effective explanations (see, for example,
Madigan, Mosurski, and Almond 1996 and Becker, Kohavi, and Sommerfield 1997),
the AdaBoost-ed version destroys this feature. The research presented in chapter 2 as
well as Ridgeway, Madigan, Richardson, and O’Kane (1998) showed that the boosted
naive Bayes classifier forms decision boundaries that are approximately linear in the
predictors. This allows easy interpretation of the model’s reasoning process.

Besides empirical exploration into the performance of these classifiers, statisticians
and computational learning theorists began the search for the explanation. Freund
and Schapire (1997) showed that in each iteration AdaBoost reduces the training error
and produced some generalization error bounds based on VC dimension. However,
the performance in practice outpaced this bound.

More recently attention has shifted to a refinement of the original AdaBoost algo-
rithm. The Real AdaBoost algorithm (Schapire and Singer 1998) produces “confidence
rated predictions”. Suppose we wish to predict a binary outcome Y € {—1,1} with a
classifier F'(x) € R that puts out a positive number if it favors Y = +1 and a negative
number if it favors Y = —1. The magnitude of F(x) determines the confidence in the
prediction. In detail the Real AdaBoost algorithm proceeds as shown in figure 1.1.
It differs from the Discrete AdaBoost algorithm in that it performs the boosting on
a log-odds scale rather than a probability scale, has a slightly different reweighting
scheme, and combines the classifiers more simply.

In a rather obscure technical report, Breiman (1997) first noticed that AdaBoost
was an optimization algorithm. This connection with optimization was clarified and
expanded upon in Friedman, Hastie, and Tibshirani (1998). Their argument is as
follows. As before, let Y € {—1,1} and our classifier, F'(x), will produce a real-

valued output. Let the loss of a particular classifier be
J(F)=E [e"®x]. (1.4)

The loss function in (1.4) is small when the signs of y and F'(x) agree, or in other



Initialize the weights of each of the N observations to w

iterate the following steps.

1. Using the weights, estimate P(Y = 1|x).

2. Set hy(x;) = log pp(g:i:j‘lﬁ).

3. Update the observation weights as

wEtH) = wv@ eXP(_@tyiht(Xi))~

4. Normalize w" to sum to 1.

(1)

;| = % Fortin1,...,T

The final boosted model suggested by Freund and Schapire that combines the models

of each iteration is

H(x;) = sign (i ht(xi)> .

t=1

Here oy is a tuning parameter that we will set to 1.

Figure 1.1: The Real AdaBoost algorithm
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words, when the classification is correct. One can also show that (1.4) is an upper
bound, though not a very tight one, on the misclassification rate (Schapire and Singer
1998). Given a current classifier one might wish to improve upon it by adding a new
term, f(x), so that J(F' + f) < J(F'). Minimizing J(F + f) with respect to f yields
that

1 B (Y|x) 1. Py(Y = +1[x)

) =5 los 70 3 T 2198 v = —1j)

where E,(Y|x) = %’w and P,(-) is a weighted conditional probability with
weights w = e ™) usually estimated in practice using trees, neural networks, or
naive Bayes classifiers. Friedman et al. show that repeatedly updating using F'(x) <
F(x) + f(x) is equivalent to the Real AdaBoost algorithm.

To the statistician, minimizing the exponential bound (1.4) seems unnatural since
we more often work with maximizing likelihoods. Friedman et al. (1998) noted that

the minimizer of (1.4) is the same as the maximizer of the expected Bernoulli log-

likelihood
J(F) =EU(F) =B [y F(x) - log (1 + ") |x] . (1.5)

where y* = (14 y) € {0,1}. The expression in 1.5 assumes that y* ~ Bern(p(x))

1

——. Furthermore, the exponential criterion and the Bernoulli
1+4e—F(x) )

where p(x) =
log-likelihood are equivalent to a second order Taylor expansion around F' = 0. At
this point Friedman et al. take the step to produce a boosting algorithm that directly
maximizes the Bernoulli log-likelihood (1.5) rather than the exponential misclassifica-
tion bound (1.4). Similar to their Real AdaBoost derivation, given a current classifier
their LogitBoost algorithm adds new components to further increase the Bernoulli
log-likelihood using Newton steps.

We can select one of many optimization methods to find an f that increases

J(F + f), the Bernoulli log-likelihood shown in (1.5). Friedman et al. chose to derive

a Newton algorithm. Given a current estimate for F(x) the Newton update for F/(x)
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Table 1.1: Misclassification rates of boosted trees - from Friedman, et al (1998)

CART AdaBoost LogitBoost

Breast 4.5% 4.0% 2.9%
Ion 7.6% 6.8% 7.1%
Glass 40.0% 25.7% 26.6%
Sonar 59.6% 20.2% 20.2%
Waveform  36.4% 19.5% 20.6%
1s
. 3 2 T(F+ f)lp=
Flx) — Fx)—2 '+ Dl=o (1.6)
2 I Dl
A y* = p(x) 1
= F(x —I—Ew[ X 1.7
PO+ B | )1 - p(x) o
1
where w = p(x)(1 — p(x)) and p(x) = ) (1.8)

Newton optimization, therefore, tells us to repeatedly substitute weighted expecta-
tions to improve F (x). Note that the weighting in (1.8) implies that the largest
weights pile onto the difficult to classify observations, those near p(x) = % This
is at least similar in spirit to the AdaBoost algorithm. Since we do not know the
value of the expectations in (1.7) we can approximate them by choosing one of our
favorite regression methods. Substituting a linear model in (1.7) for the weighted
expectation reduces to the iteratively reweighted least squares algorithm for fitting
linear logistic regression models. Friedman et al. use CART (Breiman et al. 1984) re-
gression in their experimental results and show substantial improvement in accuracy
over a non-boosted CART classifier. Table 1.1 shows the effect of boosting on the
misclassification rate using five UCI classification datasets (Merz and Murphy 1998).

Computational learning theorists are more eager to claim boosting’s association

with the theory of margins and support vector machines than with optimization and
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likelihoods (Schapire 1999a, Schapire et al. 1998). However, these authors are also
beginning to discuss the relationship to statistics (Schapire 1999b, Mason et al. 1999).
But once boosting and likelihood methods become related, the door opens to many
other statistical models. And so the findings of Friedman, Hastie, and Tibshirani
(1998) lead us directly into methodology for generating boosting algorithms for a

large class of other likelihood based models.

1.1.8 Boosting for regression

At the conclusion of their paper, Freund and Schapire (1997) outline their ideas for ap-
plying the AdaBoost algorithm to regression problems. However, Drucker (1997) first
proposed and tested practical methods for boosting regression. His ad hoc method
followed the spirit of the AdaBoost algorithm by repeatedly performing weighted tree
regression followed by upweighting the poorly predicted observations and downweight-
ing the well predicted ones. Compared with fitting just one tree, his method seems
to be competitive. Breiman (1997) suggests how one might deal with boosting re-
gression problems with his arc-gv methodology. These methods have not yet been
investigated. His more recent work on adaptive bagging (Breiman 1999), which is
quite similar to boosting ideas, appears to showing promising improvements in terms
of bias and variance.

Prior to Friedman, Hastie, and Tibshirani (1998) no clear way for importing boost-
ing to regression problems existed. Adapting some of the ideas on boosting regression
from Freund and Schapire (1997), I was able to create a boosted regression algorithm.
Ridgeway, Madigan, and Richardson (1999) proposed mapping the regression problem
into a classification problem, applying the boosted naive Bayes classifier proposed in
chapter 2, and transforming the resulting classifier back as a regressor. They showed
that this method fits an additive model but also estimates a transformation of the
response variable. Chapter 3 shows the derivation of this algorithm and tests its per-

formance with other interpretable multivariate regression procedures. The empirical
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results show that it performs similarly to generalized additive models (Hastie and
Tibshirani 1990) and outperforms CART in four simulated examples but performs
slightly worse on one of the two real datasets investigated.

Of these mentioned works related to boosting regression problems only Breiman
(1997) alludes to involving optimization of a regression loss function as part of the
boosting algorithm. Friedman (1999a) and the companion paper Friedman (1999b)
extended the work of Friedman, Hastie, and Tibshirani (1998) and created the ground
work for a new generation of boosting algorithms. Using the connection between
boosting and optimization made explicit in Friedman et al. (1998), this new work
proposes the Gradient Boosting Machine.

In any function estimation problem we wish to find a regression function, F (x),

that minimizes the expectation of some loss function, ¥(y, F'), as shown in (1.11).

F(x) = arg win Ey x¥(y, F'(x))

= argmin By By ¥y, F(x))|x] (1.11)

We will focus on finding estimates of F'(x) such that

F(x) = arg min By [ (3. F()]]. (1.12)
Parametric regression models assume that F'(x) consists of a finite number of param-
eters, 3, and estimates them by selecting those values that minimize a loss function
(i.e. squared error loss) over a training sample of N observations on (y,x) pairs as in
(1.13).

X N

B =argmin »_ U(y;, F(x;;3)) (1.13)

B =
When we wish to estimate F'(x) non-parametrically the task becomes more difficult.

Again we can proceed similarly to (1.6) and modify our current estimate of F'(x) by

adding a new function f(x) in a greedy fashion. Letting F; = F(x;), we see that we
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Initialize F'(x) = argmin, 31, W(y;, p) where p is a constant.

Fortin 1, ---,7T do

1. Compute the negative gradient as the working response

0

aF—(xi)\P(y“ F(x;))

2 = — N
F(x;)=F(x;)

2. Fit a regression model, f(x), predicting z; from the covariates x;.

3. Choose a gradient descent step size as

N
p=argmin} W(y;, F(x;) + pf(xi))
i=1

4. Update the estimate of F'(x) as

F(x) < F(x) + pf(x)

Figure 1.2: Friedman’s Gradient Boost algorithm

(1.9)

(1.10)
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want to decrease the N dimensional function

J(E) = > Uy Fxi)

Q
I
—

U(y;, F). (1.14)

I
M= T

Q
I
—

The negative gradient of J(F) indicates the direction of the locally greatest decrease
in J(F). Gradient descent would then have us modify F as

F—F—pVJ(F) (1.15)

where p is the size of the step along the direction of greatest descent. Clearly, this
step alone is far from our desired goal. First, it only fits F' at values of x for which
we have observations. Second, it does not take into account that observations with
similar x are likely to have similar values of F(x) (i.e. F(x) is likely continuous
and smooth). Both these problems would have disastrous effects on generalization
error. However, Friedman suggests selecting a class of functions that use the covariate
information to approximate the gradient. This line of reasoning produces his Gradient
Boosting algorithm shown in figure 1.2. At each iteration the algorithm determines
the direction, the gradient, in which it needs to improve the fit to the data and selects
a particular model from the allowable class of functions that is in most agreement
with the direction.

Figure 1.3 demonstrates the geometry of the gradient boosting machine. In this
case the true regression function, F'(x), is the sinusoidal curve and our current esti-
mate is the constant line at zero, F’ (x) = 0. Assuming that we had 100 observations
from some likelihood based model, we can compute the gradient of the log-likelihood
at each of those 100 observations. The vertical lines indicate the gradient direc-
tion that each of these points would like to move in order to further increase the
associated log-likelihood. Clearly there is randomness, but on average the gradient
indicates moves closer to the true F(x). Incorporating covariate information we can

approximate the gradient by a one split CART model shown in figure 1.3 as the step
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Figure 1.3: Geometry of the Gradient Boosting Machine

function. The CART model seems to capture the general trend of the gradient and
makes a move from F(x) = 0 closer to the true F(x). This step function would be
the gradient step direction in the function space.

In the case of squared-error loss, W (y;, F(x;)) = S~ (yi — F(x;))?, this algorithm
corresponds exactly to residual fitting. Friedman also uses this algorithm to develop
new boosting algorithms for robust regression with least absolute deviation and Huber
loss functions (Huber 1964).

Between the work of Friedman, Hastie, and Tibshirani (1998) and Friedman
(1999a) we have two routes toward boosting algorithms for fitting models that are
in common statistical practice. We can mimic the derivation of the LogitBoost al-
gorithm for other likelihoods or insert likelihood based loss functions for ¥(y, F) in
the gradient boosting framework. Chapter 4 explores both of these routes for fitting
exponential family and proportional hazards regression models. In particular I derive
a general boosting algorithm for exponential family models based on Fisher-scoring
optimization. The LogitBoost algorithm is a special case of this class. I also derive
gradient boosting algorithms for both exponential family and proportional hazards

models. I show on simulated and real datasets that these methods seem to outperform
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more standard regression techniques.

1.1.4 Improvements on boosting

Boosting algorithms have a convenient modular structure that expose themselves to

further improvements. All of the algorithms consist of an update stage of the form

~

F(x) = F(x) + Ey [2(y, F(x))|x] . (1.16)

A

Different likelihoods lead to different functional forms for z(y, F'(x)) within this frame-
work. We can also estimate the conditional expectation by the regression method of
our choice, planes, smoothers, and trees for example. There are many other possible
variations.

At the end of chapter 4 I discuss several ways in which the structure of the boost-
ing algorithm may be exploited to achieve several ideal statistical properties. In

particular, we can create boosting predictors that are

e more accurate on test data by controlling the algorithms optimization or learn-

ing rate,
e more stable by introducing a bagging or subsampling stage,

e scalable by randomly subsampling, deterministically sampling, or weight trim-

ming,

e robust by replacing the conditional expectation by a robust estimator of central

tendency, and
e interpretable by forcing low order function approximation.

Research, including this work, is now showing that boosting represents a new

class of learning algorithms that Friedman correctly named “gradient machines”. As
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all the extensions described here show, boosting iteratively fits some form of the
residual, regions of the sample space where the model’s predictions are missing the
target data. This being the case, the original class of model mixing procedures are
not in competition with boosting but rather can coexist inside or outside a boosting
algorithm. That is, one could average across boosted estimates or perform bagging
and bumping within a boosting iteration. The future of regression may hold new
hybrid methods that are robust, have low bias and variance, and adequately account

for model uncertainty.

1.2 Bayesian inference in massive datasets

The advent of the massive dataset and the expansion of the field of data mining
has created the need to produce statistically sound methods that scale to these large
problems. Although statistics in the past has dealt with extracting maximum infor-
mation from a small dataset, these new problems require methods that can compress
the massive dataset to something humanly understandable.

In chapter 5 I introduce an algorithm based on importance sampling to facilitate
Monte Carlo simulations when the posterior distribution conditions on a massive
dataset. The method uses a posterior distribution conditioned on a smaller, more
manageable partition of the dataset as a sampling distribution. With this choice the
importance weight function is simple for any readily computable likelihood function.
Incorporating the entire dataset requires only one scan of the remaining observations.
Derived from an adaptive importance sampling algorithm, I propose predictive weight
trimming to gain further sampling efficiency.

In chapter 5 I present some preliminary ideas on a new method for performing
inference in a massive dataset. When faced with a massive dataset the likely response
from a statistician is to select a random sample and fit a model to the sample. The

possibility exists, however, that with a little additional effort one could compose a
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more principled, stratified subsample that outperforms simple random sampling but
avoids iterating many times over the full dataset to fit the desired model.

The principle that drives this work is that many observations in a massive dataset
might be redundant, either copies or near copies of other observations. DuMouchel
et al. (1999) proposed a method that builds a pseudo-dataset that matches the mo-
ments of the original dataset. They suggest that if the likelihood is smooth then
“data squashing” will reduce the redundancy while preserving much of the informa-
tion contained in the full dataset. Their method is independent of the model under
consideration so long as the model relies only on those moments being preserved, but
shows only a moderate improvement over simple random sampling.

With a likelihood-based model in mind we may be able to stratify the observations
into clusters with similar likelihood, improving upon the data squashing approach as
well as the simple random sample. More precisely, if many observations have the
same value of the likelihood function for all values of the parameters, we would like
to cluster them and carry out a likelihood based inference using a weighted likelihood
of the clustered data. In all steps I try to limit the number of expensive scans of the
dataset. The process of “likelihood clustering” reduces redundancy in the massive
dataset producing a smaller weighted dataset for which standard statistical tools are
tractable. Using a few heuristics to achieve the likelihood clustering principles I show
some empirical results on a simple linear regression model. The evidence indicates
that the additional effort to cluster by likelihood results in substantial improvement

over a simple random sample.

1.3 Contributions of this research

1. T showed that the boosted naive Bayes classifier forms approximately linear
decision boundaries and therefore admits an interpretable form. 1 also show

that the decision boundary is exactly linear when boosting the naive Bayes
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classifier using Real AdaBoost. (Chapter 2)

. I applied the interpretable boosted naive Bayes classifier to an application in

knee injury diagnosis. The work shows that the classifier is not only accurate
(88% accuracy) but also easily interpretable for the practicing sports medicine

physician even in the case of missing predictors. (Chapter 2)

. I developed one of the first practical boosted regression procedures. I show its

relationship to additive models and demonstrate that it is competitive against

other interpretable multivariate regression procedures. (Chapter 3)

. T generalized the boosting methodology to fit exponential family regression mod-

els. For this purpose I derived a general boosting algorithm based on Fisher
scoring of which the LogitBoost algorithm is a special case. I also developed a
gradient ascent algorithm for the same purpose. For the gradient algorithms
I show that one can use existing software for fitting generalized linear models.

(Chapter 4)

. T also extended the boosting methodology to fit proportional hazards regression

models. I derived boosting algorithms for parametric survival models as well
as models fit using Cox’s partial likelihood. Boosting can also estimate non-
parametrically both the regression function and the baseline hazard function.

(Chapter 4)

. I derived an importance sampling algorithm for sampling from a posterior dis-

tribution that conditions on a massive dataset. It has an efficient sampling
distribution and features an importance weight computation that is linear in

the number of observations and predictors. (Chapter 5)

. I developed an adaptive importance sampling algorithm for sampling from a
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posterior distribution that conditions on a massive dataset. It increases the
efficiency of the importance sampler while maintaining an easy sampling distri-

bution and fast weight computation. (Chapter 5)

. I proposed the “likelihood clustering” method for compressing a massive dataset
into a smaller pseudo-dataset. On a simulated simple linear regression example
I show that with a little additional computation likelihood clustering greatly

outperforms simple random sampling. (Chapter 5)
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Chapter 2

BOOSTED NAIVE BAYES CLASSIFICATION

Voting methods such as boosting and bagging provide substantial improvements
in classification performance in many problem domains. However, the resulting pre-
dictions can prove inscrutable to end-users. This is especially problematic in domains
such as medicine, where for reasons of safety and liability end-user acceptance of-
ten depends on the ability of a classifier to explain its reasoning. Here I propose a
variant of the boosted naive Bayes classifier that facilitates explanations while retain-
ing predictive performance. These results may also be found in Ridgeway, Madigan,

Richardson, and O’Kane (1998).

2.1 Introduction

In classification problems we have a set of predictors or features with which we wish
to accurately predict a response or target that takes on a discrete, finite value. In this
chapter we will focus on binary classification problems, situations in which our goal is
to construct a function of our predictors, h(x), that accurately predicts our response
Y € {0,1}. Traditional statistical practice often appeals to methods such as linear
discriminant analysis or linear logistic regression although methods such as additive
logistic regression (Hastie and Tibshirani 1990), neural networks (Bishop 1995), and
tree-based classifiers such as CART (Breiman, Friedman, Olshen, and Stone 1984)
are seeing more use.

Efforts to develop classifiers with strong discrimination power using voting meth-

ods do not stress the importance of comprehensibility. Bauer and Kohavi (1999) state
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that “for learning tasks where comprehensibility is not crucial, voting methods are ex-
tremely useful.” However, as many authors have pointed out, problem domains, such
as credit approval and medical diagnosis, do require interpretable as well as accurate
classification methods. For instance, Swartout (1983) commented that “trust in a
system is developed not only by the quality of the results but also by clear descrip-
tion of how they were derived. ... In addition to providing diagnoses or prescriptions,
a consultant program must be able to explain what it is doing and why it is doing
it.” In this chapter I present a boosted naive Bayes classifier with both competitive
discrimination ability and transparent reasoning. I describe the proposed boosted,
interpretable naive Bayes classifier, show how it relates to the variants of AdaBoost,

and examine its performance empirically.

2.2 The naive Bayes classifier

Probabilistic classifiers for two-class problems take the form P(Y = y|X). Using
Bayes’ theorem we can express this as

PY =y)PX[Y =y)
P(X)

P(Y =y|X) (2.1)

The naive, simple, or idiot’s Bayes assumption is that the components of X are condi-
tionally independent given the class label. This assumption permits the factorization

of the second term in the numerator of 2.1.

Py —yx) = TV=Y) H;i:(l}(];(Xj|Y ) (2.2)

Under the naive Bayes assumption 2.2, writing the log-odds in favor of Y =1 we

obtain
P(Y =1|X) PY=1) < PXy=1)
e sy —ox) =~ ¢y =) +;1°g P(X,[Y =0)
d
= wo+ ) wi(X;) (2.3)
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The w; are the weights of evidence described by Good (1965). A positive w;(X;)
indicates that the state of X, is evidence in favor of the hypothesis that ¥ = 1. A
negative weight is evidence for Y = 0. Spiegelhalter and Knill-Jones (Spiegelhalter
and Knill-Jones 1984) advocate the use of weights of evidence extensively in medical
diagnosis and propose evidence balance sheets as a means of viewing the reasoning
process of the naive Bayes classifier. Madigan, Mosurski, and Almond (1996) and
Becker, Kohavi, and Sommerfield (1997) develop this idea further.

The expression in 2.3 has a striking similarity to the usual logistic regression
model. These two models, however, are based on different assumptions, the naive
Bayes assumption being more restrictive. Logistic regression assumes that P(Y =
l|z) = P(Y = 0|z) exp(> hj(z;)) where P(Y = 0|z) is an arbitrary baseline function.
The log-odds then have the form of 2.3. The naive Bayes assumption, on the other
hand, assumes that P(Y = 0|z) = exp(} gj(-o) (x;)) and P(Y = 1|x) = exp(X gj(-l) (x4))
so that both conditional class probabilities are exponentials of an additive function of
the predictors. In either case the log-odds have the form

P(Y =1|z) _

P(Y = 0|

1
°8 0|z)

d
;wj(l“j)- (2.4)

Even though in the end the models have the same form, these assumptions lead
to different estimation procedures. Linear logistic regression estimation is based on
direct maximum likelihood estimates of the w;’s and involves iteratively weighted
least squares. FEach iteration of the least squares algorithm requires a scan of the
dataset and a d x d matrix inversion.

Estimation of the naive Bayes model first estimates the conditional probabilities
(P(Y =1),P(Y =0),P(X;|]Y =0), P(X,;]Y = 1), etc.) via maximum likelihood and
then computes the w;’s as the respective log-odds. Although the assumptions are
more restrictive they lead to two convenient properties. The first attractive feature
of this process is that all the sufficient statistics can be collected in a single scan

of the data. Computation is linear in the number of observations and predictors,
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the lowest order possible if an algorithm is to inspect every data point. Secondly,
missing predictors do not interfere with the estimation procedure or the prediction
step. Even if all the X;’s are missing for a particular subject one can still offer the
information available in P(Y = 1). Naive Bayes’ indifference toward missing data
is especially convenient in medical diagnosis where some indicants are unavailable,
expensive, or unnecessary to produce an accurate diagnosis. This is not possible in
logistic regression models without additional assumptions on the joint distribution of
the predictors.

In spite of the often unrealistic conditional independence assumption, naive Bayes
still performs rather well, even when compared against classifiers that model the de-
pendence structure. These studies have found naive Bayes to be intuitive (Kononenko
1990), easily competitive with decision trees (Langley, Iba, and K.Thompson 1992),
and no less competitive than their more complex counterpart, the Bayesian network
(Friedman, Geiger, and Goldszmidt 1997). See Domingos and Pazzani (1997) for
a more complete history of the naive Bayes classifier and more reasons why it has

maintained such a tradition in the machine learning community.

2.3 Boosting and the naive Bayes classifier

As discussed in chapter 1, Freund and Schapire’s Discrete AdaBoost algorithm pro-
)

ceeds as follows. Initialize the weights of each observation to w; ’ = % For ¢ in 1 to

T iterate the following steps.

1. Learn model H,(x;) : X — [0, 1].

2. Compute ¢ = YN, wy) |yi — Hy¢(x;)| as the error for the model H;.

3. Let 61; = &

1767‘, '

(t+1) w(t)ﬂtl—‘yi—Ht(mi)“

i =

4. Update the observation weights as w
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5. Normalize wl(tH) so that they sum to one.
The final boosted model suggested by Freund and Schapire that combines the

models of each iteration is

1 )= i <10g é) Hy(x)

H(z) = e where r(z
L+ I, B! S log 5

(2.5)

Boosting the naive Bayes classifier involves substituting in the above algorithm H; =
P,(Y = 1|X). As described in section 2.2 estimation of P,(Y = 1|X) assumes that
B(Y = 11X) &< B(Y = DRV = 1)+ (XY = 1),

The boosted naive Bayes classifier has already seen some success. Charles Elkan’s
application of boosted naive Bayes won first place out of 45 entries in the data mining
competition KDD’97 (Elkan 1997). Elkan also showed that it has a non-linear logistic
regression form and notes that it belongs to the computational complexity class NC'
This class of algorithms meets the basic constraints of neurocomputational feasibility
for low level brain processes, thus suggesting they are a plausible computational model
for animal learning. However, while the usual non-boosted naive Bayes approach
leads to elegant and effective explanations (see, for example, Madigan, Mosurski,
and Almond (1996) and Becker, Kohavi, and Sommerfield (1997)), the AdaBoost-ed
version destroys this feature.

