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Abstract
A statistical approach to estimating the probabilistic distribution of composite damage
Sizes using aircraft service inspection data has been investigated. Bayesian updating
methods were implemented to revise baseline composite damage size distributions using
damage size data from the Federal Aviation Administration’s Service Difficulty
Reporting System (SDRS). Updating was performed on the Boeing 757 and 767 wing
composite trailing edge devices, elevators and rudders, with the results demonstrating
that the assumed baseline damage size estimates are conservative in nearly all cases.
Component failure probabilities were recalculated using the updated damage size
distributions, and these results show an overall improvement in reliability for the damage
mechanisms analyzed. The results of the analysis demonstrate that an inspection and
maintenance program that reports damage characteristics can be used to monitor the
reliability of damage tolerant structures on a quantitative statistical basis.
Recommendations are also made for improving current inspection data reporting systems,
which would enhance the ability to gather detailed information on the characteristics of

each structural damage event.
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Nomenclature

random variable for damage size

sample damage size from domain A

sample mean of damage sizes

critical damage size

median detection probability for Probability of Detection models

binary random variable for damage detection state (D = 1 indicates damage

IS detected)

Effective Sample Size

probability density function of A

importance-sampled probability density function

shape parameter for Log-Odds Probability of Detection model
likelihood function

sample mean of the log of damage sizes

importance sample size

sample size of damages used for updating

probability of Y

probability of detection for damage size a

sample mean of the log of probabilities of detection

probability density function of actual damage size

probability density function of detected damage size



PF - Probability of Failure

R - Reliability

w - importance weight factor

a - shape parameter for prior distribution of Gamma model parameter 8

B - shape parameter for Weibull distribution of damage sizes, or scale parameter
for prior distribution of Gamma model parameter &

e - scale parameter for actual damage size distributions

o - shape parameter for LogNormal Probability of Detection model

T - shape parameter for Gamma distribution of damage sizes

3 - truncation value for detected damage size distribution

Introduction
The non-deterministic approach to damage tolerance is beginning to gain acceptance as a
means of quantifying safety and reliability in primary aircraft structures. Probabilistic
methods applied to damage-tolerant designs enable the characterization of uncertainty
associated with damage accumulation and growth, inspection reliability and residual
strength behavior of the structure. Using these methods, the safety and reliability of a
structure can be assessed on a quantitative basis, allowing aircraft manufacturers,
operators and flight certification authorities to evaluate the risk associated with structural
failures in an aircraft fleet. A simplified probabilistic approach for quantifying the
reliability of damage-tolerant structures has been previously investigated by Lin, Rusk

and Du.! Structura reliability for a single inspection opportunity is defined as the



compliment of the probability that a single flaw size larger than the critical flaw size for

residual strength of the structure exists, and that the flaw will not be detected. The

current methodology derived from this definition is sufficient for use on composite
structures designed for “no damage growth” certification criteria. One of the most
challenging aspects of applying this or any other probabilistic methodology to a damage
tolerance problem is the determination of the appropriate distribution of actual damage
sizes for each damage mechanism the structure will see in service. During the design
phase and early operational life of the structure, little damage size data may be available,
since it is very difficult to simulate, in laboratory experiments, all of the conditions that
cause damage to accumulate on an aircraft structure. Under the current philosophy of
commercial and military aircraft operations, periodic scheduled and unscheduled airframe
inspections are typically carried out by maintenance personnel to ensure the airworthiness
of the fleet. These inspections provide a good opportunity to collect damage size
information on all of the structural damage that accumulates in a fleet of aircraft. One of
the benefits of utilizing a probabilistic approach to damage tolerance is that Bayesian
statistical tools can be used to update the damage size probability distributions when new
data becomes available. This technique was previously demonstrated by Harris for initial
crack depths on a center-cracked panét. this research, Bayesian updating techniques
are used to revise initial estimates of damage size distributions using composite damage
size data from the Federal Aviation Administration’s Service Difficulty Reporting

System (SDRS) database.



Reliability Formulation
The definition for damage-tolerant reliability derived in Ref. 1 will be used here for the
subsequent analyses. The resulting equations rely on a probabilistic characterization of
actual structural damage sizes and damage detection capability for the inspection
technique being used.

R=1-P(Aza D =0)=1-PF (1)

PF = [ p(afi- P, (a)da @
a,

This definition assumes that only a single flaw is present in the structure at a single
Inspection opportunity, and that the flaw is not growing with time. The definition should

thus be sufficient for characterizing composite structures designed under “no damage
growth” certification criteria. An additional assumption is that a single characteristic
dimension can parameterize the damage mechanism being modeled.