In what follows, I derive a “boosted weight of evidence” that the explanation
procedures of Madigan, Mosurski, and Almond (1996) and Becker, Kohavi, and Som-
merfield (1997) can use directly. I will express the AdaBoost voting scheme in a slightly
different form and substitute a Taylor expansion for each of the boosted classifiers.

In the end we will be able regain a boosted version that is additive as before.

Proposition 2.1 (Interpretable naive Bayes) The AdaBoost naive Bayes classi-

fier is approximately linear in the predictors on the logit scale. The approrimation is

>0 ((log 1{’;”)3) where p; is the t'" boosted classifier.
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Proof: Writing the AdaBoost combined classifier, H(z), in the form of a log-odds

simplifies the combination procedure.

H(CL’) 2 2r(z)—1
log ———— —1 -
og 1 — H(I) og H ﬂt
T
— Y (log ) (1 — 2B(Y = 1]X)) (2.6)
t=1
Note that
1 ~log ROZ=IX) -1
Pf(Y:]_lX) HB‘(—YO)():<1+€ 't (Y =0] )> . (27)
PV =11X)

Substituting equation 2.7 into equation 2.6 we obtain

H(x

1
8T (2

T P (v=11X)\ —1
=" (log ) <1 -2 <1+e log 7, (v= 0|x>> ) . (2.8)

t=1

Substituting (up to the linear term) the Taylor approximation to the sigmoid function

(1 é,z = % + ix + O(:C5)) produces a linear combination of the log-odds from each

boosted naive Bayes classifier:
H(x 1 P(Y =1|X

log 1w~ 5’-1) ; < log ﬂ,c) log —E — O:X; (2.9)
Each of the T classifiers are accurate to a first order log-odds term. Even though
this might seem to be a poor approximation, it might do quite well given that we
are interested in classification. The linear approximation to the sigmoid function is
exact at 0 and loses precision as the argument moves away from 0. On the probability
scale, the two functions agree at P(Y = 1|/X) = 1. This is precisely the point where
classification is the most in doubt. On the probability interval L‘lu ﬂ the absolute
error of the approximation is less than 0.025. In the region near the extremes the
approximation preserves the sign of the AdaBoost combined hypothesis but will differ
on magnitude. Although the probability estimates will differ in this case, both meth-

ods will make the same classification. Note that this approximation applies to each

of the probabilistic classifiers that compose the final model.
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Finally, to help maintain some probabilistic interpretation of the final model (so
that both sides of 2.9 appear as log-odds) and to remove some of the effect of the num-
ber of boosting iterations, we normalize the classifier weights (% log %) Intuitively,

each probability model casts a log-odds vote for or against classification into Y =1
log ﬂit
Y log g

assuming a naive Bayes model for P,(Y = 1|X), a boosted estimate for the log-odds

where each models’ vote is proportional to its quality. So letting oy = and

in favor of Y =1 is:

P

Y d T
s pv =) T8 by )

liNgt

= boosted prior weight of evidence +

d
> boosted weight of evidence for X (2.10)

j=1
This again is just a naive Bayes classifier where the estimates of the weights of
evidence have been biased by boosting. The sigmoid function transforms the boosted

log-odds to a boosted predicted probability as

1
1 + ¢—log-odds”

P(Y = 1X) =

Soon after the development of this version of the boosted naive Bayes classifier
Schapire and Singer produced the Real AdaBoost algorithm (Schapire and Singer
1998). This algorithm basically applies boosting on the logit-scale. Each classifier,
hi(x), puts out a real value so that when h;(z) is negative we believe that Y = 0
and when h(x) is positive we believe that Y = 1. The weights follow the update
rule w{™ = wgt)e*“t(%i*l)hf(“) where a; € (—o00,00). The final prediction is H(z) =

i

Et O{tht(ﬂf) .
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Without approximation, boosting the naive Bayes classifier via the Real AdaBoost

algorithm also yields an interpretable version.

Proposition 2.2 Applying Real AdaBoost to the naive Bayes classifier yields a clas-

sifier that is linear in the predictors on the logit scale.

Proof:
Asin 2.3 let
P(Y =1]X)
h = 1

o PV S DI REGY =)

B(Y = 0)IT)-, P(X,]Y =0)
(t) d (t)
= Wy + ij (XJ)
=1

Since the final classifier of the Real AdaBoost is H(x) = >, ayhy(x) we trivially
obtain an interpretable classifier.

T d T
H(z) = Z oztw[()t) + Z Z atw§t) (X;) (2.11)
=1

j=11t=1
= boosted prior weight of evidence +

d
Z boosted weight of evidence for X
j=1

log - . . .
If we let oy = ST o L gffg — we will obtain the same expression as 2.10. Although the
t=1 98 3/
reweighting of the observations is slightly different, the final classifier has the same

interpretable form.

Although conceptually it would seem as if fitting many models would lead to over-

fitting, boosting the naive Bayes classifier does not seem to overfit. This may be due



30

Table 2.1: Datasets used for comparison

N Predictors Positive cases

Knee diagnosis 99 26 44%
Diabetes 768 8 35%
Credit approval 690 15 44%
Coronary artery disease 303 13 44%
Breast tumors 699 9 34%

to its linearity (or near linearity in the case of Discrete AdaBoost) and relatively few
effective parameters. The form of the final classifier contains only as many parameters
as the original classifier with the addition of 7', the number of rounds of boosting.

Deciding when to stop boosting may require cross-validation.

2.4 Performance of the boosted naive Bayes classifier

The substantial changes to the classifier combination step proposed in section 2.3
may have produced a voting method with different discrimination properties. In
this section we show empirically on the five datasets described in table 2.4 that the
misclassification rates for this new method are comparable to those generated by the
AdaBoost algorithm. We note that every one of these datasets concerns a problem
domain where human understanding of the machine reasoning process is likely to be
important.

In a retrospective study, O’Kane, Ridgeway, and Madigan (1998) use the weight
of evidence boosted naive Bayes classifier to diagnose candidates for knee surgery
at a sports medicine clinic. They present boosted parameter estimates and example
evidence balance sheets that physicians can easily interpret and utilize in diagnosis. A

prospective study is in progress. The remaining datasets are from the UCI repository
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Table 2.2: Misclassification rates (standard deviation)

Naive Bayes Discrete AdaBoost Weight of evidence

Knee diagnosis 14.0% (5.0%) 13.8% (5.5%) 13.4% (5.7%)
Diabetes 25.0% (2.0%) 24.4% (2.5%) 24.4% (2.6%)
Credit approval 16.8% (2.0%) 15.5% (2.1%) 15.5% (2.1%)
Coronary artery disease 18.4% (3.0%) 18.3% (3.2%) 18.3% (3.3%)
Breast tumors 3.9% (1.0%) 3.8% (1.0%) 3.8% (1.0%)

(Merz and Murphy 1998). For each dataset we created 100 training sets randomly
composed of two-thirds of the data. Then we compared the misclassification rate
of naive Bayes, AdaBoost naive Bayes, and the proposed boosted weight of evidence
naive Bayes on the remaining one-third of the cases comprising the test set. Cross-
validation on the training data yielded an estimate of the optimal number of boosting
iterations. Table 2.2 compares the misclassification rates of the three methods. Both
boosting methods demonstrate marginal absolute improvements in misclassification
rate for most of the datasets. However, the most important result from table 2.2 is
that boosted weight of evidence naive Bayes almost perfectly matches the performance
of the AdaBoost method. We have also examined aspects of the performance of the
boosted weight of evidence naive Bayes classifier that go beyond just misclassification
rate. The so-called “mean Brier score” in equation 2.12 is a proper scoring rule that

considers both discrimination ability and calibration:
1 X R )
B= 3> (s~ P(Y =1]X)) (2.12)
i=1

Yates (1982) and Spiegelhalter (1986) provide an extensive discussion of this scoring
rule that has its roots in meteorology. Table 2.3 indicates that boosting generally

decreases the mean Brier score and again the boosted weight of evidence naive Bayes
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Table 2.3: Mean Brier score (standard deviation)

Naive Bayes AdaBoost Weight of evidence

Knee diagnosis 0.107 (0.040) 0.108 (0.038) 0.103 (0.036)
Diabetes 0.170 (0.010) 0.164 (0.011) 0.164 (0.011)
Credit approval 0.127 (0.020) 0.112 (0.012) 0.113 (0.012)
Coronary artery disease 0.135 (0.020) 0.132 (0.016) 0.130 (0.021)
Breast tumors 0.035 (0.009) 0.035 (0.009) 0.034 (0.009)

classifier is competitive.

When a probabilistic prediction model assigns, e.g., a 30% probability to a posi-
tive outcome, one would like 30% of such cases to actually have a positive outcome.
Various authors have proposed calibration scores and plots that attempt to represent
this property. Calibration plots (Copas 1983a) show whether probabilistic predictions
are calibrated. Figure 2.1 displays an example calibration plot for a random split of
the data. The perfectly calibrated predictor will have a straight line. Across the five
datasets, the plots generally show that the boosting methods provide improved cal-
ibration, but the two boosting methods are indistinguishable. Further research may

show that boosting smooths predictions in a way that improves their calibration.

2.5 Application to prediction of surgical intervention in patients with

knee complaints

In O’Kane, Ridgeway, and Madigan (1998) we applied the interpretable boosted naive
Bayes classifier to a problem in automated medical diagnosis. This section presents
the findings of that joint work.

Knee complaints secondary to injury and overuse are common in both general and

orthopedic practice. They are particularly common in athletes and other physically
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Figure 2.1: Example calibration plots for the credit dataset

active individuals. Knee problems including significant meniscal tears, anterior cru-
ciate ligament (ACL) tears, intraarticular fractures and osteochondritis dessicans are
often best managed with surgical treatment. On the other hand, problems including
patellofemoral pain, medial collateral ligament sprains, iliotibial band syndrome, and
patellar tendonitis are generally best managed non-operatively with appropriate re-
habilitation. Based on history and physical exam, it can be difficult to separate those
patients with knee pain likely to benefit from early surgical intervention from those
in whom initial conservative treatment is more appropriate.

Findings are mixed in prior studies assessing the ability of clinical examination to
predict the arthroscopic diagnosis in patients with knee complaints. Gibson, Davies,
Crane, and Henry (1987) found that a clinical exam resulted in an unequivocal diag-
nosis of internal derangement in only 35% of the cases. They report a frequent dis-
cordance between clinical diagnosis and arthroscopic findings. Much of the literature
focuses on the diagnostic accuracy of clinical exam to predict meniscal tears. While

some authors have not found a clinical pattern that would reliably predict meniscal
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tears (Noble and Erat 1980), others have found that a combination of historical and
physical examination variables can predict meniscal tears with some accuracy (Barry,
Smith, McManus, and MacAuley 1983). Anderson and Lipscomb (1986) found at
least one positive mechanical test in 79% of meniscal tears. Alternatively, Curtin,
O’Farrell, McGoldrick, Dolan, Mullan, and Walsh (1992) found that for 175 patients
taken to arthroscopy, clinical exam and plain radiography demonstrated poor speci-
ficity for medial meniscal tears and poor sensitivity for lateral meniscal tears. They
demonstrated better specificity for ACL tears and of 30 predicted, 26 were confirmed.
There were 7 ACL tears discovered arthroscopically that were not diagnosed on clini-
cal exam. Finally, Abdon, Lindstrand, and Thorngren (1990) found that while clinical
accuracy in detecting meniscal tears was 61%, employing a multivariate analysis of
68 different clinical variables could correctly predict a meniscal tear in 80% of the
cases. This last study, like the others, demonstrates that making an accurate diag-
nosis based on history and physical is difficult. It suggests though, that analysis of
the variables statistically may be more accurate than the clinical impression based on
those variables.

While the literature cited examines the accuracy of diagnosis following history and
clinical exam, an important question not directly addressed is the likelihood that a
patient presenting with a knee complaint will benefit from surgical intervention. For
the primary care physician contemplating a referral for surgery, or for a surgeon con-
templating arthroscopy, the likelihood the patient will benefit from the procedure is
of primary concern. This application attempts to determine whether or not historical
and clinical variables at the time of presentation can accurately predict if a patient is
likely to have a knee problem requiring knee surgery. It also examines the role of the
boosted naive Bayes classifier to more accurately predict the answer to this clinical
question.

Methods

Data were collected through a retrospective chart review in a university based



35

orthopedic sports medicine clinic. Charts were pulled sequentially in alphabetical
order and the record was reviewed for all knee diagnoses. Data were collected for all
patients in whom the surgical or non-surgical treatment was satisfactorily completed.
The patients’ age and gender were noted and binary data were collected for the
historical and clinical variables.

We evaluated our model according to procedures common in the statistics and
machine learning communities. We first randomly divided the patient sample of 99
observations into two groups, a training set and a test set. We estimated the param-
eters of the boosted naive Bayes model as well as the optimal number of boosting
iterations using only the training set. The estimated model was then used to predict
the necessity of knee surgery on the patients in the test set and compute the mis-
classification rate of the test set. Repeating these steps for several partitions of the
sample and averaging the misclassification rate for each partition yields an estimate
of the accuracy of the classifier on future observations. We also varied the proportion
of the observations used in the training set to estimate a “learning curve” for the knee
injury classification problem that helps determine the number of patients needed for
constructing an accurate model.

Table 2.4 and table 2.5 show the estimated weights of evidence, w;(X;). The
point estimates shown are the expected value of the boosted weight of evidence.
When estimating the probabilities in equation 2.10 we take a Bayesian approach
and assume that each probability has a beta distribution. With a Beta(1,1) prior
on each parameter we obtain numerically stable estimates, even for classes with low
cell counts. This is equivalent to what is known as the Laplace correction. Let pg
represent P(X; = z;|Y = 0) and p; represent P(X; = z;|Y = 1) for some arbitrary
j. For point estimates of the weights of evidence we would like to compute

E w;(z;) = E <log %) = Elog p1 — Elog po (2.13)

where pg and p; have some posterior distribution Beta(ag, 5y) and Beta(aq, 31) re-



Table 2.4: Estimated weights of evidence — 1 of 2

Prior -1 (11)
Variable negative  positive
Unilateral -29 (64) 5 (7)
Injury -50 (23) 39 (14)
Locking -6 (3) 172 (50)
Instability -14 (5) 88 (50)
Mechanical -1 (31) -4 (25)
Anterior pain 0 (17) -4 (38)
Local pain 23 (32) -10 (12)
Sports related 14 (15) -19 (15)
Industrial -5 (8) 34 (96)
Prior surgery 12 (8) -26 (41)
Prior injury -7.(9) 20 (33)
Depression -5 (8) 14 (64)
Effusion -72 (24) 85 (29)
Range loss -8 (15) 12 (22)
Instability MCL 6 (4) -140 (53)
Instability LCL -4 (2) 133 (36)
Instability ACL ~ -34 (7) 298 (19)
Patella crepitus  -11 (29) 13 (34)
McMurray’s -38 (25) 56 (52)
Tender med JL. ~ -30 (14) 49 (18)
Tender lat JL -20 (9) 50 (29)
Tender anterior 13 (6) -72 (89)
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Table 2.5: Estimated weights of evidence — 2 of 2

Male Female

Sex -6 (13) 8 (14)

<24 2532 3346 >47
Age -3(37) 28 (22) -1(26) -12(23)

None Slow Rapid
Swelling -41 (40) 58 (37) -29 (23)

No Yes Arthritis
XR-fracture 64 (75) -22 (14) 45 (60)

spectively. I will use the fact that

Elogp = /log

where () (z) is the digamma function, the (n + 1) derivative of the logarithm of

the gamma function. So the expectation in 2.13 is

B w;(z;) = v (1) — v (a0) — »O(81) + @ (5o) (2.14)

This expectation also holds for the prior weight of evidence. An estimate of the
boosted weights of evidence is simply a weighted average of 2.14. The variance of
the weights is not so simple. The boosting iterations are highly dependent on one
another. We appeal to bootstrapping to estimate the variance of the w;’s

Returning to tables 2.4 and 2.5, the number shown in parentheses is a bootstrap
estimate of the standard deviation of w;(X;). If the weight of evidence estimates

were normally distributed then the ratio of the estimate to the estimated standard
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Table 2.6: Example evidence balance sheet. Weights are scaled by 100.

Evidence in favor of knee surgery  Evidence against knee surgery
Female +8 Prior -1
Knee is unstable +88  Age 50 -12
Knee locks +172 No effusion =72
Tender med JL +49  Negative McMurray’s -38
Total positive evidence +317 Total negative evidence -123
Total evidence +194

Probability of knee surgery 87%

deviation would provide a t-test statistic for testing whether the weight of evidence
differed significantly from 0. However, the bootstrap distribution of the estimates
were often skewed, indicating substantial departures from normality. According to the
bootstrap distribution, if P(i;(X;) > 0) is less than 0.025 or exceeds 0.975 (evidence
that the weight of evidence is strongly negative or strongly positive respectively) then
we boldfaced the variable in tables 2.4 and 2.5. This amounts to a o = 0.05 test based
on the bootstrap percentile interval (Efron and Tibshirani 1993). This is analogous to
the p < .05 used to determine statistical significance in other statistical models. The
bold faced weights of evidence indicate that the associated variable is a “significant”
predictor for or against surgery.

The weights in tables 2.4 and 2.5 are additive. That is, to determine the total
weight of evidence in favor of a patient needing knee surgery the physician merely
needs to elicit a collection of indicants, sum the associated weights, and note the

magnitude and sign of the total weight.

For a new patient a physician could easily create an evidence balance sheet
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Figure 2.2: Learning curve for predicting the necessity of knee surgery (mean mis-
classification with 1% and 3™ quartiles)

(Spiegelhalter and Knill-Jones 1984) from tables 2.4 and 2.5. Table 2.6 shows an
example of such an evidence balance sheet where the weights of evidence are scaled
by a factor of 100 for readability. Figure 2.2 shows the estimated learning curve for the
necessity of knee surgery. Training on 66 patients we expect to predict knee surgery

with 87% accuracy (misclassification rate is approximately 13%).

2.6 Conclusion

In this chapter I proposed a method for merging the interpretation properties of
the naive Bayes classifier with the performance gains associated with boosting. In
particular, via an intuitively reasonable approximation, I showed that the boosted
naive Bayes classifier is nearly linear in the predictors. Through empirical study on
five datasets, this method demonstrated slight improvements over the usual naive
Bayes in terms of misclassification rates. Probably of more interest, as far as this

method is concerned, is that both boosting methods had near identical performance.
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Although misclassification seems to be the error metric of choice in the machine
learning community it need not be the only one. On metrics that measure calibra-
tion such as the Brier score decomposition or simple calibration plots both boosting
methods out performed the exaggerated naive Bayes prediction.

For applications to large datasets, the naive Bayes classifier alone is viable. For
discrete predictors, a linear scan of the dataset provides all the sufficient statistics
for parameter estimation. If multiple scans are allowable boosting has an extra cost
that is linear in the number of boosting iterations. For the cost of an extra scan, the

classifier might improve calibration.
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Chapter 3

BOOSTED NAIVE BAYES REGRESSION

This chapter proposes a method for applying the boosted naive Bayes classifier to
regression problems. The paper Ridgeway, Madigan, and Richardson (1999) contains
a condensed version of these ideas.

Classification problems have dominated research on boosting to date. The appli-
cation of boosting to regression problems, on the other hand, has received little in-
vestigation. In this paper we develop a new boosting method for regression problems.
We cast the regression problem as a classification problem and apply an interpretable
form of the boosted naive Bayes classifier. This induces a regression model that we
show to be expressible as an additive model for which we derive estimators and dis-
cuss computational issues. We compare the performance of our boosted naive Bayes

regression model with other interpretable multivariate regression procedures.

3.1 Introduction

In a wide variety of classification problems, boosting techniques have proven to be an
effective method for reducing bias and variance, and improving misclassification rates
(Bauer and Kohavi 1999). While more evidence compiles about the utility of these
techniques in classification problems, little is known about their effectiveness in regres-
sion problems. Freund and Schapire (1997) provide a suggestion as to how boosting
might produce regression models using their algorithm AdaBoost. R. Breiman (1997)
also suggests how boosting might apply to regression problems using his algorithm

arc-gv and promises a study in the near future. The only actual implementation and
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experimentation with boosting regression models that we know of is Drucker (1997)
in which he applies an ad hoc modification of AdaBoost. R to some regression problems
and obtains promising results.

In this chapter we develop a new boosting method for regression problems. Mo-
tivated by the concept behind AdaBoost. R, we project the regression problem into a
classification problem on a dataset of infinite size. We use a variant of the boosted
naive Bayes classifier (Ridgeway, Madigan, Richardson, and O’Kane 1998) that offers
flexibility in modeling, predictive strength, and, unlike most voting methods, inter-
pretability. In spite of the infinite dataset we can still obtain closed form expressions
for the parameter estimates within each iteration of the boosting algorithm. As a
consequence of the model formulation, the naive Bayes regression model turns out
to be an estimation procedure for additive regression for a monotone transformation
of the response variable. In this paper we derive the boosted naive Bayes regres-
sion model (BNB.R) as well as show some results from experiments using a discrete

approximation.

3.2 Boosting for classification

In binary classification problems we observe (X,Y);, i = 1,---, N where Y € {0,1}
and we wish to form a model, h(X), which accurately predicts Y. Boosting describes
a general voting method for constructing h(X) from a sequence, h;(X), where each
model uses a different weighting on the observations in the dataset to estimate its
parameters. Observations poorly modeled by h; receive greater weight for learning
hir1. The final boosted model is a combination of the predictions from each h;
where each is weighted according to the quality of its classification on the training
dataset. Freund and Schapire (1997) presented a boosting algorithm for classification
problems that empirically has yielded reduction in bias, variance, and misclassification

rates with a variety of base classifiers and problem settings. Variants of their AdaBoost
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(adaptive boosting) algorithm have become the dominant form of boosting in practice
and experimentation so far.

As discussed in chapter 1, Freund and Schapire’s Discrete AdaBoost algorithm
proceeds as follows. Initialize the weights of each observation to wi(l) = % For tin 1

to T iterate the following steps.
1. Learn model H,(x;) : X — [0, 1].
2. Compute ¢ = YN, wy) |yi — Hy¢(x;)| as the error for the model H;.

3. Let 61; = &

1—€f :

(t+1) w(t)ﬂtl_‘yi—Ht(mi)“

i =

4. Update the observation weights as w

+

5. Normalize w!*" so that they sum to one.

The final boosted model suggested by Freund and Schapire that combines the

models of each iteration is

1 ST (log 1) Hi(o)
= g where r(z) = 7 5
L+TI, 6 2ilog 5

H(z) (3.1)

They prove that boosting in this manner places an upper bound on the final

misclassification rate on the training dataset at

271 1:[1 Vel —e). (3.2)

Note that as long as the weighted misclassification rate of each of the classifiers can
do even slightly better (or worse) than random guessing, then the bound decreases.
In 3.1 when computing r(z), the weight coefficient for a particular classifier is log é
This coefficient is 0 when the classifier is no better than random guessing, ¢; = %

Also, if the classifier does worse than random guessing, ¢; > %, then 3; > 1 and so the

weight coefficient is negative, effectively reversing the predictions made by H(x).
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Even if boosting drives the training error to zero the boosted models tend not to
be overfit on real datasets. The work on AdaBoost also produced bounds on general-
ization error based on VC dimension. However, AdaBoost’s performance in practice
often is much better than the bound implies. Empirical evidence has shown that
the base classifier can be fairly simplistic (shallow classification trees) and yet, when
boosted, can capture complex decision boundaries (Breiman 1998). Ridgeway, Madi-
gan, Richardson, and O’Kane (1998) substituted the naive Bayes classifier hy(X) and
a Taylor expansion for the sigmoid function to obtain an accurate and interpretable
boosted naive Bayes classifier. Using the same boosting algorithm presented above,

the step combining the naive Bayes classifiers is approximately

Y P (XY =1)
a log —|— lo g—
I DA
= boosted prior weight of evidence +
d
> boosted weight of evidence for X (3.3)
j=1

where oy = L. Py(-) is an estimate of the probability density function using a
t

weighted likelihood taking into account the observation weights, w®, from the ¢
boosting iteration. The boosting weights of evidence are a version of those described
in Good (1965). A positive weight corresponding to X; indicates that the state of X
is evidence in favor of the hypothesis that Y = 1. A negative weight is evidence for
Y =0.