The reliability equation itself is independent of the particular damage mechanism being
modeled, since all of the configuration-specific information in the problem is contained
within the parameters of the probability distributions. Therefore, the choice of
appropriate probability models is important to accurately describe the nature of
uncertainty for the specific problem of interest. Berens and Holémave conducted
significant research to characterize Probability of Detection (POD) models for cracks in
metal aircraft structures. The results of these studies show that a cumulative LogNormal
distribution (Eqn. 3) can be used to model the mean “hit/miss” response data from crack

detection experiments.
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Efforts to extend this research to the determination of POD characteristics for composite

damage inspection techniques have so far been minimal. Thus, for the purposes of this
analysis, the cumulative LogNormal POD model is assumed to apply equaly well to
composite damage types.

The form of the POD modél is such that the probability of damage detection goes to zero

as the damage size approaches either zero or some minimum detection threshold. This

means that the frequency of occurrence for structural damage sizes is not completely
observable over the range of possible damage sizes, so the exact shape of p(a) can never

be completely characterized. An appropriate choice of probability models for p(a) that

can account for this uncertainty is the Gamma (Eqgn. 4) and Weibull (Egn. 5) probability

density functions (PDF’s). Both of these models have shape factor terms that determine
whether the density distribution goes to zero or approaches infinity as the damage size

goes to zero.

Gam(a;7,0) = a0 a’ " exp(-al0) 4)
(2 3.0) = P 2P axol- s
Wei(a:3,6) = Fra expl- (a/6)*] 5)

Any damage size data collected from structural inspections represent a random sample
not from the actual damage size distribution, but from the detected damage size
distribution, which is a product of the actual damage size distribution and the detection

probability of the particular inspection technique used (Eqn. 6).

p (a) - p(a) I:)D (a)
[P@P, (@)da

(6)



The analytic detected damage size models are shown in Equation 7 for a Gamma actual
damage size distribution, and in Equation 8 for a Weibull actual damage size distribution.

Gam(a;7,60)P, (a)

.
E[P; (a)] ¥

P, (a) =

Wei(a; 8,0)P, (a)
E[P, ()]

P, (a) = (8)

Baseline Damage Size Data

One of the most difficult aspects of applying a probabilistic approach to damage-tolerant
structural analyses is in determining the appropriate distribution of actual damage sizes
that will accumulate on a structure in service. At present, little quantitative data exists on
the damage size characteristics of various composite structural applications. One of the
few published examples of such data was compiled by Gray and Riskalla®> An excerpt of
this data is reprinted in Table 1 in modified form, and was used to derive damage size
distributions for the composite sandwich reliability analysis of Ref. 1. The data will also
be used here to provide a baseline estimate of damage size distributions for existing
commercia aircraft composite structures.

Before fitting the baseline damage size data to Equations 7 & 8, the POD model
parameter values for each damage inspection technique must be known beforehand. The
Log-Odds POD model parameter values previously assumed in Ref. 1 will be used here,
after being transformed to the cumulative LogNormal POD parameters by the
transformation relation outlined by Berensin Ref. 4 (Eqgn. 9).

k =71/\/30 9)
The transformed POD parameter values are listed in Table 2, and the resulting POD

curves are shown graphically in Figure 1. Parameter values were chosen to represent



detection probabilities that can be reasonably obtained for operational inspections, and
that would likely result in the distribution of damage sizes observed in Ref. 5. The POD
curves represent visual inspection capability for all hole and crack damage, and a
combination of visual and tap testing capability for delaminations. In addition, a POD
curve representing an automated non-destructive evaluation (NDE) method for detecting
delaminationsis aso assumed.

To calculate the parameter values of p(a) from the baseline damage data, Equations 7 and
8 must be integrated numerically over the damage sizes corresponding to the cumulative
probability of occurrence data in Table 1. A double-precision Fortran program was
written to solve for the p(a) model parameters using the secant method for sets of non-
linear algebraic equations.® The function integrations were solved using the SLATEC
subroutines DQAG and DQAGI.” Integrations were carried out to a relative precision of
10*2. Parameter values converged to a cumulative absolute error of 10, and were solved
for each damage type, for both Gamma and Weibull actual damage size models. Results
are listed in Table 3, and are shown graphically for the delamination case in Figure 2.
The figure demonstrates that the choice of either a Gamma or Weibull PDF for p(a)

yields similar results for the damage type and the range of damage sizes shown.