In practice the non-boosted naive Bayes classifier consistently demonstrates ro-
bustness to violations in its assumptions and tends not to be sensitive to extraneous
predictor variables. Note that 3.3 remains a naive Bayes classifier even though it has
been boosted. However, boosting has biased the estimates of the weights of evidence
to favor improved misclassification rates. Subsequent classifiers place more weight on
observations that are poorly predicted. Intuitively, boosting weights those regions of

the sample space that are not modeled well or exemplify violations of the model’s
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assumptions (in the naive Bayes case, conditional independence of features given
the unknown class). Similar to the weights of evidence logistic regression proposal of
Spiegelhalter and Knill-Jones (1984), boosting the naive Bayes classifier seems to have
a shrinking effect on the weights of evidence and reins in the classifiers exaggerated
probability predictions leading to improved calibration.

Efforts to improve upon the naive Bayes classifier by relaxing the naive condi-
tional independence assumption are not always successful. Friedman and Goldszmidt
(1996) compared the performance of the naive Bayes classifier and, their more power-
ful counterpart, the Bayesian network. They found that the complexity in fitting the
Bayesian networks models did not offset the generally small gains in predictive perfor-
mance. However, in response, they proposed the augmented naive Bayes that allows
for some dependence among the features. In particular they develop tree-augmented
naive Bayes (TAN) and show that it outperforms naive Bayes as well as C4.5, a
decision tree classifier. Keogh and Pazzani (1999) confirmed that TAN outperforms
naive Bayes on average, at times substantially but more often slightly. Building on
the work of Friedman and Goldszmidt (1996) they developed an efficient hill-climbing
search (HCS) for an augmented naive Bayes classifier. On the thirteen UCI datasets
analyzed, HCS outperforms TAN, decreasing misclassification rates up to 10%.

Other methods to offset violations of the naive Bayes assumption build decision
trees that fit local naive Bayes classifiers at the leaves. Zheng and Webb (1998) give
a history of some methods as well as propose a new method of their own. Within a
leaf this method fits a naive Bayes classifier where the observations weighting assigns
weight 1 to observations in the leaf and weight 0 to observations outside the leaf. The
final model then mixes all the leaves together. Boosting performs in a similar manner.
However, rather than partitioning the dataset, boosting reweights smoothly, learning
on each iteration to what degree it should fit the next classifier to each observation.

Efforts to use the naive Bayes assumption in regression applications has failed.

Frank, Trigg, Holmes, and Witten (1998) showed that direct application of the naive
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Bayes assumption performs worse than linear regression and regression trees. The
robust properties of naive Bayes may only exist for classification. In this work we will
be able to take advantage of these robust classification properties and apply them to

regression problems to outperform linear regression and trees in some settings.

3.3 Boosting regression problems

In spite of the attention boosting receives in classification methodology, few results
exist that apply the ideas to regression problems. If boosting’s effectiveness extends
beyond classification problems then we might expect that the boosting of simplistic
regression models could result in a richer class of regression models. Breiman (1997)
describes a boosting method called arc-gv although to date no performance results
have been published.

Drucker (1997) considered an ad hoc boosting regression algorithm. He assigned
a weight, w;, to each observation and fit a CART model, h(z) — Y, to the weighted
sample. Similar to the AdaBoost algorithm for classification he set

¢ = gwi(t)L ( |yi — ha(w)] ) (3.4)

max [y; — hy(z;)]

He offers three candidate loss functions for L, all of which are constrained to the

[0,1] interval. The definition of ; remains the same and the reweighting proceeds in

AdaBoost fashion.

1—-, \yqj—vhj("‘/q‘,;\v

In this manner, each boosting iteration constructs a regression tree on a different
weighting of the dataset. Lastly, he suggests using a weighted median to merge the
predictions of each regression tree. Using this method, his empirical analysis showed
consistent improvement in prediction error over non-boosted regression trees.
Drucker’s and Freund and Schapire’s methods share little in common. In order

to extend their theoretical classification results to regression problems Freund and
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Table 3.1: Example dataset D

Xy Xy Y
0.6 04 0.3
0.8 05 09

Schapire project the regression dataset into a classification dataset and apply their

AdaBoost algorithm. Our algorithm proceeds similarly.

3.3.1 Projecting the observed data

Freund and Schapire project the data into a “reduced AdaBoost space,” a classification
dataset in the following way. For the moment we will assume that Y € [0, 1] but
the methodology readily extends to the whole real line. To make this transition to
a classification problem we first expand the size of the dataset. Consider the toy
dataset shown in table 3.1. We transform the original regression dataset, D, to a new
classification dataset, D*, as follows.

First, let S be a sequence of m equally spaced values in the interval [0,1]. Secondly,
form the Cartesian product of (X7, Xo,Y) and S. Then append the dataset with a
binary variable, Y*, that has the value 0 if S <Y and 1if S > Y. Table 3.2 shows the
transformation of table 3.1. We will call this dataset D* which has m x N observations.
Now we can construct a classifier of the form A : (S, X) — {0,1}. In other words, we
can give this model an X and an S and ask of it whether the Y associated with X
is larger or smaller than S. A probabilistic classifier may instead give a probabilistic
prediction so that h : (S, X) — [0, 1]. Note that when m is large enough such that the
precision of S exceeds the precision of Y the transformation of D to D* is 1-to-1. and,
therefore, the classification dataset contains the same information as the regression
dataset. Throughout this chapter we will index the observations in D by ¢ and the
observations in D* by (i, 5).



Table 3.2: Transformation of example dataset D

Xy X9 Y S Y*=I(S>Y)
06 04 03 0.00 0
06 04 03 0.01 0
; 0
0

0.6 04 0.3

06 04 03 0.29
0.6 04 03 0.30
0.6 04 03 0.31
06 04 0.3 ; 1
06 04 03 0.99
0.6 04 03 1.00

1
1

—_ =

0.8 05 09 0.00
0.8 05 09 0.01
0.8 05 09

0.8 05 09 0.89
0.8 05 09 0.90

- o O O O

08 05 09 0091
0.8 05 09

0.8 05 09 099
0.8 05 09 1.00

—_ = = =
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At this point our methodology and Freund and Schapire’s methodology depart.
Using their AdaBoost.R one fits a regression model on the regression dataset, D,
which in turn induces a classifier on the classification dataset, D*. That is, one can
ask of the regression model whether it predicts the Y to be greater than or less than
a value S given a vector of features X. The performance of this induced classifier on
D* determines the reweighting of the observations and the weight of each of the h;’s.

However, both Freund and Schapire’s and Drucker’s algorithms halt if the mis-
classification rate of any individual h; on D* exceeds % Their algorithms iterate
until ¢ > % In practice no method can guarantee that this constraint should hold
long enough to build a suitable model. We noted earlier that the voting scheme of
the original AdaBoost algorithm for binary classification problems 3.1 simply reverses
the polarity of any classifier for which ¢ > % In terms of the voting scheme, these
classifiers are just as useful as the ones for which ¢, < % This observation led us to
investigate whether we could avoid fitting a regression model that induces a classifier
and instead fit a classifier directly to D*. In binary classification problems, if a clas-
sifier performs very poorly in the sense of getting almost every observation wrong,

AdaBoost can use such a classifier just as much as one that gets almost everyone right.

3.4 Classification for infinite datasets

If h(X, S) is our classifier for D*, our predicted value of Y for a given X is the smallest
value of S for which h predicts Y* = 1. Many classifiers base their classification rule

on estimates of P(Y* = 1|X,S). Therefore, to obtain a prediction for Y we can use
. 1
y = igf{s P(Y* = 1]X,S) > 5} . (3.6)

More easily stated, this prediction is the y for which we are equally uncertain whether
the true Y is smaller or larger. Concretely, if P(Y* = 1|X,S = 0.3) = 0.1 then we
would believe that Y* = 0 is more likely and therefore, by the definition of Y*, YV is
more likely to be larger than 0.3. On the other hand, if P(Y* =1|X,5 =0.3) = 0.5
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then our beliefs would be divided as to whether Y is larger or smaller than 0.3. In

this situation, 0.3 would make a reasonable prediction for Y.

3.4.1 Boosted naive Bayes classification for infinite datasets

Generally naive Bayes classification assumes that the features are independent given
the class label. In the setting here the features consist of X and S and the class label,
Y*. This model corresponds to the following factorization.
d
PO =y 1%, X §) o PO =) P(STY =) PO =) (3)
j=
This conditional independence assumption is not necessarily sensible. If in fact Y
and X are positively correlated then, given Y* = 1, knowledge that S is small is
highly informative that Y is small and so X is likely to be small. Therefore, on
the surface the naive Bayes assumption does not seem reasonable. We then must
rely on its robustness toward such violations and boosting’s ability to compensate for
incorrectly specified models. Indeed we will see that this in fact happens. As we will
see here, assuming this factorization implies that the naive Bayes regression model

fits an additive model to a transformation of the response variable.

Proposition 3.1 (Naive Bayes regression fits an additive model) If
P(S = s|Y™*) is a continuous function of s and the factorization in equation 3.7 holds,
then the prediction rule in equation 5.6 is an additive model for a transformation of

the response variable Y .

Proof:

Note that for equation 3.7 there exists s; and s; for every X such that

1 1
PY*=1X,8=s)< 5 and P(Y*=1|X,5 = s9) > (3.8)

5.
This follows by the construction of S

ShIIl P(S|Y*=1)=0 and Slim P(SIY"=0)=0 (3.9)
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This implies that

lim P(Y*=1]|X,5) =0 and Slim PY*=1X,9)=1 (3.10)

S——00

Therefore, for the naive Bayes model, 3.8 holds for some s; and s,.
Substituting 3.7 into 3.6 the computation of the regression prediction under this
model becomes

P(s|Y* =0)

2l =0 o
Py =1) = %

(3.11)

* d ) *
Y = igf {s : log P =1) PEIY 1)}

P =0) jz_:l o8 pX. v = 0)
Note that equation 3.11 bears some resemblance to equation 3.3. We will call the
function to the left of the inequality ¢(s). ¢(s) is necessarily non-increasing since as s
increases it must become more likely that Y* = 1. Then, large values on the right side
are evidence in favor of Y* = 1. Since 3.8 is true for the naive Bayes model, if ¢(s)
is a continuous function of s (as would be the case for a smooth density estimator),
then by the intermediate value theorem there exists some value of s for which the
equality holds. In this case, 3.11 simplifies as

PS‘Y*:O(}:/|Y* =0) _ log PY*=1) ilog P(X;|Y* =1)
Pspy-=1(Y[]Y* =1) PY*=0) ¢ P(X;]Y* =0)

J=1

lo

(3.12)

or (V) = fo+ 9=, fi(X;).
Thus, if £(s) is continuous, the naive Bayes regression model is an additive model

(Hastie and Tibshirani 1990) for a transformation of the response.
|

Estimation of the additive regression model shown in 3.12 is not traditional since
the model relies on probability estimates rather than on backfitting (Friedman and
Stuetzle 1981). Also, in the usual additive model framework, transformations of
the response usually take the form of a transformation that stabilizes the variance
(AVAS). Here, fitting a transformation of the response is a component of the model

estimation procedure. Some earlier work on boosted naive Bayes classification (Elkan
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1997) showed that it was equivalent to a non-linear form of logistic regression. Recent
work by (Friedman, Hastie, and Tibshirani 1998) shows that boosting fits an additive

logistic regression model with a modified fitting procedure.

3.5 Parameter estimation

The model components of the usual (non-boosted) naive Bayes classifier, consisting
of P(Y* = 1), P(S|Y* = 0), P(S|Y* = 1), P(X;|Y* = 0), and P(X;|]Y* = 1),
are fairly straightforward to estimate. The classification dataset, D*, has m x N
observations. If Y € [0,1] then we let m be large enough so that the precision of
S exceeds the precision of Y and fit the usual naive Bayes classifier. For example,
an mle for P(Y* = 1) is simply the count of rows for which Y* = 1 divided by
m x N. Estimators for P(X,;|Y*) when X is discrete is also a simple ratio of counts.
Estimation of P(S|Y*) and P(X;|Y™*) when X; is continuous might require a density
estimate or discretization.

Clearly, managing such a dataset or restricting this method to Y € [0, 1] limits its
applicability. First I will show that it is not necessary to actually create D* and then
deal with the [0,1] restriction.

Estimation remains tractable as m — oo and the resolution of S and Y* become
more refined. To demonstrate this consider the simplest part of the problem, that of

j—1

estimating P(Y* = 1), as m — oo. Let S; = 2=, j = 1,---,m, and [-] indicates the

greatest integer function.

1 . 1 &
1= J=
LYt L m- 0 -
= — m —|(m — — Y,
Nizlm—w)om Y

= 1—3 (3.13)
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This says that if we randomly select an observation, ¢, from D and draw a number,
S, from a Uniform[0,1], P(Y;*(S) = 1) = 1 — 7. In the presence of sufficient data we
would believe that this would be close to P(S > Y) if Y was a new observation drawn
from the same distribution as the observations comprising D. Some difficulties arise,
however, even in this simplest component of the model, when we consider Y € R. In
particular, the S;’s are not definable. Clearly we cannot generate m equally spaced
S;’s on (—o0, 00). To accommodate this we assign a finitely integrable weight function
to each observation, w;(s), presumably with most of the mass in the neighborhood of

y;- We constrain these weight functions so that

s) > 0 and iv:/_oo wi(s)ds =1 (3.14)

and, at least initially, we will fix [0 w;(s)ds = % Without these weight functions,
the classifier estimation “tried” equally hard to correctly classify each observation in
D*. Since we only want to use this classifier for regression prediction we are really
only interested in its performance in the neighborhood of the y;’s. To accomplish this
we select w;(s) so that most of the mass rests near y; and fit the classifier using these
weight functions.

Fitting the classifier incorporating these weight functions introduces the need for
product integration (Dollard and Friedman 1979). Product integration, 7T, extends
the product, [], as integration, [, extends the sum, }>. The values of (i, s) index the
observations in D*. We can then compose the likelihood function as a product with
respect to the discrete ¢ and a product integral with respect to the continuous s over

the joint density of each of the observations in D*.

H ’i]o' 5, x;|0)Nwils)ds (3.15)

Here 6 represents the collection of parameters that we need to estimate. Note that
at this point the naive Bayes assumption has not entered, but we have made another

non-trivial assumption. To write the likelihood as in 3.15 we have assumed that the
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observations in D* are mutually independent. This is certainly not true but we will

see that with boosting it performs well nonetheless.

3.5.1 Derivation of the parameters

Proceeding then, the log-likelihood is

“0=3 [ Z Nuwi(s)log f(y2(s), s, 2:]0)ds. (3.16)

The naive Bayes factorization assumes that s 1L xy 1L --- 1l z,|yf(s) and so

€0) =32 [ Nus(s) o (£ (47 ()]0 6133 (), )1 el (5).6)) ds.

The parameter vector 6 contains the components of the naive Bayes regression
model, § = {P(y* = 1), f(s|y*), P(x = 2'|y*)}. The last term is f(z|y*) if = is
continuous. We can use maximum likelihood to obtain estimates of these three pa-
rameters, which for the moment we will label p, f(s|0), f(s|1), f(x]|0) and f(z|1).

The derivation will begin with a maximum likelihood estimator for p.

0 N oo d . o

oy = ) Nwils)ylos (P (1 —p)t ) ds
j=17 "
N
o0 yi(s) 1- yZ‘(S)]
;/oo ( )[ P 1—0p
Ny 0 1 o] o0 [1 1—1]
= w;i(s) |- — —— | ds + Nw;(s) |- — ——| ds

;ﬂo ()[p IL-p ;/y ()p IL-p

= _lg/% w;(s)ds +

==

/yoo w;(s)ds

k3

i=1
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Setting the above expression equal to zero we obtain the mle.
Sy [y wi(s)ds
Sl J25 wils)ds
Note that when w;(s) = +1(0 < s < 1) equation 3.17 is equivalent to equation 3.13.

p= Py =1) =

(3.17)

Maximum likelihood estimation for f(s|y*) takes more care. Since it is a density
function, we will be obtaining a maximum function estimate. The component of the

log-likelihood concerning f(s|y*) is

N o]
sty =30 [ Nuwnls) (Lug =018 S (510) + 1y )= log f(5]1)) ds
=177

I will obtain mles for f(s]0) and f(s|1) separately. For f(s]0) maximizing

N o0
3 / Nw;(5) 1y =0 log £(5]0)ds (3.18)
=177
subject to the constraint
1 / F(s]0)ds = 0 (3.19)

results in an mle for f(s]|0). Utilizing the Lagrange multiplier A, this constrained

maximization is equivalent to maximizing

i::/oo Nw;(s)1y: (s)=0 log f(s|0)ds + X <1 _ /Oo

—00

_/ [Zz\ﬂwl . 0] log f(s |O)ds+)\<1—/ £ |0)ds>

f(s|0)ds>

— [ [ Moo s 610) = As 10| s+ (320)

Maximizing equation 3.20 is equivalent to maximizing the integrand pointwise
with respect to f(s|0) for each s. Differentiating the integrand and setting it equal
to zero gives the mle.

N

1
ZNUJi(S)]_(%(S):O = —A=0
=1 T Gs10)
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N
> Nuw(s) 1y§‘(8)=0
f(s10) = =—— (3:21)

Combining the result in equation 3.21 with the constraint in 3.19 I can substitute

the value of the Lagrange multiplier A, the normalizing constant for f(s|0).
N
D Nwi(s) Ly =0 Zw Lyss
i= 1 —
/. zw Ly =ods z/
=1

Similar calculations for the mle of f(s|1) yield

f(s10) =

(3.22)

Z wi(s) 1y¢<s
! (3.23)

/OO w;(s)ds

For discrete x maximum likelihood estimates are obtainable in a similar fashion to

f(sl1) =

M=

i=1

p. The portion of the likelihood for f(x]0) takes on a d-dimensional multinomial-like

form, the probability of taking on each possible state denoted as P(z|0).

N oo
(f(x]0)) = Z/ Nw;(s)1y:(s)=0 log {P(x(1)|0)1zi:z(1> . .P(x(d)|0)1zi:z(d)} ds

= Zlog { (1)|0 o= ...P(x(d)m)lzi:z(d)} / Nuw;(s)ds (3.24)

But 3.24 is just a weighted multinomial log-likelihood with each observation weighted

by [Y_ Nw;(s)ds. The mles then are simply

zi:mizm(j) ﬁéo ’u}i<8)d8
iy [Ywi(s)ds

When X is a continuous predictor the estimation of f(x|y*) requires discretization

P(X =2D|Y* =0) = f(2]0) =

(3.25)

or non-parametric density smoothing. For density smoothing of f(z|0) we simply need
to smooth the histogram of the observed z;’s with weights [Y._w;(s)ds. For f(z|1)

we use weights [ w;(s)ds.
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The estimators for the parameters of the naive Bayes regression model also have
another interpretation and an alternate derivation. Let us sample an observation
from D such that the probability of selecting observation i is P(i) o< [0 w;(s)ds.
Then let us sample an S from P(s]i) o< w;(s). Using these two properties that define
a sampling scheme, we can derive the same estimators using standard probability

arguments. For example,

/Oo P(S > inS,i)P(SW)dS) P(i)

(
= % </_o:o I(s > yi)fc"’#((z)’)dyds) /_O:O wi(s)ds

3.6 The boosted naive Bayes algorithm

The establishment of weight functions on each observation leads directly to the appli-
cation of boosting. The manipulation of weights is a central idea of boosting and, as
previously mentioned, this manipulation improves misclassification rates and, there-
fore in this application, regression error.

When we constrain Y € [0, 1] as in Freund and Schapire (1997), the weight func-
tions for each observation on the first iteration may be uniform on [0,1]. Extending
this method from [0,1] to the real line involves modifying the weight function so
that they have finitely integrable tail (e.g. a function that decays exponentially from
s =y;) as in 3.14. We suggest initially using Laplace distribution weight functions of
the form w;(s) o< exp —%|s — y;|. Letting o be large with respect to the spread of the
data (so that the Laplace distribution is fairly flat) may let the boosting algorithm
drive the modification of the weight functions. Freund and Schapire (1997) consider

only Y € [0, 1] and propose initializing the weight function to be w;(s) = |s—y;|. This
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seems to be a poor choice of weight function since it ties the weight function to be 0
at y = y; and increases the weight on the region far from g;. The most difficult region
to classify must be in the neighborhood around y;. If the classifier performs well at
all then predicting whether y; is smaller than s when s is much larger than y; should
be an easy task. The usual idea behind boosting is to downweight the easy to classify
regions. Little to our surprise, in experiments with the algorithm when initialized to
be uniform on [0,1], boosting increased the mass of the weight function in the neigh-
borhood between the predicted y’s and the true y;’s, the region of misclassification in
D*. The functions almost always moved to a Laplace-like form. This phenomenon is

precisely opposite to Freund and Schapire’s choice of initial weighting.

The total weighted empirical misclassification rate on iteration ¢ is

& = Pp-(Y(S) # hi(X,5))

= % /yu w;(s)ds| .

i=1

(3.26)

Figure 3.1 compiles the preceding results into the boosted naive Bayes regression
algorithm. The reweighting step 4 of the algorithm can be rather complicated since
the naive Bayes classifier puts out a probabilistic prediction. If we abandon the added
information available in the probability estimates in step 4 and instead merely use a
threshold classification rule I(P(Y* = 1|z;, s) > 5) then the weight update is much
simpler. With this 0-1 prediction the update step scales the weight function by
except on the interval between y; and ¢; (note that the discontinuity in the indicator
function occurs at ¢;). This is the update scheme used in AdaBoost.R. To implement
this alternate scheme, the algorithm stores gjl-(t) and 3, on each boosting iteration. The
integrals in the estimation of the naive Bayes model and the integral at step 2 of the

boosting procedure then become computable in closed form as integrals of piecewise

scaled sections of the Laplace distribution.
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Input: sequence of examples {(x1,y1), -+, (Tn, yn)} where y; € R and T' is the number
of boosting iterations
Initialize: w;(s) oc exp(£|s — y;]), a Laplace density with mean y; and scale o

Fort=1,2,---,T
1. Using w;(s), estimate the components of the naive Bayes regression model, h:(x).
2. Calculate the loss of the model as ¢, = Y, ‘f;f(”) wi(s)ds‘.

3. Set ﬁt = -u

1—615 .

4. Update the weight functions according to the AdaBoost scheme as

10\ al-P(Y*=1]X,s)
) 5) = wi ()5, s < Y

(3.27)

5. Normalize the weights so that X%, [*_ w;(s)ds = 1.

Output the model:

Lo Py =0)
Y =inf{y:Y alog =
{ 2018 pagyv 1)
T Pf(y* -1 d T PT<X|Y* — )
a; log + oy log J
2108 piy—0) T 22 R P v = 0)
— log Bt
where o; = ST ogh

Figure 3.1: The boosted naive Bayes regression algorithm



60

3.7 Experimental results

The experimental work with the boosted naive Bayes regression uses a discrete approx-
imation to the algorithm developed in the previous section. We actually constructed
D* with S as a finite sequence of evenly spaced values (m = 100 in our experiments),
initialized the weight functions to be uniform on [0,1], and fit the boosted naive
Bayes classifier. Experimenting in this way gave us some intuition on the perfor-
mance of the method and how AdaBoost modifies the weights of the hard to classify
regions. We show empirically that the boosted naive Bayes regression can capture
many interesting regression surfaces. Because our experimentation used this discrete
approximation, we are only able to handle a response bounded on [0,1]. Therefore,
in all experiments we shifted and scaled the response to the unit interval. For the
continuous predictors we used a non-parametric density estimator (LOCFIT, Loader
1997) to estimate P(X;|Y™*) and P(S|Y*). LOCFIT is a local density estimator that

can handle observation weights.

For each simulated test function we generated 100 observations as a training
dataset and 100 observations for a validation set. For the two real datasets we
randomly selected half of the observations as training and the remaining half as a
validation set. From the training dataset we fit the boosted naive Bayes regression
model, a least squares plane, a generalized additive model, and a CART model. We
replicated each experiment ten times and measured the performance on the validation

set using mean squared bias, >N, (y; — 9:)2.

As the boosting iterations proceeded log 3; always approached zero so that each
additional iteration contributed less and less to error improvement. We continued to
boost until log 3; was fairly small. This stopping criteria generally did not affect the

performance on the validation set.

We tested using the following functions.
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. A plane

y = 0.6z + 0.3x5 + ¢, where ¢ ~ N(0,0.05)

z; ~U[0,1],7 =1,2

. Friedman #1 (Friedman, Grosse, and Stuetzle 1983)

1
y::1O$n0quﬂ—+20@g——5?-+10xy+5x5+JVUL1)

z; ~U0,1,j=1,...,10

. Friedman #2 (Friedman 1991)

1=

Loy

) (ﬁ + (s )2> +N(0,0)

. Friedman #3 (Friedman 1991)

1
Toly —
y:tan_l%lmquN(O,a)

For both 3 and 4 ¢ is such that the true underlying function explains 91% of
the variability in y and

21~ U[0,100]
g ~ U[407,5607]
Ty U [0, ].]

zy ~ U[L11]
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5. Bank dataset (George and McCulloch 1993)
This dataset contains financial information on 233 banks in the greater New
York area. We selected eleven of the variables for predicting the number of new

accounts sold in a fixed time period.

6. Body fat dataset (Penrose, Nelson, and Fisher 1985)
This dataset contains physical measurements on 252 men. From a set of non-

invasive body measurements we attempt to predict body fat percentage.

For all the datasets we linearly scaled the response so that y fell in the interval [0,1].

3.8 Performance results

0.008
in
0.03

N
o4
S
< — .
85 = o = 3 == — E
s = = ° = =
BNBR GAM LM  CART BNBR GAM LM CART
Figure 3.2: Hyperplane Figure 3.3: Friedman #1

In the first example, the plane, the least-squares linear model is the best predictive
model to fit. Naturally, any other model cannot outperform the ordinary least squares
plane in terms of generalization error, but we do desire that the boosted naive Bayes
regression model would still perform relatively well. Figure 3.2 shows that indeed
BNB.R did not perform as well as LM or GAM but its performance was satisfactory.

Friedman, Grosse, and Stuetzle (1983) proposed Friedman #1 to test learning

noisy functions that are additive with interactions. Furthermore, it introduces five



Table 3.3: Performance results - simulated datasets

Function Model = Mean squared bias standard deviation
BNB.R 0.0044 0.0005
Plane GAM 0.0034 0.0005
LM 0.0033 0.0005
CART 0.0083 0.0010
BNB.R 0.0087 0.003
Friedman #1 | GAM 0.0064 0.001
LM 0.0132 0.003
CART 0.0248 0.007
BNB.R 0.0072 0.002
Friedman #2 | GAM 0.0060 0.002
LM 0.0132 0.003
CART 0.0091 0.002
BNB.R 0.0106 0.002
Friedman #3 | GAM 0.0099 0.001
N =100 LM 0.0182 0.003
CART 0.0194 0.006
BNB.R 0.009 0.0016
Friedman #3 | GAM 0.009 0.0011
N =200 LM 0.016 0.0025
CART 0.012 0.0018

63
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Figure 3.4: Friedman #2 Figure 3.5: Friedman #3

variables, xg to x19, which are purely extraneous variables. We found that BNB.R
outperformed the linear model and CART but GAM still outperformed BNB.R. Fig-

ure 3.3 shows the performance over 10 validation datasets.

Friedman (1991) proposed learning functions Friedman #2 and Friedman #3, the
impedance and phase shift of a specific circuit where x1, xs, x3, 24 relate to a resistor,
a generator, an inductor, and a capacitor. Figure 3.4 and figure 3.5 show the perfor-
mance on Friedman #2 and #3. On function Friedman #2 BNB.R outperformed the
linear model and CART and performed a little worse than GAM. Among all the sim-
ulated function experiments BNB.R was most competitive with GAM on Friedman
#3.

Table 3.3 summarizes the performance on the simulated datasets and table 3.4 the
real datasets. On the bank dataset GAM performed especially poorly and BNB.R was
third to LM and CART. Unlike the simulated examples, these datasets do not have
a controlled error structure. At this point we are uncertain how sensitive BNB.R
is to very noisy data. We also briefly investigated how changes in the sample size
affect the performance by including a second analysis of Friedman #3 with N = 200.
CART, as a Bayes risk consistent regression procedure, naturally gains substantially

in performance. GAM and BNB.R improve slightly, although not by a significant
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Table 3.4: Performance results - real datasets

Function | Model =~ Mean squared bias standard deviation
BNB.R 0.010 0.0031
Bank GAM 0.018 0.0201
LM 0.005 0.0017
CART 0.009 0.0008
BNB.R 0.017 0.002
Body fat | GAM 0.014 0.005
LM 0.010 0.001
CART 0.014 0.002

amount.

3.9 Conclusions

In this chapter we brought together ideas from boosting, naive Bayes learning, additive
modeling, and induced regression models from classification models. We derived
the naive BNB.R algorithm to fit a boosted naive Bayes regression model. Using
a discrete approximation to BNB.R, we compared its performance to three other
interpretable multivariate regression procedures that are widely used. Although the
results show that at this stage of development BNB.R is not as competitive as other,
more established methods, we believe the novelty and the unexpected satisfactory
performance warrants further research.

The most important aspect from a research perspective is that applying the
boosted naive Bayes classifier in this fashion provides an early link between the ad-
vances boosting has made for classification problems to its potential application in

regression contexts. Changes in the base classifier, an improved implementation, and
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further research into the properties of boosting may introduce a new, rich class of

regression models.
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Chapter 4

BOOSTING EXPONENTIAL FAMILY AND
PROPORTIONAL HAZARDS REGRESSION MODELS

The chapter discusses the extension of boosting methods to exponential family and
proportional hazards regression models commonly fit using some form of generalized
linear models (GLM) (McCullagh and Nelder 1989) or generalized additive models
(GAM) (Hastie and Tibshirani 1990). Using gradient ascent optimization methods
we can estimate regression functions for many models used in standard statistical
practice. Specifically this chapter will consider boosted versions of the generalized
linear model, such as logistic, Poisson, Gaussian, as well as proportional hazards
regression including the Cox model. The modular structure of boosting algorithms
also exposes these models to robust regression techniques, makes implementations
for massive datasets feasible, and can estimate non-parametric regression functions

utilizing existing fitting algorithms for their linear counterparts.

4.1 Exponential family models

Oftentimes in data analyses we wish to model or estimate the expected value of a
random variable, Y, as a function of some observable covariates or predictors, x. To
aid in the estimation of E(Y|z), we assume a distributional form for Y|z and a class of
functions of which E(Y|x) is assumed to be a member. Assuming that the distribution
of Y|z is a member of the exponential family and that E(Y|z) is an invertible function
of a linear combination of the covariates, we arrive at the generalized linear model.

Nelder and Wedderburn (1972) originally used the phrase “generalized linear model”
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and McCullagh and Nelder (1989) set up the framework for the generalized linear
model as follows.

1. Distributional assumption: Y |x has a distribution in the exponential family of

the form

F(l6,6,7) = exp <y9 —b(0)

) (@)

where b(#) is the cumulant generating function so that ¢/(0) = E(Y|z) = p.

2. Model for the mean: The conditional mean of the response is the modeled

functional.
pi = B(Y]X;)
3. Systematic component: The covariates, x1, xg, - -, x4, form a linear predictor
d
N = Zﬂjxij (4-2)
j=1

4. A link function: The link function is a monotone, differentiable function relating

the linear predictor to the response.

9(ps) = ns
When g¢ is such that 8 =7, it is known as the canonical link function.

Many useful statistical models fall into this class including linear regression, linear
logistic regression, log-linear models, and, in some form, linear proportional hazards
regression. Fitting a model under this framework is equivalent to selecting the (;’s,
usually by maximizing the appropriate likelihood. The linearity assumption is con-

venient since it compresses all the information concerning a particular variable into
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one number, lending easy interpretability to the model. Furthermore, estimation in
linear models is extremely efficient.

When accurate prediction is our goal the linear assumption can be a potential
weakness of this method. If the true, underlying regression function is non-linear then
GLM introduces a bias that more data cannot correct. An ideal regression procedure
would allow E(Y|z) to take on an arbitrary unknown functional form, F(z), and
then attempt to estimate F' non-parametrically. Clearly in practice such flexibility
is infeasible since we would need to estimate an infinite dimensional parameter, F
using a finite dataset. In this case, a unique function estimate, F', that maximizes
the likelihood does not exist.

Generalized additive models (Hastie and Tibshirani 1990) extend the generalized
linear model framework by loosening the linearity assumption in equation 4.2. Rather

than assume that g(u) is a linear combination of the predictors, GAM assumes that
d

g(ui) =Y filxi) (4.3)
j=1

where the d functions f;() are unknown functions of only one of the predictor vari-
ables. To ensure a unique solution for the maximum likelihood estimates of the f;’s
GAM forces them to be smooth and to have 0 average. In many practical applica-
tions, smoothness is reasonable to assume and only the degree of smoothness need
be considered (usually set by cross-validation). Algorithms for estimating the f;()’s
involve the use of smoothers and the backfitting algorithm (Friedman and Stuetzle
1981).

Although GAM relaxes the linearity assumption it still offers interpretability.
However, it does contain an uncorrectable bias when the true underlying function is
not additive. Tree structured regressors such as CART (Breiman, Friedman, Olshen,
and Stone 1984) may be used to create risk-consistent non-parametric estimators of
F'. The greedy recursive partitioning strategy chooses, among all possible splits along

covariate axes, the split that offers the greatest increase in the likelihood. The depth
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of the tree controls the degree of fit to the training data. As data accumulates and the
depth of the tree increases, the recursive partitioning estimator converges to the true
underlying regression function (Gordon and Olshen 1984). Tree structured regressors
have been applied to survival problems in Segal (1988) and Ripley and Ripley (1999).
However, tree regressors suffer from “high variability” (Breiman 1996b). That is,
small changes in the dataset may produce very different trees and predictions. This
can be mitigated by variance reduction techniques such as bagging (Breiman 1996a,
Friedman and Hall 1999) and Bayesian methods (Chipman, George, and McCulloch
1998, Denison, Mallick, and Smith 1996). Although tree methods overcome the ad-
ditive assumption necessary for GAM, it produces discontinuous regression function
estimates (bagged trees can be smoother). Multivariate adaptive regression splines
or MARS (Friedman 1991) uses adaptive knot placement rather than discontinuity
placement to produce function estimates. MARS is adaptable to generalized linear

models and survival models (Intrator and Kooperberg 1995).

4.2 Boosting methods for regression problems

Boosting, rapidly made popular in the machine learning community, is a topic slowly
making its way into mainstream statistics research. Computational learning theorists
desired a method for transforming a collection of weak classifiers into one strong clas-
sifier (Schapire 1990, Freund 1995). This work culminated in the work by Freund
and Schapire (1997) who introduced the AdaBoost algorithm. They discovered an
algorithm which sequentially fits “weak” classifiers to different weightings of the ob-
servations in a dataset. Those observations that the previous classifier poorly predicts
receive higher weight on the next iteration. The final AdaBoost classifier is a weighted
average of all the weak classifiers. In a wide variety of classification problems, their
weighting scheme and final classifier merge have proven to be an effective method for

reducing bias and variance, and improving misclassification rates (Bauer and Kohavi
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1999, Dietterich 1998). Empirical evidence has shown that the base classifier can
be fairly simplistic (shallow classification trees) and yet, when boosted, can capture
complex decision boundaries (Breiman 1998).

At the conclusion of their paper, Freund and Schapire (1997) outline their ideas for
applying the AdaBoost algorithm to regression problems. However, Drucker (1997)
first proposed and tested practical methods for boosting regression. His ad hoc method
followed the same spirit of the AdaBoost algorithm by repeatedly performing weighted
tree regression followed by upweighting the poorly predicted observations and down-
weighting the well predicted ones. Compared with fitting just one tree, his method
seems to be competitive. Breiman (1997) suggests how one might deal with boosting
regression problems with his arc-gv methodology. His more recent work on adaptive
bagging (Breiman 1999), which is quite similar to boosting ideas, appears to be a
very promising direction. Both boosting and adaptive bagging proceed similarly and
both show improvements in terms of bias and variance.

Ridgeway, Madigan, and Richardson (1999) proposed mapping the regression
problem into a classification problem, applying their boosted naive Bayes classifier,
and transforming the resulting classifier back as a regression function. They showed
that this method fits an additive model similar to the form 4.3 but also estimates a
transformation of the response variable. Their empirical results show that it performs
similarly to GAM and outperforms CART in four simulated examples but performs
slightly worse than CART on one of the two real datasets investigated.

From the statistician’s point of view, a breakthrough in boosting occured in Fried-
man, Hastie, and Tibshirani (1998). Although still focused on classification prob-
lems, they showed that Freund and Schapire’s AdaBoost algorithm is an optimization
method for finding a classifier that minimizes a particular exponential loss function.
Other authors also have made the connection between boosting and optimization
(Breiman 1997, Mason, Baxter, Bartlett, and Frean 1999). Friedman et al. pro-

ceeded to show that this exponential loss function used in AdaBoost is closely related
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to the Bernoulli likelihood and developed a new boosting algorithm that finds a clas-
sifier that maximizes a Bernoulli likelihood. The important finding of this work is
that it links work in computational learning theory to a likelihood based method of
standard statistical practice.

At the heart of their work, Friedman et al. wish to construct a classifier that takes
in covariates, z, and attempts to predict a binary outcome, y € {0,1}. The classifier,
Ia (x), returns a negative value to predict a 0 and returns a positive value to predict
a 1. Ideally we want this F () to have large Bernoulli likelihood on average over all
future observables. If we let J(F) be the expected Bernoulli likelihood of a particular
classifier, F', then mathematically F'(z) should be

F(x) = argmaxJ(F)

= arg rlgl(z?)( Eyz {yF(m) — log <1 + eF(w)) M (4.4)

If we have a current estimate for F'(x) and we wish to improve upon it, we might
add a new function to F' slightly modifying it to further increase J(F'), the likelihood
shown in 4.4. We can select one of many optimization methods to find an f that
increases J(F + f). Friedman et al. chose to derive a Newton algorithm. That is,

given a current estimate for F(x) the Newton update for F'(z) is
(

. . aord (F + =0
F(z) « F(x)— 8{ ~ 4.5
W = P (45)
_ Py y—plx)
- Fo B[S o
where w(z,y) = p(z)(1 — p(x)) and p(z) = ﬁ (4.7)

Newton optimization, therefore, tells us to repeatedly substitute weighted conditional
class probability estimates to improve F'(x). Note that the weighting in 4.7 implies
that largest weights are piled onto the difficult to classify observations, those near
p(z) = % This is similar in spirit to the AdaBoost algorithm. Since we do not know

the value of the expectations in 4.6 we can approximate them by choosing one of
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our favorite regression methods. Substituting a linear model in 4.6 for the weighted
expectation reduces to the iteratively reweighted least squares algorithm (Green 1987)
for fitting linear logistic regression models. Friedman et al. use CART regression in
their experimental results and show substantial improvement in accuracy over a non-
boosted CART classifier.

Once boosting and likelihood methods become related the door opens to many
other statistical models. And so the findings of Friedman, Hastie, and Tibshirani
(1998) lead us directly into methodology for generating boosting algorithms for a

large class of other likelihood based models.

4.2.1  Friedman’s gradient boosting machine

Friedman (1999a) and the companion paper Friedman (1999b) extended the work of
Friedman, Hastie, and Tibshirani (1998) and laid the ground work for a new genera-
tion of boosting algorithms. Using the connection between boosting and optimization
made in Friedman et al. (1998), this new work proposes the Gradient Boosting Ma-
chine.

In any function estimation problem we wish to find a regression function, F (x),
that minimizes the expectation of some loss function, W(y, F'), as shown in equa-

tion 4.11.
F(z) = argmin B, V(y, F(x))

= agminE, By ¥(y, F(2)) 2] (4.11)

We will focus on finding estimates of F'(z) such that

~

P(a) = argmin B, [¥(y, F(2))]a] (4.12)

Parametric regression models assume that F'(x) is a function with a finite number

of parameters, 3, and estimates them by selecting those values that minimize a loss
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Initialize F'(z) to be a constant, F'(z) = argmin, 2V, U(y;, p).
Fortin 1, ---,7T do

1. Compute the negative gradient as the working response

(s, F(23)) I

OF (z;) (@i)=F(z:)

2. Fit a regression model, f(x), predicting z; from the covariates x;.

3. Choose a gradient descent step size as

N
p = argmin > W(y, F(x:) + pf (x:))
i=1

4. Update the estimate of F'(z) as

F(z) < F(x) + pf(x)

Figure 4.1: Friedman’s Gradient Boost algorithm

(4.9)

(4.10)
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function (i.e. squared error loss) over a training sample of N observations on (y,x)
pairs as in 4.13.

A N

b= argmgH;‘P(yiaF(%;ﬁ)) (4.13)
When we wish to estimate F'(z) non-parametrically the task becomes more difficult.
Again we can proceed similarly to 4.5 and modify our current estimate of F'(z) by
adding a new function f(x) in a greedy fashion. Letting F; = F'(z;), we see that we

want to decrease the N dimensional function

J(F) = Y Wy, F(x:))

Q
I
—

I
M= T

s
I
—_

U(y;, F). (4.14)

The negative gradient of J(F) indicates the direction of the locally greatest decrease
in J(F). Gradient descent would then have us modify F as

F—F—pVJ(F) (4.15)

where p is the size of the step along the direction of greatest descent. Clearly, this
step alone is far from our desired goal. First, it only fits F' at values of x for which
we have observations. Second, it does not take into account that observations with
similar z are likely to have similar values of F(z). Both these problems would have
disastrous effects on generalization error. However, Friedman suggests selecting a class
of functions that use the covariate information to approximate the gradient. This line
of reasoning produces his Gradient Boosting algorithm shown in figure 4.1. At each
iteration the algorithm determines the direction, the gradient, in which it needs to
improve the fit to the data and selects a particular model from the allowable class
of functions that is in most agreement with the direction. In the case of squared-
error loss, U(y;, F(z;)) = SN (y; — F(x;))?, this algorithm corresponds exactly to

residual fitting. Friedman also uses this algorithm to develop new boosting algorithms
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for robust regression with least absolute deviation and Huber loss functions (Huber
1964).

As in the following sections I will apply these methods directly to likelihood based
models. We will transform 4.12 so that it involves a maximization instead of a mini-

mization and consider various log-likelihood functions for U(y, F).

4.2.2  Generalized boosted models by Fisher scoring

Now having the machinery to extend boosting to likelihood based models, we can
return to the problem of boosting models in the exponential family of section 4.1. In
this section we will derive a boosting algorithm based on a variant of the Newton-
Raphson optimizer known as the scoring method (Fisher 1935, Finney 1971).

The extension that generalized boosted models makes to GLM is to further loosen

the linear assumption in equation 4.2, only assuming that

g(,ul) - F(xi17 Tigy .- ind)' (416)

The boosting algorithm searches in a greedy fashion for a function F' that maximizes
the likelihood under the assumed model.

Depending on how we restrict the boosting procedure, modeling g(x) in this fash-
ion can also remove the burden of choosing a link function. The link function is only
a vehicle to transform values from the linear or additive model scale to the scale of
the conditional expectation. Under 4.16 it does not matter whether we choose to
model via a link function, u; = g '(F(z;)), or directly model the mean, p; = F(x;).
In practice, however, it may be reasonable to restrict F' to be additive with low order
interactions with an interpretable link function such as the log-odds for the logistic
model.

To derive a boosting algorithm for the general case of exponential family models
we simply need to select a model by choosing a specific camulant generating function,

b(#), and a link function, g(u), relating the regression function, F'(x), to the condi-
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tional mean, p. The following proposition derives the necessary results to produce a
boosting algorithm for the exponential family models and figure 4.2 summarizes this

result.

Proposition 4.1 The generalized boosted model algorithm is a Fisher scoring algo-
rithm that optimizes the sample expected log-likelithood of an exponential family regres-

ston model.

Proof: Let b(6) be the cumulant generating function, p be the expected value of Y,
and g(u) the link function between the conditional mean and F(x). The expected

log-likelihood for the exponential family model is

1
Evi.l(0, ¢ly, ©) = Eyy, l—(y@ — b(@))‘x . (4.21)
a(¢)
Using the fact that E25 = 0 and Eg%f + (E%)Q = 0, we can show that b'(f) = p and

Var(Y) = 0"(0)a(¢). The term b”(0) is the variance function which we will write as a
function of u, V(u).

We will initialize the estimated regression function, F'(x), to be a constant across
all x. We can start with the constant that maximizes 4.21. The value of 6 that
maximizes 4.21 satisfies the equation t/(0) = y. Since u = b/(0) and g(p) = F(z) then
we should initialize F'(z) = g(j) for all values of .

Given the current estimate of the regressor F (x) we would like to improve upon
it by adding a new function f(x) so that the expected likelihood in 4.21 increases.
That is, initially assuming that n = g(u) = F(x) we will seek an f(x) so that when
g(p) = F(z) 4 f(x) the likelihood increases. The Newton-Raphson variant known as
the scoring method suggests modifying the current regressor as

Ey| OLF+])

o ~ Yiz™ 5
F(z) — F(z) — B—M{H) (4.22)
By =op

The strategy that I will use here is to carry through with the denominator expectation

to simplify computation, but preserve the expectation in the numerator for estimation
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Initialize F'(z) = g(7) for all values of z.
Fortin1,...,7T do

1. Estimate the predictions as

pi =g~ (F (). (4.17)

2. Compute the working response

Zi = (yi_ui)g/(ﬂi)' (4.18)

3. Fit a regression model, f(x), predicting z; using x; with weights

1
Y= GV ) (4.19)

4. With X € (0, 1] as a learning rate parameter, update the boosted regressor as

~ ~

F(z) «— F(x) + A (z) (4.20)

Return the final boosted regressor F(x).

Figure 4.2: The generalized boosted algorithm by Fisher scoring
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with an empirically derived regression function. Starting with the numerator

ot L 00000udn
of — YTogouonof

B y—-b@E 11 x
= o[ pm e

— By, ly_g” R x] (4.23)

EY|x

1
v(0)

In the above equation we use that fact that since &(6) = y then 2 _u =
Differentiating 4.23 with respect to f we obtain the denominator term.

> 0 6Ey‘ op 877
E = E —

Eya K‘a(lqs) V(lu) gl(lu) - |
() (vt vasa) ot o] 629

Since E(Y) = pu, taking the expectation in this term causes the second (and most

complex) part of the expression to vanish reducing 4.24 to

o4

EY|T [

1
| = o ] )

If we had assumed a canonical link function then the following holds

g0 = V)

=g (1) = o)~ V) (4.26)

and so the same term vanishes without requiring the expectation. Under canonical

link functions the Fisher scoring and Newton-Raphson algorithms are equivalent.
After simplifying the denominator term, we will preserve the expectation oper-
ator on this constant for the moment even though it involves no random variables.

Substituting these results into the Fisher scoring algorithm in equation 4.22 we obtain

F) o By + 2
()= P+ o

yflj’l x
a(¢)V(1/t)g (M)| } . (4.27)
v e
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Using the definition of weighted expectation, E, f(y,z) = W7 we note that

4.27 is a weighted conditional expectation. We can rewrite 4.27 as

. R E {a(ﬁb)V(u)g:(u)i yp |x}
F(z) « F(z)+ a<¢3Ev<u>g (mlaw)w)g W
[a(qﬁ)vm)gww M
1
o Elmviard Wy — )

= F(x)+

E sevmwme ]
= F(2) +Eu[g'()(y — 2] where w = a(¢)V(L)g’(M)2

When we have a finite sample we can estimate the weighted conditional expectation by

(4.28)

any regression procedure (trees, smoothers, etc.) to update our estimated regression
function. Note that since a(¢) is constant across all values of yu it vanishes when the

weights are normalized. This yields the generalized boosted algorithm in figure 4.2.

|

We can vary several of the steps in the GBM algorithm to improve its performance.
Specifically noted here is the introduction of a learning rate parameter, A, in 4.20.
Section 4.4 will further discuss the learning rate as well as other modifications such
as bagging for variance reduction and robust methods.

The link function is canonical if g(p) is such that # = 7. This occurs when
g 1(0) = V'(0). Table 4.1 lists some common exponential models, their canonical link
functions, and the associated variance function. Note that in these canonical cases
V(p)g' () = 1 further simplifying the boosting algorithm. One specific instance of

this algorithm is already known as shown in the following corollary to proposition 4.1.

Corollary 4.1 The LogitBoost algorithm of Friedman, Hastie, and Tibshirani (1998)

1s a generalized boosted model algorithm for a canonical Bernoulli model.
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Table 4.1: Some canonical exponential family models

Canonical link Variance function
Distribution g(p) V()
Bernoulli log 75 (1 — p)
Normal [ 1
Poisson log 1 L

Proof: To boost the canonical Bernoulli model we select g(n) = log t£ and V(1) =

(1 — p). Therefore, ¢'(n) = The GBM algorithm then indicates that one

1
p(l—p)
should iterative perform weighted regression predicting z; = N%’;Z ) with weights w; =

(1 — p). This is equivalent to the expression in 4.6, the LogitBoost algorithm.

4.2.3  Generalized boosted models by gradient ascent

Section 4.2.2 extended the boosting methodology of Friedman, Hastie, and Tibshirani
(1998) from logistic regression to an arbitrary exponential family model using Fisher
scoring. This section will explore the use of gradient ascent methods akin to Friedman
(1999a) for application to the exponential family model.

Again we will be searching for a regression function F'(x) that maximizes

1
E =E ——(yb — . 4.2
(0. 0000) = B | 00— 0o (4.29)
Given a finite training dataset we can approximate 4.29 by
A
2 afg) W) (1.30)

where again ¢/(0) = p and g(p) = F(x). For the moment we will assume that each of

the NV observations has their own value for F', or F/(z;) = F;. Later we will incorporate
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the covariates. When the set of F;’s take on specific values, the gradient evaluated at
that point indicate the direction of greatest ascent. Gradient ascent methods suggest

modifying the current values of the F;’s by
F —F + pVF (4.31)

where p is the step size in the gradient direction. Computing the gradient from 4.30

we obtain

OF; 90; Op; On; OF;

oy U(0) 1 1 ‘1

T ale) 0(0:) g'(m)

_ Yi — Mg

— al®)V (mi)g (1) (4.32)

where i, = g~ (F(z,)).

Equation 4.31 says that we should add to the current value of each F; a constant
times the function in 4.32. Note that 4.32 is basically a scaled residual. At this stage
we can incorporate the covariates by approximating this gradient using an arbitrary
least squares regression procedure. That is, we can compress the gradient information
and borrow strength from observations that are neighboring in the space of covariates
by constructing a function, f(x), that predicts z; from ;. Rather than update using

4.31 we can update our regression function by

F(z) — F(z) + pf(z) (4.33)

The remaining detail is the estimation of the step size p. We can again appeal to
maximum likelihood to find an optimal value. Setting g(u;) = F'(z;) + pf(2;) we can
determine the maximum likelihood estimator for p. Note that now we have a simple
generalized linear model where f(z;) is a covariate with coefficient p and F'(x;) is

an offset term. Using existing GLM software we can estimate the optimal step size.
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Initialize F'(x) = ¢(§) for all values of z.
Fortin1,...,T do

1. Estimate the predictions as
=g (F(x,)). (4.34)

2. Compute the working response

o Yi — Us
AT Vg ) (4.35)

(We can actually drop the a(¢) since it is constant across all observations and

step 5 scales the gradient optimally.)
3. Fit a regression model, f(x), predicting z; using x;.

4. Estimate the optimal step size, p by fitting a GLM of the same class where f(x;)

is the covariate with coefficient p and F(z;) as an offset term.

5. With A € (0, 1] as a learning rate parameter, update the boosted regressor as

F(z) — F(z) + Apf(z) (4.36)

Return the final boosted regressor F/(x).

Figure 4.3: The generalized boosted algorithm by gradient ascent
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Lastly we can use 4.33 to update. Figure 4.3 summarizes the gradient ascent GBM
algorithm.

We may have some covariates for which we do not desire boosted function esti-
mates. That is, some covariates might be indicator variables or fixed linear effects.
The weighted regression step for Fisher scoring or the gradient regression step in
gradient ascent would involve only those covariates for which we want boosted es-
timates. For the remaining variables we can add another step to either the Fisher
scoring or gradient ascent GBM algorithms which fits a GLM of the same class with

the remainder of the covariates as predictors and the current F (x;) as an offset term.

4.3 Boosting models for proportional hazards regression

Statistical methods for survival analysis model data in which the response variable is a
lifetime or failure time (Cox 1972, Cox 1975, McCullagh and Nelder 1989, Kalbfleisch
and Prentice 1980). Although these methods are mostly thought of in the context
of survival times of patients in a medical experiment, they may also apply in other
situations such as the time to failure of a mechanical component or the time until
criminal recidivism. For these problems we simply wish to estimate the distribution
of failure time given covariates. Censoring, the condition of an observation that is yet

to fail at the end of the experiment, complicates the estimation process.

4.3.1 Proportional hazards regression

If s(t|x) denotes the distribution of failure times for an observation with covariates
x, then S(t|z), its cdf, denotes the probability that an observation with covariates x
has failed before time ¢. The hazard function,

hitle) = 50 (4.37)

returns the “instantaneous risk” of failure, or h(t|z)6t is the probability of failure in

the next infinitesimally small interval of time given survival up to time ¢. Naturally,
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various choices of hazard functions imply different failure time distributions and vice-
versa.

Proportional hazards models assume that the hazard function, h(t|x), can be
factored in to a component that explicitly depends on time and another, a regression

function, that depends on the covariates.
h(t|z) = A(t)e" ™, (4.38)

We assume that the hazard ratio between two observations does not depend on time
and is only a function of the difference in their regression functions. Common statisti-
cal practice assumes a linear model for F'(x), F'(z) = B*a. As for the base-line hazard,
A(t), we can assume that it takes on various parametric forms. Aitkin and Clayton
(Aitkin and Clayton 1980) develop several survival models in this fashion. Assuming
A(t) = X results in an exponential distribution failure time model, () oc at®™! yields
a Weibull distribution, and A(t) o< ae® yields an extreme-value distribution (see ta-
ble 4.2). Section 4.3.2 will discuss boosting the exponential failure time model and
the extension to Weibull and extreme-value models.

When forming the likelihood, assuming a parametric form for A(¢), each observa-
tion’s contribution will depend on the failure indicator, ¢;. Observations for which
we observe a failure time contribute s(t|x). For censored observations we only know
that they did not fail prior to time ¢ and, therefore, they contribute 1 — S(¢|z), the
probability of that the survival time is greater than ¢. The log-likelihood for the
regression function based on N possibly censored observations is

N
((Ft b,x) = 257; log s(t;|z;) + (1 — 6;) log(1 — S(¢;|x;))
i=1

Combining 4.37 and 4.38 we see that S(t|z) satisfies the differential equation

S'(t|z)

= ef'@), )
i At) (4.40)
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and therefore

log(1 —S(t|z)) = —/ )ef@q (4.41)

Substituting 4.41 into 4.39 and rearranging we obtain the log-likelihood for the re-

gression function F'(x).

N N
U(F|tb,x) = 26 log h(t;|z;) _/ )\(u)eF(mi)du
i=1 0

illog A(t;) + F(x;)] — eF'@) /Oti A(u)du (4.42)

[
Mz

i=1

At this point we may choose among several parametric forms for the baseline hazard,
A(t) and the regression function, F'(z). For example, assuming A(f) = A and F(x) =
Btz results in the log-likelihood for the linear censored exponential regression model.

Clearly the drawback to this model formulation is the nuisance baseline hazard
function. In practice we are usually more interested in good estimates of F'(x) than
the entire hazard function. Cox (1972) and Cox (1975) developed a partial likeli-
hood approach that avoids reference to the baseline hazard function in the estimating
equations for F'(x). His strategy was to consider only those times points at which
we observe a failure. Peto and Breslow, in their discussion of Cox’s original paper,
propose extensions and approximations when there are some tied failure times. In the
infinitesimal time interval just prior to a particular failure time, t;, several individuals
might be at risk. This set of individuals, the “risk set” at ¢;, are those who have not
failed and have not been censored up this point in time. Given that one individual in
the risk set failed at time ¢;, the probability that a particular individual in the risk
set was that failure is proportional to their hazard function. Since observation ¢ was

the observation that failed its contribution to the partial likelihood is
SN It >t )/\(ti)eF(%’) ZN ](t >t )eF(mﬂ

(4.43)

Conveniently the nuisance baseline hazard functions, A(¢), cancel. The sum in the

denominator in conjunction with the indicator function sums over the hazard functions
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of each of the observations in the risk set at time ¢;. So this is simply the probability

that observation ¢ was selected from the risk set when the probability of selection is

F(zj)

proportional to e . At each failure time this same process of selection from a risk

set occurs and so the partial likelihood is

PL(F|t s ) ﬁ [ el (@) 8 (4 44)
,0,T) = v .
i=1 Eé\;1 ](tj > ti)eF(m])

In practice we wish to choose F'(x) or parameter values for F'(z) to maximize the

log-partial likelihood,

=

log PL(F|t,6,2) =) 6

i=1

F(z;) —log (% I(t; > ti)eF(xﬂ')>] : (4.45)

j=1
The log-partial likelihood takes into account only the order of the failure and censoring
times.

In the next several sections I will discuss boosting proportional hazards models. I
will start with a discussion of boosting parametric proportional hazards models before

moving into various ways of boosting Cox’s semi-parametric model.

4.3.2  Boosting parametric proportional hazards regression models

This section will discuss the application of boosting to proportional hazards models
when we assume a parametric form for the baseline hazard function. In particular,
I will deal with the three most common parametric survival models (exponential,
Weibull, and extreme-value) but the method is general enough to admit an arbitrary
failure time density function. Most importantly, this serves as a gentle introduction
into boosting via partial likelihood and helps bridge the gap between the generalized
boosted models and survival models.

On a population level we would like to have a regression function, F'(x), that
maximizes the population form of equation 4.42.
t

Erowll(FIt,6,2)|z] = Eygs. |6[log A(t) + F(z)] — e /

; AMu)du |x} (4.46)
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Adding the constant 6 log < I A(u)du) and subtracting the constant ¢ log A(t) we can
see that maximizing 4.46 is equivalent to maximizing

Et s {6 [F(:c) + log </0

t A(u)du)} — el(m)+log Jo Mwydu |z . (4.47)
This is a canonical Poisson model for ¢ with regression function F(z) and offset
term log [3 A(u)du. Since 4.47 is a canonical Poisson log-likelihood we know that
g(p) = log p (from table 4.1) and that ¢'(1)V (1) = 1. We can almost directly apply
the Fisher scoring algorithm from figure 4.2. The integrated hazard as an offset term
is the only slight modification which causes the prediction in step 1 of the algorithm

to be p; = @) (3 \(u)du. The working response and weights then become

b;

i = - —1 4.48

- el@) [ \(u)du (4.48)
L

w;, = eF(m"')/ AMu)du. (4.49)
Jo

The final update then proceeds as in step 5 of the algorithm. For a specific parametric
family we simply need to submit the integrated baseline hazard to complete the al-
gorithm. Table 4.2 presents the three most common parametric proportional hazards
models. For the exponential model the regression function absorbs the hazard param-
eter A\. In both the Weibull and extreme-value cases there remains a free parameter
« that requires estimation at the end of each boosting iteration. To estimate « in
the Weibull case we simply need to fit a linear Poisson model for ¢; with predictor
logt; and offset term F'(z;). The estimated coefficient of log¢; will be an MLE for «.
The extreme-value case is similar with the exception of using ¢ instead of logt as the

predictor.

4.3.8  Coz’s proportional hazards regression as Poisson regression

Section 4.3.2 developed boosting algorithms for use with parametric survival models
and noted strong ties between Poisson regression and proportional hazards regression.

This section discusses John Whitehead’s (Whitehead 1980) method for using the
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Table 4.2: Some parametric proportional hazards models

Distribution At) 3 Mu)du

Exponential A At
Weibull ate ! te
Extreme-value | ae® et

Poisson regression for fitting Cox’s proportional hazards model. Section 4.3.4 then
applies Whitehead’s ideas directly to the generalized boosted model for obtaining
boosted estimates of the regression function.

Whitehead (1980) showed that, at their maxima, Cox’s partial likelihood is pro-
portional to the Poisson likelihood of a transformation of the dataset. We can form
an auxiliary dataset from the original survival dataset in the following fashion. Each
observation in the auxiliary dataset will have the variables Y, h, and a vector of
covariates, z. Consider the first failure time. Every observation in the risk set at
the first failure time will enter the auxiliary dataset with Y = 1 if the observation
failed at this time and Y = 0 otherwise, h = 1 — indicating the first failure time,
and their covariates x. Processing the second failure, every observation in the risk
set at the second failure time will enter the auxiliary dataset similarly with Y =1
if the observation failed at this time and Y = 0 otherwise, h = 2 — indicating the
second failure time, and their covariates x. The following example demonstrates this

transformation.

Example 4.1 (Whitehead transformation)

Let t be the failure or censoring time, 6 be the failure indicator, and x; and x5 be the

covariates.
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Table 4.3: Original survival dataset

t 6 T To
01 1 5 1
03 0 3 1
07 0 7 3
1.1 1 1 2
1.5 1 6 4

For demonstration I will use the toy survival dataset in table 4.3.

We can form the auxiliary dataset in table 4.4 as previously described. Note that
h indexes the failure times and, for each value of h, all the members of the risk set are
represented. Since there are no tied observation in this example, Y = 1 for only one
member of each risk set. This method easily incorporates Peto’s method for handling

tied observations by setting Y = 1 for more than one observation in the risk set.

Table 4.4: Auxiliary Poisson dataset

Y h 1
1 1 5 1
0o 1 3 1
0O 1 7 3
0o 1 1 2
0 1 6 4
1 2 1 2
0 2 6 4
1 3 6 4
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Whitehead (1980) considered fitting the auxiliary model
Y; ~ Poisson(exp(ap, + Btx;)) (4.50)

The estimates of the parameters «;, associated with each failure time, are useful
in predicting failure times. For the moment we will just assume they are nuisance
parameters.

If we consider the observations in the risk set when h = 1, the first five rows of

table 4.4, the Poisson log-likelihood is

N*

11 ()\f e’)‘f‘*>

i*=1

I(hy=1
(et (4.51)
where 7* indexes the N* observations in the auxiliary dataset and the mean of each
Poisson random variable is A+ = exp(ay,. + f'z). Note that in our case for each
value of h there is only one y that is non-zero, the one that is marked as a failure at

the h'* failure time. And so the Poisson log-likelihood may be written as

€xp <041 + ﬁtmq)
exXp (Zf\*f*zl [(hl* = )6041-)—@"967;*) )

(4.52)

Here we have in the numerator the Poisson mean for the observation that failed. I
will use 45, to indicate the index of the observation in the auxiliary dataset that failed
at the h'* failure time. In the denominator we have the exponential of the sum of the
Poisson means for the observations in the risk set.

From equation 4.51 we can derive that the maximum likelihood estimates for \;
satisfy >°p,. 4 A+ = 1. This implies that at the mle, the denominator of 4.52 equals
e and that

N* .
6_6‘1 = Z ](h7* = 1)€d1+ﬁtmi*.

*=1
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So, at its maximum the contribution to the Poisson log-likelihood of the observa-

tions in the auxiliary dataset that have h = 1 is

-1 €6tmi’1f
Ny I(hy = 1)ef'me

which is beginning to look much like Cox’s partial likelihood. In fact, incorporating

the observations for the remaining values of h, the maximum of the Poisson log-

likelihood is proportional to the Cox partial likelihood.
Bf’mz‘

~ é
* N ﬁt$i i
71 6 h e
€ z 5o X - 453
[ Y A g(zﬁlf(tjzti)emJ (4.53)

i*=1

Therefore, fitting the Poisson model 4.50 will result in the same maximum likelihood
estimates of § as directly fitting the Cox partial likelihood.

I will conclude this section by pointing out a few features and problems with
this method. The main motivation behind this approach is to utilize the generalized
boosted regression machinery already in place, the application of which I discuss in
section 4.3.4. A relatively short program can transform the survival dataset into a
suitable format for boosting via the Poisson model. This transformation increases
the size of the dataset on the order of N2. Although it depends on the dataset, I
found that on average a small dataset of 1,000 observations can turn into one with
250,000 observations. If, however, the base regressor is a tree, a programming trick
can greatly cut down on computation. Regression trees consider all possible splits
in the dataset and select the one with the greatest likelihood. One can force the
tree algorithm to search for splits among the 1,000 observations and use an on-the-fly
Whitehead transformation of the dataset to compute the likelihood of the split. This
removes the storage problem but still requires O(N?) operations.

An estimate of the baseline survivor function comes as a by-product of the Poisson
regression framework. It is possible to use the estimates of « for the Breslow estimator
(Breslow 1972) of the survivor function as

exp <_ /()t)\(u)du> A exp (— > exp dh> : (4.54)

th <t
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Lastly, it is unclear in theory how this method works when making the transition to
non-parametric regression. The above results indicate that when £ is a finite vector of
parameters the Poisson model is proportional to the Cox model at the maximum. At
other locations the two models may have very different shape. Furthermore, in non-
parametric regression we refrain from fully approaching the maximum of the likelihood
(by smoothing or penalization) to prevent overfitting. We have no guarantees from the
above results that dropping below the maximum still yields a good model. Empirically
we found that this method still performed well on real datasets. In the next section
we discuss those results. Later, in section 4.3.5 we will side step the Poisson model

and propose a gradient ascent algorithm for maximizing the Cox model directly.

4.83.4 Boosting Cox’s proportional hazards regression via boosted Poisson regression

After transforming the survival dataset into the auxiliary Poisson dataset via the
Whitehead transformation, we have a dataset that we can model with a Poisson
likelihood. For this section alone y; will be the Poisson response, x; the covariates,
h; the failure time indicator, and A(z;, h;) the mean of the Poisson distribution. The
likelihood for our regression function and the a nuisance parameters becomes

n

i=1

= Z:@/v:(% + F(;)) — exp(an, + F(z;)). (4.55)

This is similar to the setup we had for parametric survival models in section 4.3.2.
Again we can almost apply the generalized boosted model algorithm from figure 4.2.
The algorithm requires slight modification since we have the additional «y terms.

Specifically, we modify the algorithm so that

Wi = exp (ahi + F(xl)> (4.56)
Yi

s o= 2y 4.57
i ( )
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In estimating this model we can alternate between making a boosting step and up-
dating our estimates for ay,. After each update of the regression function we will also
update «j,. Maximizing equation 4.55 for a;, accomplishes this.

ol

&gzzfymfﬁmw—mm%+F@m] (4.59)

ST I(hi=h)y, = | I(hi = h)e )] e

i=1 i=1
w1 I(hi = h)y;

4.60
Lo 1(h = B)ere) 00

The algorithm proposed here will find a regression function that maximizes the
Poisson likelihood for the Whitehead transformation of the dataset. This transfor-
mation allows to reuse the same boosting algorithms presented earlier for boosting
Poisson models. Although this conveniently takes advantage of the other algorithms,
some delicate details remain as to whether using Whitehead’s method can really ob-
tain a decent estimate for the Cox model. The next section sidesteps this problem

completely by directly maximizing Cox’s partial likelihood by gradient ascent.

4.3.5  Boosting proportional hazards by partial likelihood

As previously mentioned our goal with boosting the proportional hazards model is to
recover a function, F (x), that maximizes the expected value of the logarithm of the

partial likelihood.

N N
Elog PL(F|t,6,2) =E |36 | F(x;) — log (Z I(t; > ti)eF(mj)>” (4.61)
i=1 j=1

This expectation is over all future observations that are potentially (or at least the-
oretically) observable. Practically this implies that on validation or test datasets we

want our F (x) to yield a large log-partial likelihood.
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In section 4.3.4 we created an auxiliary Poisson dataset and performed boosted
Poisson regression. In this section we will select an F' directly to maximize the
expected log-partial likelihood.

For the moment we will assume that each observation in equation 4.61 can have its
own F; regardless of the covariates. Shortly we will utilize the covariate information

to pull the F; together. In this setting with sample data we wish to find N values

Fy, -+, Fy that maximize
N N
log PL(F|t,6,z) =Y _ & [Fi — log( Z t; >t)e)]. (4.62)
i=1 =

The gradient vector, given by % log PL, indicates the direction in which we would
see the greatest increase locally in log PL. Therefore, we would like to move all of

the F; in their gradient direction.

Fi

0 e
logPL = 6 |1—
oF, ® [ SN I(t; > t)eFs

anél 10g<% (te > 1) )1 (4.63)

J#i k=1
e

= 81—
/ [ Sl Ity > t)els

Fi

el
- 0;I(t; >t 464
jz;é:i o 2 noy It > ty)els (4.64)
N oF,
= & =Y 6;I(t: > t;) (465)

j=1 N:1 ](tk > tj)eFk

= z
The first term in equation 4.63 comes from the derivative of the i*” term in the sum
expressed in equation 4.61. The second term in equation 4.63 accounts for situations
in which ' observation is an element in the risk set at another failure time. In fact
the partial derivative of that term will be non-zero in the event that ¢; is a failure time
and ¢’s failure or censoring time occurs after ¢;. The second term in equation 4.64

computes this partial derivative and all of 4.64 simplifies to 4.65.
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Initializing F; = 0 and letting z; be the i"* element of the gradient vector, opti-

mization of log PL would have us modify each F; as
F=F+ pVF (4.66)

where p is the size of the step (constant across all ¢) in direction z; that we will take.
At this point we reintroduce the covariates, x;. Instead of allowing each of the
observations to have their own Fj, which certainly would lead to rapid overfitting,
we will smooth over neighboring x’s. That is, we can compress the gradient infor-
mation by construction a function of x, f(x), that approximates the gradient, z. In
Friedman’s presentation of the gradient boosting machine (Friedman 1999a) he refers
to this process as choosing the function from a parameterized class of functions that
is most parallel with the gradient or “most highly correlated with z; over the data
distribution”. Then rather than updated F;, as in equation 4.66, we will update F'(z)
as
F(z) — F(@) + pf(x) (4.67)
We will choose this function, f(x), in 4.67 to minimize

N

> (2 = fla)?. (4.68)

i=1
We can use any standard regression procedure for this minimization step. In em-
pirical work we will elect to use regression trees for their simplicity, utility for high

dimensional problems with interactions, and speed.

Example 4.2 (Gradient step for the Cox model)

To demonstrate the gradient step approach, I let F/(z) = i sin(3z1 + 527) be the

surv
ti

underlying regression function and generated 100 survival times, , from an expo-

nential distribution with mean e~F(*) where x; ~ U(0,1). Then for each observation
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Figure 4.4: Diagram for example 4.2

cens
ti

I generated a censoring time, , from an exponential with mean 1. The final sur-

surv jcens

vival data consisted of survival times ¢; = min( and the failure indicator

§; = I(1SWV > ¢cens)

Figure 4.4 show the true sinusoidal F'(x) and an initial guess for F'(z), the solid line
constant at 0.0. The vertical lines indicate the direction and magnitude of the gradient
computed at each of the 100 observations. This indicates for each x; the direction
and magnitude of change in the estimate for F(z;) that would locally increase the
Cox partial likelihood. Fitting a one-split regression tree to the observed gradients
using = as a predictor yields the step function. It captures at a very coarse level
the gradient information and clearly makes a move in a promising direction toward
capturing the true underlying regression function. Successive iterations proceed in
the same fashion, further modifying the estimated F'(z) to maximize the Cox partial

likelihood.
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After obtaining an approximation to the gradient we need to choose the gradient
step size, p. Naturally we want to select p to further maximize our log-partial likeli-
hood. So given our function update, f(z), the log-partial likelihood for p becomes

N N
log PL(p|F, f,t,6,2) =Y & [F(x;) + pf(z:) — log( Z t; > ;)@@ )] - (4.69)
i=1 j=1

Note that this is just the log-partial likelihood for a linear proportional hazards
model where p is a coefficient for a continuous predictor, f(z;), with F'(x;) as an offset

term. We can derive a simple Newton algorithm for optimizing equation 4.69 with

respect to p. The first and second derivatives of 4.69 with respect to p are derivable

as follows.
Letting
wj(-i) —I(t; > ti)eF(mj)ﬂLpf(mj) (4.70)
P N N
——logPL = > & |f(a:) - 2 N J;()Ij) (4.71)
dp i=1 2 Wy
. 2
i e ) (el @)
a—pzl()gPL = _Zéi N (7) - O] (4.72)
i=1 [ j=1W j=1W; J
Therefore, a Newton algorithm for updating p is
y g T (f(zi) — Eyo f(2)) (4.73)

Sy 6iVar, f(x)
Putting all these steps together we have a boosting algorithm for Cox’s proportional
hazards regression model shown in figure 4.5.

In the special case where the base regressor is tree-structured, we can further
optimize the linear Cox model fitting step in step 3 and developed in the maximization
of equation 4.69. Tree structured regressors (usually) fit piecewise constant functions.
The tree predicts the same value for all observations that fall into a common leaf. We

can retain the splits generated by the tree but improve upon the predictions offered
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Initialize F'(z) = 0 for all values of 2. For tin 1,...,T do

1. Compute the working response.

epf‘

N
R0 T

(4.74)
2. Construct a regressor, f(x), predicting z; from ;.

3. Fit a linear proportional hazards model to the response (¢,¢) with predictor

f(z;), offset F'(x;), and regression coefficient p.

4. Update the boosted estimate of F'(z).

~

F(z) = F(x) 4+ Apf(z) (4.75)

where A\ is the pre-specified learning rate.

Figure 4.5: A Boosting algorithm for Cox’s proportional hazards regression model
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by each leaf. Let ¢ index the K leaves or terminal nodes of the tree f(x) and k(i) be

the leaf index in which observation i fell. We can rewrite equation 4.69 as

log PL(p|F, f,t 6, 7)

N
—25 (;) + pf(x;) — log( Z t; > t;) TJ)+pf(T]))]
7j=1

N
0i [F(z;) + pf(k(z)) — log( Z (t; > t;)eF@elEE) )] (4.76)

'MZZ

i=1

where f(k) is the value that the k" leaf assigns to its observations. With this structure
there are only k possible values for pf(k(i)). We may be able to obtain better leaf

estimates by maximizing 4.76 for k different p, one for each leaf.

logPL(plaupk|F f,t,é,l') =

N
Zé{a»+wm—m%2 (t; > i)l )], (4.77)

Again this is the log-partial likelihood for a Cox regression model only this time
k(i) is a k level categorical or factor variable and F'(z;) remains an offset. Although
this might yield better estimates in the leaves of the regression tree, we now have
a k dimensional optimization problem rather than a simple univariate one as first
presented.

We can derive a Newton algorithm for maximizing 4.77 with respect to the vector
of parameters p. Let

w SN I(k(G) = k)I(t; > t;)el@tos
b ZN [(t > t) F(z5)+pr(s) )

(4.78)

which resembles a weighted estimate of the probability that a member of the ** risk
set falls in leaf k. We then can compute the gradient and the Hessian with respect to
pr. of 4.77. The gradient is

N

g =D 6 [1(k(0) = k) — "] (4.79)

i=1
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The Hessian is a k x k£ matrix with diagonal elements

Z@pi"’) ™) (4.80)

and off diagonal elements

- _zgpj" (4.81)

A Newton algorithm for obtaining maximum likelihood estimates for the leaf predic-

tions is

p<+— p— H lg. (4.82)

4.3.6 Boosting proportional hazards directly

In section 4.3.4 and section 4.3.5 [ developed boosting algorithms based on maximizing
the Cox partial likelihood. The advantage of Cox’s partial likelihood is that it avoids
estimating the baseline hazard. However, we can develop a boosting algorithm that
not only obtains a boosted estimate of the regression function but simultaneously
obtains a boosted estimate of the baseline hazard.

As before, we would like to maximize
UF N 6,2) = ) &llogA(t;) + F(x:)] — eF(“)/ AMu)du (4.83)
i=1 0

only now both the regression function, F', and the baseline hazard, A, require boosted
estimates. To improve upon the regression function estimate we can compute the

gradient with respect to a specific F'(x;).

OUF At b0,x) R
R = 6;F(z;) —e / (4.84)

The gradient gives the direction in which to move the regression function to further
increase the likelihood. As before we can approximate the gradient by an arbitrary
regression model, fr(z), and update the current boosted estimate by F(z) — F(z)+
pr [r(z). We will select pg shortly.
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At the same time we would like to improve upon our estimate of the baseline
hazard, A(t). Unfortunately we cannot compute the gradient of \ as easily as with V F’
since it is partially embedded in the integrated baseline hazard term, f3' A(u)du. The
trapezoid rule is an integral approximation technique that is linear in A. Assuming
that the ¢; are sorted in ascending order and using them as the nodes in the trapezoid

approximation we obtain

Z (tja1 — ti—1)A(t;) (4.85)

l\DI»—

4 1
/ Au)du = - (t; — t;—1)
0 2

where ty = 0. Now with this approximation we can compute the gradient with respect

DUF L, b6,2) &
ON(t;) Tt)

1. 1 N
+ §€F(m’) (ti — ti—l) + §(ti+1 — tifl) Z €F( i) (486)

Jitj<t;
Similar to the regression function we can compress this gradient information by fitting
a regression model, fy(t), predicting 4.86 using only ¢; as a predictor. We can update
the current boosted estimate of A(£) by A(t) — A(t) + pafa(t).

It remains to select the gradient step sizes pr and p). Again we can appeal to

maximum likelihood to select values that maximize
Upr, palt, 6, ) 25 log(A(t:) + pafa(ts)) + F(x;) + pr fr(w:)] —

t;
6F($1)+PFfF($z)/O )\(u) + p)\f)\<u)du (487)

If we add and subtract 6; fy* A(u) 4 pafa(u)du and take note of only the parts that

deal with the regression function step size pr we obtain
t;
Zé log (#0170 [T A ) + pa fa(u)d)
Jo

t;
oF@)+prfr(w:) /0 Aw) + pafo(u)du. (4.88)

Equation 4.88 is again a linear Poisson model with §; as the response variable, fr(z;)

as a covariate with coefficient pg, and offset term F'(z;) + log <ng AMu) + pAfA(u)du).
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The baseline hazard gradient step size is not easily expressible as a coefficient of

a GLM. A non-linear equation solver can estimate py as the solution to

% 5— D) reeen / " () = 0. (4.89)
o Al) +eaa(t) 0

We then update the baseline hazard as A(t) — A(t) + pafa(t). We can try to avoid

solving equation 4.89 altogether by simply putting in a small positive fixed value for

px- 1t is unlikely that this would hurt performance too much and the worst it can do

is require more iterations. Besides, iterations may be inexpensive in comparison to

computing many non-linear solutions to 4.89. If a step solving 4.89 is included then

it is necessary to iterate between 4.88 and 4.89 until both parameters converge.

4.4 Improving boosting methods using control of the learning rate, sub-

sampling, robust regression, and decomposition for interpretation

This section explores the variations of the previous algorithms that have the potential
to improve their predictive performance and interpretability. In particular, by con-
trolling the optimization speed or learning rate, introducing low-variance regression
methods, and applying ideas from robust regression we can produce non-parametric
regression procedures with many desirable properties. As a by-product some of these
modifications lead directly into implementations for learning from massive datasets.
All these methods take advantage of the general form of boosting

~ ~ ~

F(x) «— F(x) + Ey(2(y, F(2))|z). (4.90)

So far we have taken advantage of this form only by substituting in our favorite
regression procedure for E,(z|z). T will discuss some modifications to estimating

E.(z]z) that have the potential to improve our algorithm.
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4.4.1 Decreasing the learning rate

As several authors have phrased slightly differently, “...boosting, whatever flavor,
seldom seems to overfit, no matter how many terms are included in the additive
expansion” (Friedman et al. 1998). This turns out to be patently false.

The following simple example illustrated in figure 4.6 demonstrates this.

Figure 4.6: Iteration 1, 10, 20, 50 of the LogitBoost algorithm.

In this example I generated 100 observations with z; coming from U(0, 1), F(z) =
2(sin(8x) + N(0,0.1)), and y; from Bern(p(z;)) where p(x;) = He_—lp(M, the inverse
logit transform. After 10 iterations we see that the boosting estimator is beginning to
approximate the true underlying function. However, by iteration 20 and even more
so at iteration 50 there is evidence of extreme overfitting. At this point the boosting
procedure has carved up the x interval into regions that are nearly pure in terms of

the training y;’s, clearly to the extent that the estimated F'(x) will not generalize well.
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In estimating the curves shown in figure 4.6 the LogitBoost algorithm has been
fairly aggressive (AdaBoost produces similar pictures). This aggressiveness is in the
sense that it moved very quickly to a location in the space of regression functions that
maximized the Bernoulli likelihood. In fact in only 25 moves it was showing signs
of overfitting. Earlier work on boosting believed that boosting performed especially
well in terms of generalization error because it achieved “slow learning”. Breiman
(1997) theorizes that the success of boosting algorithms depends on its ability to
“skate around the inner rim [of the training error surface] instead of slogging to the
bottom”. He notes that his arc-gv algorithm reaches the bottom whereas algorithms
such as AdaBoost and arc-zj tend to take large steps that “circle around the inner
rim of the valley and do not reach the bottom”. He wonders how far one should allow
the boosting algorithm to descend in this error surface.

Here I propose the introduction of a learning rate parameter A € (0,1]. In the
update step of any boosting algorithm we can involve the learning rate to dampen

the proposed move.

F(z) «— F(x) + AE, (2(y, F(2))|2). (4.91)
By multiplying the gradient step by A as in equation 4.91 we have control on the rate
at which the boosting algorithm descends the error surface (or ascends the likelihood
surface). When A = 1 we return to performing full gradient steps. Recent work
by Friedman (Friedman 1999a) relates the learning rate to regularization through
shrinkage. Copas (1983b) argues that to improve predictive performance of regression

models one should predict using models of the form
§+MEF(z)—175). (4.92)

When A is 1 the prediction is entirely from F'(z). When A is 0 the prediction is
entirely based on g. In between 0 and 1 the predictor is a mixture of the regression

model with covariates x and the constant model. He argues that setting A < 1 gives
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a better fit to validation data. On each iteration of the boosting algorithm we can

invoke a shrinkage of the regression estimate as in 4.91.

I experimented with creating optimal learning schedules so that \; depends on
the iteration number. The motivation being that the first few boosting steps should
be straightforward. While the boosting proceeds we might consider cooling off the
learning process, eventually hitting 0. However, I found no learning schedule that

could perform better than constant slow learning.

The optimal number of iterations, 7', and the learning rate, A\, depend on each
other. In practice I set T" to be as large as possible and then select A by cross-
validation. When A is as small as possible performance seems to be at its greatest.
Figure 4.7 shows the LogitBoost after 3000 iterations with A = 0.01 on the same
example described earlier in this section. Clearly it performs much better than the
estimator with the larger learning rate. Figure 4.8 shows the increase in likelihood
across the iterations. After about 1000 iterations it has surpassed the GAM model
(the horizontal line) and has reached a fairly long plateau. I have found these plateaus
to be commonplace features of boosting algorithms especially with very small learning
rates. This implies that boosting with slow learning is fairly robust to selection of the

number of iterations and so takes much longer to overfit.

These slower learning rates do not necessarily scale the number of optimal it-
erations. That is, if when A\ = 1.0 and the optimal 7" is 100 iterations, does not
necessarily imply that when A = 0.1 the optimal 7" is 1000 iterations. That is not
even the most critical feature of the learning rate reduction. Figure 4.9 shows the
progression for decreasing values of the learning rate. In this case the optimal 7" occur
at roughly 10, 200, and 1500 for the three values of \. Most notably, however, with
the slower learning rates we are able to achieve a greater improvement, although with
a decreasing marginal return on computational investment. This figure shows that

the validation likelihood increases and the sensitivity to 1" decreases.
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Figure 4.7: F(x) after 3000 iterations with the learning rate A = 0.01. The smooth
curve is the GAM fit and the step function is the boosted estimate.
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Figure 4.8: Associated Bernoulli log-likelihood. The horizontal line is GAM, the
upper curve is the training likelihood, and lower curve is the validation likelihood.
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Figure 4.9: Effect of learning rate on exponential survival models: Improvement with
respect to the linear exponential survival model for three values of .
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4.4.2  Variance reduction using bagging and sub-sampling

Breiman (1996a) introduced bagging (bootstrap aggregating) as a variance reduction
method for unstable regression and classification models. Bagging proceeds by cre-
ating B bootstrap replicates of the dataset and fitting a model to each. The final
bagged regression model is the average of the predictions from the B models. With
weak theoretical arguments and substantial empirical ones he shows that bootstrap-
ping simulates an endless stream of new data adequately enough so that averaging
reduces prediction variance. Friedman and Hall (1999) note that bagging replaces
model components that are non-linear in the data with their expected value while
leaving the linear components unaffected. By this argument they conclude that es-
timators like the sample mean and linear regression would be unaffected by bagging
while bagged trees and neural networks might achieve variance reduction. They also
theorize that sub-sampling half of the dataset without replacement on each iteration
is approximately equivalent to bagging, sampling the entire dataset with replacement,
in terms of the degree of variance reduction, but also indicate that sampling fractions

less than half could reduce the variance further.

Extending the bagging idea, Breiman (1999) developed adaptive bagging that has
strong connections to boosting methodology. Discussed primarily in the regression
setting, he proposes fitting a bagged regression model to a dataset, estimating the bias
using an “out-of-bag” method (Breiman 1996¢), and fitting a new bagged regressor
to the bias. Repeating this process of estimating the current bias yields his adaptive
bagging algorithm. When boosting the Gaussian case, if on each step we estimate
E.(z|z) using B predictors built on bootstrap replicates of the dataset and estimate
F (x) for the training dataset using the out-of-bag technique, then we have adaptive
bagging exactly. Generalizing boosting as I have shown here, opens up exponential

family and proportional hazards regression models to Breiman’s adaptive bagging

methodology.
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To date, however, boosting proceeds in a slightly different fashion from adaptive
bagging. It fits the residuals on each iteration but lacks the perturbation introduced
by bootstrapping and the out-of-bag bias estimation. Breiman (1997) proposed in-
troducing a weighted bootstrap step (sampling with replacement according to the
weights) into boosting algorithms and conjectured that “randomizing the path gets
arc-gu away from the bottom of the [error surface| so it skates around the inner
rim”. Friedman (1999b), inspired by Breiman (1999), proposed the stochastic gradi-
ent boosting algorithm that simply samples uniformly without replacement from the
dataset before estimating the next gradient step. He found that this additional step
greatly improved performance.

Sub-sampling techniques also lead directly onto applications for massive datasets.
Computation time obviously decreases when we are able to use smaller sample sizes
on each iteration, quadratically so for proportional hazards models. Breiman (1996d)
suggests that building a sequence of models to “bites” of the datasets and “pasting”
them together results in little loss and often some improvement. When the gradient
steps involve a non-uniform weighting on the observations we can further decrease the
sample size without interfering with the model’s performance. After several iterations
some of the observations are likely to have small weights, indicating that the model
fits them well. At this stage they can be trimmed from the model fit stage. Often
we can trim a large fraction of observations that have weights that sum to less than
one observation. Although these observations may be trimmed from the model fitting
stage they do need reweighting after each iteration in case at some point the model
begins to predict them poorly.

Revisiting the boosting update step, we now have a learning rate parameter and

~

we estimate Eq,(z(y, F'(z))|x) using a random subsample of the dataset.

~ ~

F(z) — F(z) + AEy(2(y, F(z))|z). (4.93)

A

In the special case where we use regression trees to estimate E,(z(y, F'(z))|z) the
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sub-sampling increases the number of possible split points. This permits the boosted

estimate to achieve smoother fits to the data.

4.4.3  Robust regression

The presence of outliers can seriously degrade the performance of many regression pro-
cedures. When the error distribution departs from the assumed distribution outliers
may be common. Under certain loss functions, like squared error loss, the presence
or absence of one particular observation may produce drastically different models.
Well-designed robust regression methods are efficient when there are no outliers and
are resistant to fitting outliers too closely when they are present. Rather than use
squared error loss, robust location estimators minimize functions like least absolute
deviation or Huber’s loss (Huber 1964).

To incorporate robust methods we simply modify the estimate E,(z(y, F)|z) to

be a minimizer of a loss function other than the usual squared error loss.

F(z) « F(x) + AEy(2(y, F(2))|7). (4.94)
Friedman (1999a) develops an entire boosting algorithm for obtaining regression func-
tions that minimize least absolute deviation and M-regression. In contrast here, I am
only interested in a robust gradient step that would keep the entire process of boosted

estimation from being attracted to outlying observations.

4.4.4  Interpretability

In his work on MARS, Friedman (1991) noted that certain function approximation
methods are decomposable in terms of a “functional ANOVA decomposition”. That

is a function is decomposable as

F(z) = Z fizy) + %:fjk(xj,xk) + > fiwelag, wp, ) + - (4.95)

ke
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Friedman et al. (1998) note that this applies directly to boosting trees. Regression
stumps (one split decision trees) depend on only one variable and fall into the first
term of 4.95. Trees with two splits fall into the second term of 4.95 and so on. By
restricting the depth of the trees produced on each boosting iteration we can control
the order of approximation. Often additive components are sufficient to approximate
a multivariate function well, generalized additive models, the naive Bayes classifier,
and boosted stumps for example. When the approximation is restricted to a first
order we can also produce plots of z; versus f;(x;) to demonstrate how changes in x;
might affect changes in the response variable.

Friedman (1999a) also develops an extension of a variable’s “relative influence”
(Breiman et al. 1984) for boosted estimates. For tree based methods the approximate

relative influence of a variable x; is

Ji= Y1 (4.96)

splits on z;

where I? is the empirical improvement by splitting on z; at that point. Friedman’s
extension to boosted models is to average the relative influence of variable x; across

all the trees generated by the boosting algorithm.

4.5 Performance

We have seen so far that boosting is applicable to a large class of models, the expo-
nential family models and proportional hazards models, and that we can incorporate
into the boosting process many of the statistical properties that we desire in function
estimators, robustness, stability, and efficiency in computation. In this section I dis-
cuss how well boosting performs in practice on real and simulated datasets. Having
presented several boosting algorithms for models in standard statistical practice and
discussing further variations on them, the real test remains as to whether they should

be adopted for common use.



113

Table 4.5: Misclassification rates comparison for

CART AdaBoost LogitBoost

Breast 4.5% 4.0% 2.9%
Ton 7.6% 6.8% 7.1%
Glass 40.0% 25.7% 26.6%
Sonar 59.6% 20.2% 20.2%
Waveform  36.4% 19.5% 20.6%

Friedman, Hastie, and Tibshirani (1998) first proposed, LogitBoost, a boosting
algorithm for the canonical Bernoulli model or logistic regression and compared their
results with the AdaBoost classifier. As shown in table 4.5, they found that their like-
lihood based LogitBoost algorithm was nearly equivalent in performance to AdaBoost
and clearly an improvement on a single decision tree. The CART algorithm used the
cross-validation for pruning and the two boosting algorithms iteratively built 7" = 200
one-split CART models (stumps).

Friedman (1999a) discussed boosting the Gaussian model as well as contaminated
Gaussian error distributions and made comparisons with MARS. Unlike the tree-based
gradient boosting methods, MARS produces a continuous function approximation.
Despite the discontinuous approximation, he found that on average gradient boosted
trees did slightly better than MARS in terms of absolute error and 30% better in

terms of root mean squared error. Furthermore, the gradient methods produced

lower variance approximations.

4.5.1 Additive Poisson regression

In this section I will discuss the performance of the boosted Poisson model, which has
not yet made an appearance in any of the boosting literature. The main competitor

to the boosted Poisson model is the Poisson GAM model to which all comparisons
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will be made.
To test this method I proposed a bivariate sinusoidal function 4.97 to be the
true underlying regression function. It is additive in the predictors but has variable

curvature.
F(x1,29) = 2sin(3zy + 523) — 2sin(3(x9 + 0.1) + 5(x5 + 0.1)?) (4.97)

I generated 1,000 values from a uniform distribution on (0,1) for each of z; and .
I then generated the response variable as 7; ~ Poisson(efi1:i2)). The goal of the
boosting algorithm is to use these observations to estimate F'(z1,z5) and maximize a
validation log-likelihood.

I used the first 500 observations as a training set and the remaining 500 observa-
tions as a test set. With the learning rate set at A = 0.1, I ran the boosting algorithm
for T'= 1,000 iterations with regression stumps as the base regressor using only the
training set. I also varied the sub-sampling percentage for values between 10% and
100% (no sub-sampling) at intervals of 10%. So for a particular training set I pro-
duced one GAM and 10 boosted Poisson models. To note boosting’s performance I
recorded the difference between the log-likelihood of each of the boosted Poisson mod-
els and the one Poisson GAM. This maintains the improvement on GAM in terms of
validation log-likelihood for each sub-sampling rate. I repeated this experiment for
20 different training and test datasets.

Figure 4.10 displays the results of this experiment. For each sub-sampling rate
I computed the median of boosting’s improvement on GAM in terms of test set
log-likelihood. The figure also shows the estimated 10% and 90% quantiles. There
are two important conclusions to draw from this figure. The first obvious one is
that boosting almost always outperforms the Poisson GAM. In only one of the trials
involving a sub-sampling rate of 10% did GAM outperform boosting. The second
important observation from figure 4.10 is that the performance is strong when the

sub-sampling percentage is 20% or higher. The actual empirical maximum occurs at
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Figure 4.10: Boosting’s absolute improvement over GAM for an additive Poisson
model as a function of sub-sampling percentage. The middle curve indicates the
median of boosting’s improvement in validation log-likelihood compared to the equiv-
alent GAM model over 20 repetitions. The outer curves indicate the 10% and 90%
improvement quantiles.
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50%, but that maximum does not exceed the performance on the interval (20%,100%)
by very much. This indicates that boosting really does not need to look at all the
data on each iteration to make reasonable steps toward function optimization. This
experiment used random sampling to select the subset of the dataset to use on each
boosting step. Sampling in massive datasets is not necessarily a trivial matter (Brut-
lag and Richardson 1999). However, it may be that a deterministic sampling scheme
of convenience may be a viable substitute to random sampling, still maintaining good
predictive performance and gaining further computational performance.

I repeated this experiment in a second trial, this time testing how boosting handles
noise in the regression function and irrelevant predictors. I used the same simulation
procedure as before with the following changes. I added a Gaussian noise component
to F(z1,x2) tuned so that the true underlying function explained about 93% of the
variability (o = 0.5). I also gave to both GAM and the boosted Poisson algorithm
two additional predictor variables x3 and x4 (both generated as uniform on the unit
interval), neither of which have any influence on the response variable.

Figure 4.11 shows the results for this second experiment. Although the boosted
Poisson model still outperforms GAM most of the time, the addition of noise and
irrelevant variables reduces the improvement. Furthermore, the figure indicates that
the model fitting demands more data to be competitive. A sub-sampling rate of less

than 30% seriously degrades the performance.

4.5.2  Cox proportional hazards

For a real data set example to examine the performance of boosting Cox’s proportional
hazards model, I turn to a clinical trial for testing the drug DPCA for the treatment
of primary biliary cirrhosis of the liver (PBC). This dataset has been the subject of
several modern data analyses (Dickson et al. 1989, Grambsch et al. 1989, Markus
et al. 1989, Fleming and Harrington 1991). Raftery, Madigan, and Volinsky (1996)

demonstrated the use of Bayesian model averaging on the PBC dataset and found
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Figure 4.11: Boosting’s absolute improvement over GAM for a noisy additive Poisson
model with irrelevant predictors as a function of sub-sampling percentage. The middle
curve indicates the median of boosting’s improvement in validation log-likelihood
compared to the equivalent GAM model over 20 repetitions. The outer curves indicate
the 10% and 90% improvement quantiles.
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that accounting for model uncertainty improves predictive performance. Boosting,
on the other hand, does not mix models as Bayesian model averaging does but rather
uses several models to estimate the non-linear effects relating the predictor variables

to survival times.

The data consist of 310 patients with complete observations on the predictors.
Of these, 124 patients died during the study and the remaining 186 were censored
observations. Of the eight variables Raftery et al. (1996) considered, I selected the
six real valued variables for use in the model.

age age in years

bili serum bilirubin (mg/dl)

albumin albumin in g/dl

copper  urine copper in ug/day

sgot SGOT in U/day (aspartate aminotransferase)

protime prothrombin time in seconds

I tested this method by comparing the out-of-sample predictive performance of
the linear Cox model to the Cox model boosted by gradient ascent. To judge the
out-of-sample predictive performance of the two models, I trained each on half of the
observations, reserving the rest for a test set. I used regression stumps as the base
regressor so that the estimate only captured the main additive effects. Setting the
learning rate to A = 0.00001 and the subsampling rate to 10%, I ran the algorithm
for 70,000 iterations. Figure 4.12 shows the value of the validation log-likelihood as
the algorithm proceeds. We see that after 40,000 iterations (with this extremely low
learning rate) the boosted estimate has surpassed the linear Cox model. Furthermore,
for the next 30,000 iterations the boosted version continues to improve at a dimin-
ishing rate of return. Even though the model fitting used many iterations, it takes

about one minute to complete the iterations.

Since the base regressors were one-split decision trees, we can investigate the

estimates of the six main additive effects. Figure 4.13 shows the boosted estimates
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Figure 4.12: Partial log-likelihood for PBC data. The upward trending curve indi-
cates the partial log-likelihood for test set data as the number of boosting iterations
increases. The horizontal line indicates the partial likelihood from the linear Cox
model.
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Figure 4.13: Boosted estimates of the main effects of the PBC data. The curves are
the boosted estimates of the functions and the superimposed lines are the estimates
from the linear model
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along with those based on the linear model. Every variable shows evidence of either
a threshold effect, a saturation effect, or both. Simple linear models clearly can never
capture threshold and saturation effects. Although in the region where most of the
data points are concentrated, for most of the variables (except bili) the underlying
regressor is nearly linear. For this reason we would expect the linear model to function
reasonably well. However, for a patient with a more extreme value for any of the six
variables the boosted model is far superior. Even though most applications of survival
models are not concerned with survival prediction but rather estimation of effects,
when effects depart substantially from linearity, as in the PBC dataset, accurate
survival prediction for all patients depends on a non-linear estimation procedure like

boosting.

4.6 Discussion

The trend toward model mixing had a resurgence in economics (Bates and Granger
1969), has increased in the machine learning community, and is partially accepted in
the statistics community. Researchers in these fields proposed techniques like bagging
(Breiman 1996a), Bayesian model averaging (Madigan et al. 1996, Hoeting et al.
1999), stacking (Wolpert 1992), and bumping (Tibshirani and Knight 1995) showing
that their methods solved problems associated with dependence on one selected model.
At its first introduction computational learning theorists believed that boosting also
fit in this class since it built several models on different weightings of the dataset and
merged them together. When boosting simple base classifiers, predictive performance
on many of the classic benchmark datasets increased. Researchers believed these
results implied that boosting was now the best of this class of algorithms.

Research, including this work, is now showing that boosting represents a new class
of learning algorithms that Friedman correctly named “gradient machines”. As all

the extensions described here show, boosting iteratively fits some form of the residual,
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regions of the sample space where the model’s predictions are missing the target data.
Although the various boosting classification procedures (AdaBoost, LogitBoost, etc.)
altered the loss function that the algorithm optimized, the subsequent iteration simply
fit the training residuals for which the current regression function estimate did not
yet account. This being the case the original class of model mixing procedures are
not in competition with boosting but rather can coexist inside or outside a boosting
algorithm. That is, one could average across boosted estimates or perform bagging
and bumping within a boosting iteration.

In the last few years boosting has improved the performance of many classifiers on
real datasets. I have been able to import this methodology into statistics by taking the
perspective that boosting algorithms are functional optimization algorithms. Using
various optimization techniques I have produced classes of algorithms for boosting
models that are a part of standard statistical practice, the exponential family and
proportional hazards regression models.

Several authors have already observed improvement in predictive performance for
logistic, normal, and robust regression. Here I have shown that the same ideas can
improve predictive performance for Poisson (compared with the Poisson generalized
additive model) and Cox proportional hazards models (compared to the linear Cox
model).

Software written in C4++ with an optional S-plus interface is available from the
author for the boosted exponential family models and the Cox proportional hazards
model. As research evolves in this area, particularly incorporating variations on the
gradient steps, this software will need to incorporate these enhancements. These
algorithms show great promise for genuine massive dataset analysis through robust
regression, weight trimming, and gradient stepping using disjoint blocks of data. Al-
though the algorithm’s derivation exposes stages at which these improvements could
be made, the software implementation so far does not take advantage of all these

features.
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To summarize, in this chapter I have

e developed a general boosting algorithm for exponential family models based on

Fisher scoring,

e showed that the LogitBoost algorithm of Friedman, Hastie, and Tibshirani
(1998) falls in this class,

e derived a boosting algorithm for exponential family models based on gradient

ascent, which can use existing software for the related linear model,

e produced boosting algorithms for parametric proportional hazards models,

e extended the boosted Poisson model by Fisher scoring as an approximation to

boosting the Cox model,

e extended the gradient ascent approach to boost the Cox proportional hazards

model, an algorithm which can utilize software for fitting the linear Cox model,

e discussed improving existing boosting algorithms by incorporating control over
the rate of learning, variance reduction, robust methods, interpretability, and

data reduction for computational performance,

e cvaluated the boosted Poisson model on simulated data, and

e evaluated the boosted Cox model on a real dataset for primary biliary cirrhosis.

This is a large step in demonstrating the wide applicability of boosting methods.
Boosting has the potential to work its way into all the other regression models that

remain at large.
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Chapter 5

BAYESIAN METHODS FOR MASSIVE DATASETS

The advent of the massive dataset and the expansion of the field of data min-
ing has created the need to produce statistically sound methods that scale to these
large problems. Although statistics in the past has dealt with extracting maximum
information from a small dataset, these new problems require methods that can com-
press the massive dataset in a reasonable amount of time into something humanly
understandable.

In this chapter I will propose one method that permits Bayesian inference in mas-
sive datasets for a large class of models. I will also outline some ideas for performing

approximate inference based on “likelihood clustering”.

5.1 Statistics and data mining

The rapid increase in automated information gathering from sources such as the
checkout counter, the World Wide Web, and orbiting satellites has far outpaced the
development of tools to analyze data flowing in such quantities. The field of Knowl-
edge Discovery and Data mining (KDD) grew primarily out of computer science to
meet the growing need. Even though statisticians have been at the forefront of data
analysis for over a century, data mining grew with little interaction from the sta-
tistical community. The datasets are massive, high-dimensional, often retrospective,
and rarely clean. Nevertheless, the market demand exists for new methods of data
management and new sets of algorithms to extract accurate and ultimately useful

information from these massive stores of data.
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The need for proper statistical analysis has not gone unnoticed in the data mining
community. Statistical concepts such as latent variables, spurious correlation, and
problems involving model search and selection have appeared in widely noted data
mining literature (Elder and Pregibon 1996, Glymour, Madigan, Pregibon, and Smyth
1997). However, algorithms, model fitting methods that actually work on massive
datasets, have been slow to appear. Too many of these algorithms begin by a “load

)

data into memory” step. The vision for an ideal data mining algorithm is one that
requires a single scan of the dataset to produce the final result. For all but the
simplest of models in which sufficient statistics are easily computable this goal is far
from being obtained.

If the most severe penalty comes when requesting data, algorithms might exist
that only use small manageable portions of the dataset at any one time. A second
stage might then perform a sequential scan of the remaining observations, modifying

the model fit with each additional observation. In this chapter, I introduce a Bayesian

framework that may be a starting point for such algorithms.

5.2 An importance sampling algorithm for Bayesian inference in mas-

sive datasets

In this section I introduce an algorithm based on importance sampling to facilitate
Monte Carlo simulations when the posterior distribution conditions on a massive
dataset. The method uses a posterior distribution conditioned on a smaller, more
manageable partition of the dataset as a sampling distribution. With this choice the
importance weight function is simple for any readily computable likelihood function.
Incorporating the entire dataset requires only one scan of the remaining observations.
Derived from an adaptive importance sampling algorithm, I propose predictive weight

trimming to gain further sampling efficiency.

One might first wonder if Monte Carlo techniques for a full Bayesian analysis are
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necessary. Except for the simplest of models and regardless of the style of inference,
estimation algorithms almost always require repeated scans of the dataset. We know
that for well-behaved likelihoods and priors, the posterior distribution converges to
a multivariate normal (Le Cam and Yang 1990, DeGroot 1970). For large but finite
samples this approximation works rather well on marginal distributions and lower
dimensional conditional distributions but does not always provide an accurate ap-
proximation to the full joint distribution (Gelman, Carlin, Stern, and Rubin 1995).
The normal approximation also assumes that one has the maximum likelihood es-
timate for the parameter and the observed or expected information matrix. Even
normal posterior approximations and maximum likelihood calculations can require
heavy computation. Newton-Raphson type algorithms for maximum likelihood es-
timation require several scans of the dataset, at least one for each iteration. When
some observations also have missing data, the algorithms (EM, for example) likely
will demand even more scans. For some models, dataset sizes, and applications these
approximation methods may work and be preferable to a full Bayesian analysis. This
will not always be the case and so the need exists for improved techniques to learn
accurately from massive datasets.

Summaries of results from a Bayesian data analyses often come in the form of
expectations such as the marginal mean, variance, and covariance of the parameters

of interest. We compute the expected value of the quantity of interest, h(f), using
EM®)|z1,--- /h F(Olzr, -, an)dO (5.1)

where f(0]x), is the posterior distribution of the parameters given the observed data.
Computation of these expectations requires calculating integrals that, for all but the
simplest examples, are difficult to compute in closed form. Monte Carlo integration
methods sample from the posterior, f(f|x), and appeal to the law of large numbers

to estimate the integrals,

hm—Zh /h FOlzr, - x)do (5.2)

m—00 m
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where 6, are m independent and identically distributed (iid) draws from f(0|x).

The ability to compute these expectations efficiently, therefore, is equivalent to
being able to sample efficiently from f(6|x). Sampling schemes are often difficult
enough without the burden of large datasets. The additional complexity of massive
datasets usually causes each iteration of the Monte Carlo sampler to be slower. When
the number of iterations already needs to be large, efficient procedures within each

iteration are essential to timely delivery of results.

Example 5.1 (Logistic regression)

In prediction problems in which we wish to predict a binary response, Y, from a set
of d predictors, x, linear logistic regression models are often useful. In this modeling
framework we assume that Y is a Bernoulli random variable with probability param-
eter, p(x). That is, given x;, ¥; will be 1 with probability p(x;) and 0 otherwise. The
linear logistic assumption assumes that

x d

Given a dataset composed of N pairs, (y;,%;), Bayes’ theorem produces the form for
the posterior distribution of 3,
N _ d 5o v d yi—1
f(BIx,y) < f(B) H (1 +e (ﬁo+zj:1ﬁj ]>> <1 + €ﬁ0+zj:1 53‘%‘) (5.4)
i=1
where f(3) is the prior distribution for 3, often a multivariate normal density with
mean 0 and a diagonal covariance matrix with large variances (e.g. 10*). Algorithms
for sampling from this posterior resort to Markov Chain Monte Carlo methods. Each
iteration computes f(8|y,x) (more often, its full conditional distributions) for a sam-
pled value of 3. However, an evaluation of f(3|y,x) or its full conditionals requires

a scan of the dataset to produce the linear combination of predictor variables for
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each observation. MCMC methods already require a large number of iterations. Per-
formance deteriorates further when each iteration scans the full database, potentially

reading from a disk those observations unable to fit into the computer’s main memory.

Our goal then is to develop a procedure that uses a portion of the dataset to
construct an initial posterior distribution. Then with one, maybe two, scans of the
remaining dataset, reconstruct the posterior as if we had conditioned on the entire

dataset in the first place.

5.2.1  Importance sampling

Importance sampling is a general Monte Carlo method for computing integrals. As
previously mentioned, Monte Carlo methods approximate integrals of the form 5.1.
Equation 5.2 depends on the ability to sample from f(f|x). When a sampling mecha-
nism is not readily available for the “target distribution”, f(#|x), but one is available
for another “sampling distribution”, g(), we can use importance sampling. Note that

for 5.2 we can write

/h(@)f(€|x1, ) = /h(@) fg(?é’)‘)g(e)de (5.5)

i=1

i _ fOilx)
where 6; is a draw from ¢(#) and w; = 200

. Note that the expected value of w; under
g(0) is 1. Therefore, if we are able to compute the importance sampling weights, w;,
only up to a constant of proportionality, we can normalize the weights to compute

the integral.

[hO)f@l...aan = i Z O

(5.7)

Naturally, in order for the sampling distribution to be useful, drawing from g(6)

must be easy. We also want our sampling distribution to be such that the limit
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converges quickly to the value of the integral. The best choice for the sampling
distribution is g(0) o |h(0)f(0|x)| (Geweke 1989). With this sampling distribution
the Monte Carlo variance reduces to zero. However, such a sampling distribution
most likely requires that we know the value of the integral in the first place.

If the tails of g(#) decay faster than f(6|x) the weights will be numerically unstable.
If the tails of ¢(#) decay much more slowly than f(0|x) we will frequently sample from
regions were the weight will be close to zero, wasting computation time. Second to
sampling directly from f(6|x), we would like a sampling distribution slightly fatter
than f(0]x).

In the next section I show that when we set the sampling density to be f(0|g1),
where ¢; is a manageable subset of the entire dataset, the importance weights for each

sampled 6; require only one sequential scan of the remaining observations.

5.2.2  Importance sampling for inference in massive datasets

Ideally, we would like to sample efficiently and take advantage of all the information
available in the dataset. A factorization of the integrand shows that this is possible
when the observations, x;, are iid given the parameters, 6. Let g; and g5 be a partition
of the dataset so that every observation is in either ¢g; or g¢».

As noted for 5.1 we would like to sample from f(0|xy,...,x,) = f(0]g1, g2). Since
sampling from f(0]g1, g2) is difficult due to the size of the dataset, I consider sampling
only from f(6|g1) and using importance sampling to adjust. If 6;, i = 1,...,m are

draws from f(6|g;) then we can estimate the posterior expectation 5.1 as

- iy h(gi)wi
E(h(6 === 5.8
(h(0)]g1, g2) ST, (5.8)
where the w;’s are the importance sampling weights
9@' )

TP
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Although these weights still involve the computation of f(6;]g1,g2), they actually

simplify to a computable form.

W — f(0ilgr, g2)
' f(Oi]g1)
f(g1,9210:) f(0;)  f(g1)
fg91,92)  f(1]0:) f(0:)
f(9110:) f (g2163) f (91)
f(9116:) (g1, g2)
f(g210:)

f(g2191)
o f(g2l0:) (5.12)

(5.10)

(5.11)

Line 5.10 follows from applying Bayes’ theorem to the numerator and denominator.
Equation 5.11 follows from 5.10 since the observations in the dataset partition g
are independent from those in g,. Conveniently, 5.12 is just the likelihood of the
observations in g, evaluated at the sampled value of §. The algorithm shown in
figure 5.1 summarizes these results.

As an alternative to importance sampling, f(f]g1) could work, analytically at
least, as a proposal distribution within a Metropolis independence sampler. However,
computing the acceptance probability almost certainly will require a scan of g, which
we hope to have to do as few times as possible.

So rather than sample from the posterior conditioned on all of the data, g; and
g2, which slows the sampling procedure, we need only to sample from the posterior
conditioned on ¢g;. The remaining data, go, simply adjusts the sampled parameter
values by reweighting. The for loops in step 5 of figure 5.1 are interchangeable.
The trick here is to have the inner loop scan through the draws so that the outer
loop only needs to scan go once to update the weights. Although theoretically the
same computations take place, in practice physically scanning a massive dataset is far
more expensive than scanning a parameter list. However, massive models as well as

massive datasets exist so that in these cases scanning the dataset would be cheaper
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1. Load as much data into memory as possible to form ¢y, taking into account
space requirements for the Monte Carlo algorithm.

2. Draw m times from f(6|g;) via direct simulation, Monte Carlo, or Markov Chain
Monte Carlo.

3. Purge the memory of g;.

4. Create a vector of length m to store the log-weights and initialize them to 0.

5. Iterate through the remaining observations. For each observation, z;, update

the log-weights on all of the draws from f(6|g1).

For x; in the partition g, do

{

forvin1,...,m do

{

logw; « logw; + log f(x;|0;)

}

6. Rescale to compute the weights

w; «— exp (logw; — max(logw;))

Figure 5.1: Importance sampling for massive datasets
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than scanning the sampled parameter vectors. I will continue to assume that scanning
the dataset is the main impediment to the data analysis.

We certainly can sample from f(6|g;) more efficiently than from f(6|g1, g2) since
simulating from f(6|g1) will require a scan of a much smaller portion of the dataset.
For reasons discussed later, the algorithm works best when g¢; is as large as possible.
We also assume that, for a given value of 6, the likelihood is readily computable
up to a constant, which is almost always the case. When some data are missing, the
processing of an observation in g, will require integrating out the missing information.
Since the algorithm handles each observation case by case, computing the observed
likelihood as an importance weight will be much more efficient than if it was embedded
and repeatedly computed in a Metropolis-Hastings rejection probability computation.
Placing observations with missing values in gy greatly reduces the number of times
this integration step needs to occur, easing likelihood computations. Aside from
missing data problems, in the logistic regression case, where the full conditionals are
not in a readily sampled form, the likelihood is simple to compute. I demonstrate
the importance sampling algorithm for posterior inference in linear logistic regression

models in example 5.2.

Example 5.2 (Logistic regression, continued)

To implement the sampling algorithm for logistic regression we select observations
to form partition g;. Again, this partition ideally contains as many observations
as possible so that the MCMC algorithm can produce enough draws in a reasonable
amount of time. Using an MCMC algorithm we draw a sample of size m from f(3]g1).
Let s, ..., 8 represent those draws. BUGS (Spiegelhalter, Thomas, Best, and
Gilks 1999) can perform this rather simply when g; is not too large. For logistic

regression the likelihood of an observation is

L(Bly, x) = p(x)*(1 — p(x))' ™ (5.13)
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Figure 5.2: Marginal posterior distribution of 3y, 81, and (s before (histogram) and
after (smoothed density) adding an additional 10,000 observations. The vertical line
indicates the true parameter value.

1
*(504'2?:1 /31%') .

where p(x) =
I+e

Initializing the log-weights to zero we can iterate through the observations in g

to update the weights associated with each of the sampled 3.
Then for (y,x); in the partition g, do

foriin 1,...,m do
n= 6y + S5 81

log w; < logw; + y,;n — log(1 + €")
After rescaling the weights we have a weighted sample from the posterior distri-

bution conditioned on the entire dataset.

I initially tested this algorithm on a small simulated example. I generated 10,000
observations from a logistic regression model with coefficients 3 = {0.3,0.5,0.2}. 1
then obtained 10,000 draws from the posterior distribution of 8 using an MCMC
algorithm (via BUGS). This sample from the posterior represents the draws from
f(0]g1). T then sequentially generated 10,000 additional observations from the logistic

regression model while updating the importance sampling weights of the original
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Figure 5.3: Convergence plots of 3y, 1, and (3, for the logistic regression example
with the addition of 100,000 observations. The horizontal line indicates the true value
of the data generating process. The middle curve is the importance weighted mean
estimate and the outer bands indicate + 2 standard deviations.

draws from the posterior distribution. Figure 5.2 shows histograms of the marginal
posterior distributions conditioned on the original 10,000 observations. The smoothed
densities are the importance weighted densities incorporating the additional 10,000
observations.

Figure 5.3 shows the behavior of the posterior mean as we incorporate up to
100,000 additional observations. With the first several thousand additional obser-
vations we see a large decrease in the variability of the parameter estimates. After
adding 20,000 new observations the rate of decrease in variance slows down. From
there on we seem unable to extract any more information from the additional obser-
vations.

As noted earlier, importance sampling is most efficient when the sampling distri-
bution is close to the distribution from which we wish to sample. Since the sampling
distribution conditions on a fairly large portion of the dataset, it likely places mass
in similar regions as the target distribution. Since all of the terms are positive in the

familiar variance relationship

Var(0|g1) = E(Var(0]g:, g2)) + Var(E(0]g1, g2)), (5.14)
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the posterior variance with the additional observations in g, on average will be smaller
than the posterior variance conditioned only on g;. The addition of g, can increase the
variance (see Spiegelhalter and Cowell (1992) for an example) but we assume that go is
large enough so that we achieve the averaging effect. Therefore, although the location
of the sampling distribution should be close to the target distribution, its spread will
most likely be wider than that of the target, preventing unstable importance weights.

As more additional observations become available, that is, the size of gy grows,
the posterior distribution becomes much narrower than the sampling distribution,
f(0]g1). The result of this narrowing is that the weights of many of the original draws
from the sampling distribution approach 0 and so we have few effective draws from
the target density.

Kong, Liu, and Wong (1994) use importance sampling in a similar fashion for
missing data problems. In that work they propose a rule of thumb for measuring the
effective sample size (ESS) from an importance sampler as

m _(Zwy)?
1+ Var(w) X w?

ESS = (5.15)

where Var(w) indicates the variance of the importance sampling weights, w;. We
can estimate this by substituting a variance estimate m?2s? <ﬁ> where s%(-) is the
sample variance of the normalized weights. Figure 5.4 shows the decay of the effective
sample size as we add additional observations. After 20,000 the effective sample size
reached 52, a huge decrease from m = 10,000 from which it started. Figure 5.4
also contains a plot of the number of draws accounting for 99% of the observational
weight. After 20,000 additional logistic regression observations, less than 2% of the
draws from f(8|y,x) are accounting for 99% of the weight for computing the posterior
quantities. The number of initial draws, m, the relative size of ¢; and ¢, and the
number of parameters all contribute to whether the effective sample size becomes
small enough to be problematic.

The following theorem concerning the variance of the important sampling weights



136

8000 10000
|

6000
|

effective sample size
4000
|

2000

I I I I I I
0 20000 40000 60000 80000 100000

additional observations

Figure 5.4: The reduction in effective sample size with the addition of 100,000 obser-
vations. The lower curve computes ESS and the higher, lighter curve indicates the
number of observations accounting for 99% of the observational weight.
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can help us gauge the effect of these problems in practice. The theorem assumes that
we observe a finite set of multivariate normal data, y;. As before we will partition the
yi’s into two groups, g1 and gs. To make accurate inference for u we will be concerned
about the variance of the importance sampling weights, %, where ¢(-) is the

normal density function. The theorem gives the variance of these importance sampling

weights averaged over all possible datasets with a flat prior for pu.
Theorem 5.1 [If, fori=1,....n,

1. y; ~ Ng(p, 2) with known covariance 3,

2. g1 = {y17 <o 7yn1} and g2 = {yn1+17 s 7yn1+n2}7 and
3. r~ Nd(l“l’Oa AO)

then
: ¢(M|917927E)> <n1+n2>d
lim E,E, Var — e | = —1 5.16
S ““E<MM%E) n (516)
Proof: See appendix A.
O

Theorem 5.1 basically says that in the multivariate normal case with a flat prior the
variance of the importance sampling weights is (%)d — 1 on average. These results
hold approximately in the non-normal case if the posterior distributions involved are
approximately normal, often the case when nqy and ny are reasonably large. As we
should expect, when ny = 0 the variance of the weights is 0. As ny increases the
variance increases at a rate of O(n$). This is unfortunate in our case since we would
like to use this method for large values of ny and high dimensional problems. Looking

at this result from the effective sample size point of view we see that

d
%Sﬁm< m ). (5.17)
ny + No
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If we draw m times from the sampling distribution when the size of the second parti-
tion g is equal to the size of the first partition g;, the effective sample size is decreased
by a factor of 2¢. Given the largest g; that we can handle computationally, if we have
an idea of the reduction in ESS that we are willing to accommodate, then we can
use theorem 5.1 to decide how to limit the size of go. If we are willing to handle a
reduction of p € (0,1) in our effective sample size so that ESS = p x m then we can

choose nsy as
ng = <L - 1> ni. (5.18)

/P

In the next section I propose a simple fix to the few effective draws problem. By
adapting the importance sampling distribution to focus on regions of the parameter
space with non-trivial posterior mass, we can control our effective sample size as ns

ncreases.

5.2.3  An improved algorithm using adaptive importance sampling

After drawing a sample of m parameter values from f(6|g;) and scanning g, to update
the weights we may realize that many of these draws have very small weight. When
this happens the effective sample size is small and our Monte Carlo estimates have high
variance. Upon realizing the small effective sample size we might choose to generate
more draws from f(0|g;) increasing m. Still many of these new draws will have weight
close to 0. Unfortunately, in order to determine the importance sampling weight
associated with a parameter value we need to scan go. When the effective sample size
is small we will waste a scan of g5 computing weights that end up extremely close
to 0. However, using the information from previous draws we may be able to guess
whether the importance weight will be substantial.

Assume that we have an initial set of draws from f(6|g1) and their associated
weights. This initial set of draws should contain a lot of predictive information as to

whether a new draw will have weight larger than some threshold. If we can construct
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a predictor that can quickly determine that a new draw is simply going to have a
small weight we can eliminate the waste of computation on draws from the tail of
f(0]g1, 92)-

Adaptive importance sampling is the process of learning from previously weighted
draws to adjust the sampling density to decrease the Monte Carlo error in the es-
timates. The VEGAS algorithm (Lepage 1980, Lepage 1978), used extensively in
computational physics for 20 years, constructs a sampling density where each dimen-
sion of the parameter vector is independent. For example, assume that we wish to

compute the integral

[ [ ] a2 dzdya.

Further assume that we will use a separable importance sampling distribution of the
form ¢(z,y,2) = ¢9.(2)g,(y)g.(2). VEGAS adapts the components of g(z,y,z) to
bring the importance sampling distribution closer to proportionality with |f|. The
optimal separable sampling distribution is

' fz(x’ y7 Z) Z
9 () o U 9y(1)9:(2) dz dy

1
2

(5.19)

and similarly for g,(y) and g.(z). Equation 5.19 suggests how to adapt the sampling
density to be more efficient. We can estimate the components of g(x,y, z) by subdi-
viding each dimension into K bins and use 5.19 to update the mass in each of those
bins. VEGAS rapidly concentrates weight on the important dimensions and regions.
Clearly this algorithm will perform best when the optimal sampling distribution is
separable and performance deteriorates as the sampling distribution departs from sep-
arability. Although this algorithm is popular in elementary particle physics it seems
to have received little attention in Bayesian analysis.

Other researchers have considered adaptive importance sampling (Oh and Berger
1992, West 1992, West 1993, Givens and Raftery 1996). They offer algorithms that

sample from a parametric or non-parametric density that on occasion adapts to the
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draws obtained so far. However, they all confess to work only in low dimensions, less
than 10, and are not concerned with a large dataset in addition.

After one round of sampling from f(f|g;) and one pass through the rest of the
dataset, we have m pairs (6, w); where the w; are normalized to sum to 1. To minimize
the amount of wasted computation, we would like to build a simple predictive model to
identify new draws that are likely to have weight near zero. That is, we can construct
a classifier that predicts the indicator I(w > t), where ¢ is a threshold parameter,
with the components of 6 as predictors. In this problem the misclassification of a
draw with a large weight is costly. Our main motivation is to trim many of the draws
with negligible weight. I propose a tree-based and direct trimming method and argue
that the direct trimming classifiers might have the advantage.

Given the classification task at hand, initially we might believe that constructing a
classification tree would be ideal. If the posterior is complex, possibly banana shaped
in a high-dimensional space, the tree might still be able to capture the highly weighted
regions. Since we are competing against a penalty that is growing at a rate of O(n?)
with the addition of observations, we need an adaptation that is learning the regions
of negligible weight at the same rate. However, to achieve this goal the tree might not
even need to be very deep. In fact, the best classification tree with only two terminal
nodes, that is a split on only one dimension of 6, is likely to eliminate many of the
negligible draws. In fact we could fit a one-split decision tree to each of the d axes.
Each axis’ tree would determine a region that it predicted to have little posterior mass.
Figure 5.5 demonstrates this idea, the shaded regions being the rejection regions. A
new draw could not be in any of these regions in order to be admitted to the Monte
Carlo sample. This type of marginal computation is in the same style as the VEGAS
algorithm. Both perform computations on the margin to conserve computation and
storage and assume that working on the margin alone yields an adequate sampling
density.

For well-behaved (unimodal, near elliptical) posterior distributions, building a tree



141

B<0.172
|

0.03924 0.33620
04 02 0.0 02 04 06 08 10

Bo

7

05 0.0 0.5 10 0.0 05 10 15

B B

Figure 5.5: An example axis classifier and the rejection regions on each parameter
axis
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on each axis might be sufficient to overcome the O(n?) rate. Although the tree method
seems attractive since it is easily computable and automated, it may be overkill for
our designs. Consider the following proposed algorithm for developing a rejection
region. First, I sort the Monte Carlo draws on the j** dimension of . Then I record
the @ and 1 — o weighted quantiles of ), where the weights are the importance
sampling weights, and trim values outside of these bounds. If, for example, I let
a = 0.005 then I have only trimmed 1% of the observational weight but, according
to figure 5.4, after 20,000 iteration this could mean freeing the memory of 98% of the
Monte Carlo draws. Repeating this process on the other parameter dimensions could
realize polynomial savings to compete with the O(n?) importance sampling penalty
in equation 5.17.

Note that the tail trimming classifier does assume that the posterior is unimodal to
make the performance gains, a reasonable assumption for most models conditioned on
massive datasets. Furthermore, the classifier forms decision boundaries perpendicular
to the axes. For strongly correlated data this is not ideal. When the data are strongly
correlated, one could perform the quantile trimming on the principal component axes
of the data distribution. However, this clearly requires more computation both in
the trimming and later in assessing whether to reject a Monte Carlo draw. This
method would be inefficient and fairly useless in the case of a strongly banana shaped
posterior in high dimensions. Such distributions with a lot of curvature can take up
little mass inside the hypercube formed by the quantile limits. For the most common
situations, quantile trimming on the axes is likely to be accurate and is always fast
(O(dnlogn) although a complete sort is not necessary). Competing against this kind
of computational efficiency would be difficult.

From here on I will assume that the adaptation of the importance sampler incor-
porates the weighted a-quantiles from each dimension of 8. Let /() indicate whether
a parameter value falls inside (1) or outside (0) the weighted a-quantile bounds on

each axis. We can generate a new set of candidate draws and use I(f) to eliminate
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those with expected negligible weight. This will save us from having to use f(g2|0)
to determine whether a draw will have substantial weight. However, we may still be
wasting expensive Monte Carlo iterations producing draws in the tails of f(0|g1, g2).
Rather than use a draw-check-draw-check method, we could modify our Monte Carlo
sampling scheme to draw instead from f,(0|g1), a mixture of f(0|g;) and a truncated

version of it where « here is the mixing proportion.

f(0191)1(9)
[ f(0lg:)1(6)do

fa(Blg1) = a + (1 —a)f(0]g1) (5.20)

Setting a to be large to favor the truncated version will concentrate draws in the region
that might offer more substantial importance weights. For a Metropolis-Hastings
Monte Carlo algorithm, sampling from the truncated portion of the mixture simply
alters the proposal mechanism.

Recomputing the importance weights for theta’s drawn from the mixture sampling

distribution in 5.20 yields

f(g2|0:)
al(0;) + (1 —a) [ f(0lg1)I(0)do

w; = (5.21)

The integral in the above expression is the probability of generating a draw from
f(0]g1) that the weight trimming predictor, I(6), accepts. We can use the original
unweighted draws from f(0]g;) as an estimate. If this probability is small then 1(9)
selected a region that f(6|g1) does not frequently sample. Also note that if o = 1
then we will always sample from the truncated f(6|g;), 1(6) will always be 1, and
the w; will remain as before. Although setting the mixing proportion a = 1 does
not constitute a precise sampling scheme, if the quantile trims are small, as the data
accumulates the difference should be inconsequential.

These results suggest the adaptive sampling algorithm shown in figure 5.6. After
an initial set of m draws 6; from a posterior distribution conditioned on a small

dataset, f(0|g1), the algorithm will continue adding observations from g, until the
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Partition the dataset of N observations x; into g; and gs. Obtain an initial set of m
draws §; from f(6]g;) with associated log-weights logw; = 0. Initialize i = 1, « as

the trimming factor, and ¢ as the minimum acceptable effective sample size fraction.

while ¢ < N do
while ESSf > § and i < N do
Select x; from g9
For j=1,...,m do
log w; « logw; + f(z;6;)
1—1+1
Compute the weighted a-quantiles on each dimension of 6.
Discard 60; outside the quantile bounds.
Sample replacement 6, from f(f]g;) truncated at the quantiles.
Reweight the new draws for k in 1,...,7 do
Select xp from g
For j € new draws do
logw; « logw; + f(x|0;)
Return the 0,’s weighted by w;.

Figure 5.6: Adaptive importance sampling for inference in massive datasets



145

Figure 5.7: Adaptive importance sampling estimates of 3y, 51, and (3 from the logis-
tic regression example. The histogram is the importance weighted estimate of f(3|x).
The dark vertical line outside the middle of the histogram indicates the true param-
eter value. The vertical line near the center of the histogram marks the posterior
expectation. The superimposed density plot is the mle normal approximation to the
posterior, its mean partially obscured by the posterior expectation.

effective sample size fraction 5.22 drops below a certain threshold, 6.

(= wj)j (5.22)

myow;

ESSt =

At that point we can extract the weighted marginal a-quantiles from each axis. After
rejecting those 6; which are outside of these bounds, we can replace them with draws
from the importance sampling distribution truncated at the quantiles. The new draws
need reweighting using the subset of g, already examined. This does require a scan
of those observations previously scanned. Again we continue until the ESS fraction
drops too low. The algorithm proceeds until all the observations in g» are incorporated
while preserving the lower bound on the ESS fraction. At the end we will have a set of
weighted draws from the posterior f(0|gi1,g2) (approximately due to the presumably

negligible truncation when o = 1).
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Figure 5.8: Effective sample size as a function of the additional observations during
adaptive importance sampling. The upper curve indicates the ESS with each addi-
tional observation, maintained above the 10% threshold. The lower curve is the ESS
without adapting the importance sampler. Adaptation points are marked by the rug
plot.
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5.2.4  Fvaluation and modifications to the adaptive sampling algorithm

I tested the adaptive importance sampling algorithm on the logistic regression exam-

ple. T generated 21,000 observations according to

T1,Tg ~ [](O7 1)
y ~ Bern(logit™'(0.3 + 0.625 — 1.525)).

Although I want to draw from the posterior conditioned on all 21,000 observations,
I used a Metropolis-Hastings algorithm to sample from the posterior conditioned on
only the first 1,000 observations. The adaptive importance sampling procedure in-
corporated the remaining 20,000 observations. I set the lower bound on the effective
sample size fraction at 0.10 and always maintained 10,000 draws from the importance
sampling distribution. Figure 5.7 shows a histogram of the marginal posterior distri-
bution of the three regression coefficients using adaptive importance sampling. The
overlaid density is the normal approximation to the marginal posterior conditioned
on all 21,000 observations. These plots indicate that we can perform MCMC steps,
drawing from the posterior conditioned on a small amount of data, and incorporate
20 times that amount using only a few partial scans of the dataset. Rescanning is not
completely inexpensive. In this example they are equivalent to scanning the dataset

14 times.

The effective sample size is still of interest. Figure 5.8 shows the trend of the
effective sample size fraction as more data enter the posterior. Every time ESS drops
below 10% the algorithm adapts the importance sampler by truncating the conserva-
tive a = 0.001 weighted quantile from each axis. The rug plot marks the adaptation
points, which occurs with every 870 additional observations on average. Without the
adaptation steps, ESS continues to drop toward zero as the lower curve indicates.
The adaptation, however, removes observations with little weight. In this example

each adaptation eliminated between 5% and 15% of the Monte Carlo draws. Their
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removal stabilized the variance of the importance sampling weights and maintained
an adequate ESS. Although I obtain 10,000 draws from the posterior conditioned on
1,000 observations, at the end of the process I have what amounts to 1,000 draws

from the posterior conditioned on all 21,000 observations.

There are two ways in which we might want to optimize the algorithm. First,
although it is easy to maintain ESS at about 10%, at this level the importance sampler
is mildly inefficient. Second, the adaptation is not entirely cheap and so we would like
to reduce the frequency of adaptations. These two are competing goals. I found that
increasing the lower bound on ESS increased the frequency of adaptation, sometimes
after adding each new observation. However, we not only have control over ESS but
we can also alter the trimming step by tuning the quantile parameter o and the
trimming process. The fear in setting an aggressive « is that the algorithm might
trim away the regions with high posterior mass. It may be possible to learn when

and where we can be more aggressive.

Notice that in both the recent results shown in figure 5.7 and the illustration of
the truncation sampler in figure 5.5, wasted draws from the importance sampling
distribution tend to be concentrated in one tail. This implies that trimming different
quantiles from each tail might be more sensible. Consider the following modification
to the adaptive importance sampling algorithm. After the ESS fraction becomes
too small we will compute four quantiles, two “weak” quantiles and two “strong”
quantiles. On each margin we will choose one side to strongly truncate by removing
as weight and on the other side we will weakly truncate by removing o, weight. I
will use the heuristic of strongly truncating the tail from which trimming o, weight
would remove the largest number of Monte Carlo draws. That is, I will compute the
weighted as-quantile and the (1 — ag)-quantile. If the number of draws less than the
as-quantile is larger than the number of draws greater than the (1 — ag)-quantile I
will truncate the left tail at the as-quantile and the right tail at the (1 — oy, )-quantile.

Figure 5.5 demonstrates this principle. The shaded boxes cover the regions where the
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Figure 5.9: Effective sample size as a function of the additional observations during
aggressive adaptive importance sampling. It maintains a higher ESS fraction of 20%
with fewer adaptations.

importance sampling weights are small but which contain a lot of Monte Carlo draws.

I repeated the logistic regression experiment setting as = 0.025, a,, = % (the
minimum), and the lower bound on the ESS fraction at 6 = 0.20. By aggressively
trimming only one side and not trimming the other we might be able to achieve
increase effective sample size and less frequent adaptations. As opposed to every
870 on the previous example, on average this one adapts with every 1,800 additional
observations. Figure 5.9 shows the effective sample size fraction trend. As hoped for,

with these settings ESS stays much higher with fewer adaptations. This generates
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Figure 5.10: Aggressive adaptive importance sampling estimates of Gy, (1, and (5
from the logistic regression example. The non-central vertical black lines indicate the
true parameter values. The density plot is the mle normal approximation.
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a more efficient importance sampler with less computation. This example needed
the equivalent of 3 scans of the dataset compared with 14 scans from the previous
example.

However, the aggressive trimming is not without dangers. Figure 5.10 shows the
marginal posterior distributions. The effect of the truncation is much more apparent.
Of particular concern is the center picture, the marginal distribution for 3;. We see
that the truncation point has come close to the true value of 0.6. With the data that
it observed so far, at least one of the adaptations chose to aggressively trim the left
tail. This may be unavoidable under this truncation selection scheme. Solutions to

this problem include

1. decreasing the strong truncation quantile,

2. increasing the number of Monte Carlo draws for more accurate quantile estima-

tion,

3. decreasing the ESS fraction bound to add more observations between adapta-

tions and thereby decreasing the variability of the weight of a particular draw,
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4. periodically readjusting the bounds allowing the acceptance region to expand
(e.g. estimate the marginal as a truncated normal and readjust the bounds to

p+30),

5. replace the quantile truncation with /i + 46 where ji and 6 are marginal impor-

tance weighted estimates of the mean and standard deviation, and

6. sampling from the mixture in 5.20 with a mixing parameter less than 1.

5.3 Likelihood clustering

In this section I present some preliminary ideas and results on a new method for
performing inference in a massive dataset. When faced with a massive dataset the
likely response from a statistician is to select a random sample and fit a model to the
sample. The possibility exists, however, that with a little additional effort one could
compose a more principled, stratified subsample that outperforms simple random
sampling but avoids iterating many times over the full dataset to fit the desired
model.

The principle that drives this work is that many observations in a massive dataset
might be redundant, either copies or near copies of other observations. DuMouchel
et al. (1999) proposed a method that builds a pseudo-dataset that matches the mo-
ments of the original dataset. They suggest that if the likelihood is smooth then
“data squashing” will reduce the redundancy while preserving much of the informa-
tion contained in the full dataset. Their method is independent of the model under
consideration, but shows only a moderate improvement over simple random sampling.

With a likelihood-based model in mind we may be able to stratify the observations
into clusters with similar likelihood, improving upon the data squashing approach as
well as the simple random sample. More precisely, if many observations have the

same value of the likelihood function for all values of the parameters, we would like
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to cluster them and carry out a likelihood based inference using a weighted likelihood
of the clustered data. As in the previous sections I try to avoid the expensive scans of
the dataset. The process of “likelihood clustering” reduces redundancy in the massive
dataset producing a smaller weighted dataset for which standard statistical tools are

tractable.

5.3.1 Motwation for likelihood clustering

Both Bayesian and likelihood inference rely on computations involving the familiar
likelihood function.
N
L(0]x) = Hf(xilﬁ) (5.23)
For the massive dataset problem this is difficult to compute for one value of  and even
more difficult to maximize. Observations in the massive dataset might have partially
redundant information. Two observations, x; and z;, have redundant information if
for all values of 0, f(z;|0) = f(x;|@). This is surely the case if z; = x;. However, even
if the two values are not equal they may still have the same or approximately the
same value for the likelihood at all values of . Furthermore, we are rarely interested
in all values of # but rather just the region for which the likelihood is large or the
posterior mass is high.
The goal at present then is to partition or cluster the data x into smaller sub-
datasets for which the likelihood function evaluated at likely values of # has approxi-
mately the same value. I will partition the dataset into K subsets, g1, ..., gx so that

for all x; in the cluster g, we have

L(@lge) = [1 f(xil0) = f(=™]0)™ (5.24)

i€k

where ny, is the number of observations in g, and z*) is a pseudo-datapoint repre-

senting the k™ cluster. From a Bayesian perspective we might want to select the
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pseudo-datapoints ) so that

{0 2B} = argmm/,c <1_11 f(:ci|(9),kl:[1f(x(k)|9)”k> f0|x)dd  (5.25)

where L(-,-) is some form of loss function. This says that on average under the
posterior the likelihood of the entire dataset is close to the weighted likelihood of the
pseudo-dataset. In the experiments in this section I used squared error loss for L(-, -).

I propose the following method to approximate the solution to 5.25. Suppose that
we can get a rough guess for f(0|x), say, by using the normal-mle approximation where
the mle conditions on a small dataset. For each observation we can then compute
the likelihood of the observation at a handful of values for the parameter 6 selected
randomly or deterministically that seem likely under our rough approximation to the
posterior. Then we can call upon standard efficient clustering algorithms, such as
the k-means algorithm, to group together observations for which their likelihoods at
these points are similar. This will form the K partitions g1, ..., gx. Lastly we can
select a representative point or compose a pseudo-datapoint from the observations in
the cluster.

Figure 5.11 summarizes these ideas, outlining the components of the likelihood

clustering algorithm.

5.3.2 A likelihood clustering algorithm for simple linear regression

In this section I will present an algorithm for likelihood clustering for a simple linear
regression model and evaluate it on simulated data.

For simple linear regression we assume that
yi ~ N(Bo + Bizi,07). (5.26)

Least squares algorithms for this model can collect all the sufficient statistics for ,3 in
one pass through the dataset. However, we will be interested in seeing whether esti-
mates from a simple random sample or estimates from a likelihood clustered sample

come closest to the least squares estimate.
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Let f(x;]0) be the likelihood of an observation, N be the total sample size, and n < N

be the largest sample size for which we can perform inference on 6.

A likelihood clustering algorithm is then

1. Randomly sample n observations from the full dataset.
2. Select d values of § that are likely given the n observations.
3. For each observation compute the likelihood at each of the d 6’s.

4. Partition the observations in n clusters according to the value of the likelihood

at the d #’s. This might be computable in conjunction with the previous step.
5. Create a pseudo-datapoint from each cluster to represent its members.

6. Use standard statistical techniques to estimate 6 from the n pseudo-datapoints
where each receives weight equal to the number of observations in the respective

cluster.

Figure 5.11: The likelihood clustering algorithm
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Figure 5.12: Likelihood clusters for the simple linear regression example. The left plot
shades a few of the likelihood clusters. Sampling one observation from each cluster
produces the plot on the right.

From the principles proposed in the previous section I can use the following steps
to construct a pseudo-dataset that could outperform simple random sampling. If the
full data set contains N observations then we can get a rough estimate of the posterior
mode by fitting a least squares line through a random subsample of size n of the full
dataset. This produces a point estimate and standard errors for ,@ that we can use to
approximate f(3|x) or at least get an idea where the most likely regression coefficients
lie. Evaluating the likelihood for each observation at a small number of these likely
parameter values creates a vector of features for each observations. We can then use
the k-means algorithm to cluster the observations according to these features. I will
select one pseudo-datapoint by randomly selecting one observation from each cluster.
A weighted least squares fit to these pseudo-points with weights equal to the size of
their cluster should be more competitive than simple random sampling.

To test this I simulated 1,000 observations from a simple linear regression model
with 3 ={0,1}. I used 100 of them to get an estimate of 8 and the standard errors.
For each of the 1,000 observations I computed the likelihood at five parameter values,

,@ and ,@ + 3SAG(B). These values are roughly the posterior mode and four values
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Figure 5.13: Estimation performance of simple random sampling and likelihood clus-
tering. The boxplots show the results over 100 simulations of the difference between
the mle using the full dataset and the mle using either simple random sampling or
likelihood clustering. The left plot is for 3y and the right for ;.
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that are three standard deviations away. I then used the k-means algorithm to find
100 clusters and I randomly picked one observation from each cluster as a pseudo-
datapoint. The left plot in figure 5.12 highlights a few of those clusters. The selection
shown is intuitive. Likelihood clustering tended to group together observations that
were linear in a probable direction of ;. The data squashing would have grouped
together observations that were close in terms of x and y but would miss our linear
modeling goal. The right picture in figure 5.12 shows the points in the pseudo-dataset.
[ fit a regression model to the 100 pseudo-datapoints each weighted according to the
size of their cluster. I also fit a regression model to a simple random sample of size

100.

Figure 5.13 shows the experimental results for estimating Gy (left) and 5y (right)
over 100 repetitions. The boxplots show the difference between the estimates from a
simple random sample and the likelihood clustering. Estimates close to the zero line
are best. Estimates based on simple random sampling had variance four times larger
than those using likelihood clustering. In this example likelihood clustering improved

accuracy of the estimates by 70% in terms of absolute deviation.

5.4 Discussion

In this chapter I presented some new ideas to create a generation of statistical proce-
dures for use in massive datasets. The first idea is to use a distribution conditioned on
a small portion of the dataset as an importance sampling density. Conveniently, the
importance weights reduce to the likelihood of the remaining observations, a computa-
tion that is usually easy to compute. I also proposed methods specific to this problem
for adapting the importance sampling distribution to control the effective sample size.
I show that I can effectively sample from a posterior distribution conditioned on a

dataset 20 times larger than the one used for the base MCMC algorithm.

The second idea clusters data points in the massive dataset according to their
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likelihood evaluated at probable values of the parameter. Weighted maximum like-
lihood on a set of pseudo-datapoints generated from the clusters provides estimates
that outperform those from a simple random sample of the dataset. These results
show great promise for a general purpose procedure for compressing the dataset into
a form that standard fitting procedures can use. If analysts desire more precision
this approximation may provide an ideal starting point for the adaptive sampling
procedure also introduced in this section.

Further research will investigate optimal and less heuristic clustering and pseudo-

datapoint selection methods.
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Appendix A

VARIANCE OF THE IMPORTANCE SAMPLING
WEIGHTS

Lemma A.1 (multivariate square completion)

c1aq + coas\? c1a1 + c2a
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1+ ¢ c1+co
1

c1+ ¢
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Proof of Lemma A.1:
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Cc1+ C2
Lemma A.l1 generalizes in the obvious way when adding more than two quadratic

forms.
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Lemma A.2 If, for i = 1,....n, yi|p,X ~ Ng(p,X) with known X and p ~
Na(po, No) then

N'yu X~ Nd(unu An)
where

—1
fy = (/\61 + nE’l) (Mg o +nX 1)

AL = At s

Proof: Discussion of Lemma A.2 is in Gelman, Carlin, Stern, and Rubin (1995).
O

For the main result, we will assume a non-informative prior for . That is, we

will assume that Ay takes on some value A for the diagonal elements and 0 for the

off-diagonal elements. Ay then is also a diagonal matrix with the value % on the

diagonal. A non-informative prior results when A\ becomes arbitrarily large and so

Ag' becomes the 0 matrix. The posterior simplifies under this prior to

1
ply, ¥~ Ny <§, 52> : (A1)

Theorem A.1 (Variance of the importance sampling weights) If,

fori=1,---,n,
1. yilp, X~ Ng(p, X) with known X,
2. g1 = {yla T ayﬂq} and g2 = {yn1+1a e ayn1+n2}7 and

3.~ Na(pio, Mo)

then

lllrn Eg,Eq Var,g, s
Ay =0

é(4l91, g2, E))

o(ulg1,2) <n1 . n2>d -1 (A.2)
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Proof of Theorem A.1:

This is a multivariate result. In the statement of the theorem and in the proof y;, u,
S1, and Sy are d-dimensional vectors and ¥ is d X d matrix. The limit implies that
the prior for p is non-informative so we can assume the posterior as specified in A.1.

The expectation of the weights are trivially 1.

o191, 92, %) > $(1g1, g2, )
Bops—7 1= = — (g, X)dp
S b (ulgr, 3 Joo  dptlg1, %)
= [ ¢(#|gla92a2)dlu
=1
The expectation of the square of the weights follow. Let S = Y y; and Sy =
Yi€g1
> Yi
Yi€g2
¢(H’|9179272)>2
ELE By | —————a
”mw2<mmx>
—3 = 51455 \" -1 S48 ?
s e e (<3 (- 22 () (- 522))

= ES1,S2EM\91,E

d 50 t
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- 2 o )
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Applying Lemma A.1 for the first time we can collect the terms involving p to

1

resemble a multivariate normal distribution with covariance P

Y., which is simple

to integrate.

ni +no\ %/ ny 3 1
N ke
n1 2T

Be s, /oo exp [_1 <<u— Sy +252>t< 1 E>_1 <u_ w»]
R P 2 ni + 2ny ni + 2ny n1 + 2no
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(51— (25T (51 - (-253) )]

Since S; is the sum of n; 74d multivariate normal random variables S; ~

Na(nip,niY).
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d
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Completing the square for the second time to collect the S terms we obtain an in-

(n1+n2)(n14+2n2) .

tegral proportional to a multivariate normal density with covariance o3
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4n3
B (’)”Ll + ng)(m -+ 2’)12)(’)11 + 3’)12)
<Sg _ M(nl +ng)(n + 2%2)) sl <Sg _ M(nl +ng)(ny + 2n2)>

29 2n3

+(SQ - nQM)t<n22)_1(SQ - HQ/L) + nlutZluﬂ |n22|_%<2ﬂ')_%d52

Completing the square for the third and last time to collect the S5 terms...

d
n1+n2>d< ny + no )5 PR _d
fry Z 2 2 2

< n ny+3ng) "2 CIEET)

/OO exp [—% <M(52 — ) B (Sz — nau)ﬂ

—oo na(ny + 3nsg)

1 4n2
exp |—=
P (n1 + n2) (1 + 2n) (n1 + 3n2)
<,u ny + n2 ’)”Ll + 2n2)>t2_1 <,u (n1 + ng)(m + 2”2))
_l’_

25 2no
(n 1) = (nop) + S
_ng(n1+3n2)< ni + neg )t2_1< 11 + No >>

ds
ni + N ny + 3’)12 ny + 3’)12 2

The first exponential in the integrand is proportional to a multivariate normal

density with covariance %E The second exponential term equals 1.
4 d

_ <n1 + n2>d< ny + no >§n2%|2|%(2ﬁ)% <n2(n1 + 3n2)> |E| 2 )%

ny ny + 3ns ni 4+ ng
B <n1 + n2>d

n
And so, as we wished to prove

A?go EgEq Varyg, s <%> _ <n1;r1n2)d 1 (A.3)

O

As a result the effective sample size is

m n d
ESS= ——— ~ A4
o5 1+ Var(w) m<n1+ng> (A.4)




176

VITA

Greg Ridgeway was born July 9, 1973 in Annapolis, Maryland. He received his
Bachelor of Science in Statistics with a concentration in Mathematics in March 1995
from the California Polytechnic State University in San Luis Obispo, California. Con-
current with his undergraduate education he worked as an data analyst from 1993 to
1995 in psychometric research at the Atascadero State Hospital, California Depart-
ment of Mental Health and from 1994 to 1995 for UC Berkeley’s Integrated Hardwood
Range Management Program. He worked as a statistician for Microsoft Research in
Redmond, Washington from 1996 to 1997 while attending graduate school. In De-
cember of 1997 he received his Master of Science from the Department of Statistics at
the University of Washington. In August of 1999 he received his Doctor of Philosophy
from the Department of Statistics at the University of Washington.