SDRS Data
The damage size distributions derived from the data of Ref. 5 represent the aggregate
response of a large number of composite structures to in-service damage. To determine
the response of specific structural components to damage, more detailed data needs to be
collected for the structures in question. Use of the damage-tolerant design philosophy

requires periodic inspection to detect and repair structural damage, and the results from



those inspections can be used to revise the baseline damage size distributions as new data

Is accumulated. The Federal Aviation Administration (FAA) requires commercia

aircraft operators in the United States to submit their aircraft to periodic inspection, and

to report any failure, mafunction or defect that threatens flight safety or exceeds
allowable limits. Thisinformation is submitted to the FAA in the form of a Malfunction

or Defect Report, and the individual reports are collected in an electronic database called

the Service Difficulty Reporting System (SDRS). Although not expressly designed for

the purpose, SDRS can be used in some cases to obtain damage size data for individual
structural components. Previous research efforts by Brewer utilized SDRS crack size

data to estimate POD curves for inspection of metallic fuselage lap splice joints.® In this

study, damage size data available from SDRS will be used to demonstrate Bayesian
updating of prior detected damage size distributions. This data will aso be used to
validate the baseline composite damage densities derived from Ref. 5, for specific
airframe structural components. A third purpose in using this data will be to demonstrate

how the existing commercia aircraft maintenance infrastructure can be adapted to gather
statistically useful data on the damage threat environment of in-service aircraft.

An archive of all SDR’s covering the period January 1990 to April 1999 was obtained
from the FAA. Only records pertaining to structural problems on large commercial
transports with a significant number of high-performance composite components were
retained. All other records were deleted. The remaining records were searched by
aircraft type for damage occurring on any major composite structures. Damage sizes and
methods of detection are not required by the FAA to be submitted on structural damage

reports. However, many inspectors choose to report this information anyway. The
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largest sample set of reported damage sizes found in the database was for the Boeing 757

and 767 airframes. The breakdown of damage events, reported damage sizes and
components affected are listed in Table 4 for the 757 and Table 5 for the 767. Analysis

of the records with damage sizes indicates that disbond and delamination damage is not
consistently reported. Often disbond damage is reported as delamination in the records.

Dents, Gouges and General Damage have no apparent delamination associated with

them, and so are treated as a separate case. The detection method is usually not reported,

S0 is assumed to be visual unless otherwise stated.

Before using any of the SDR damage data in a statistical analysis, the limitations of the

reported information must be addressed. Structural damage classified as a maor repair is

often handled through the FAA’'s Designated Engineering Representative (DER), or
directly by the airframe manufacturer. In those cases, an SDR may not be filed by the
maintenance activity. This means that the SDRS database does not contain all incidences
of major structural damage that occur on a component in service. Also, only damage that
Is beyond the maximum acceptable limits is required to be reported. These limits are
usually set by the airframe manufacturer’'s Structural Repair Manual (SRM), and are
specific to the damage type and location on each component. Damage sizes below these
limits are not required to be reported, and usually are not. As a result, damage sizes
derived from the SDRS database do not represent a random sample from the overall
damage size distribution of a component. These issues must be taken into account in the

subsequent analysis, or the results will be significantly biased.
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Bayesian Updating For mulation
Damage size data from the SDRS database represent a sample from the detected damage
size distribution for each damage type there is datafor. Using the form of Equation 7 or
8 for po(a), the model parameters of the actual damage size distribution can be updated.
The damage size data do not represent a random sample from py(a) however, because
only damage sizes larger than the repair size limits are reported. |If the size threshold for
reporting damage is known a priori, then a particular damage size data point will
represent a random sample only from the area of the detected damage PDF that is above
the size threshold. This can be accounted for in probabilistic terms by the use of a
truncated PDF, where the detected damage PDF can be expressed strictly as a function of

damage sizes larger the threshold value (Eqgn. 10).

po(a|a>5)=f°¢ for a>0 (10)

1= P, (x)dx
]
The truncated version of Equation 7 is shown in Equation 11 for the Gamma actual
damage size model.
1
p,(ala>é&,r,6)=— ST ER )
1- !
16T (D E[R, ()]

a’'P, (a)exp(-a/6)

(11)
X"'P, (X) exp(—x/ 8)dx

Here, po(a) is now conditional on the damage size being larger than the truncation value,
and on the Gamma model parameter values. The entire actual damage size distribution
model can now be updated with data sampled strictly from the region beyond the

threshold limit.
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For n new detected damage size data points, damage size sample estimators can be

defined (Egns. 12, 13, 14) which reduce the likelihood of Equation 11 to the form shown

in Equation 15.
a=13a (12
Ina :lilna (13)
N =
P =2 IR ()] (14)

L(ail. a‘2’ ’a‘n |a>é,7,6):

Cexpl-a/60+(1 - 1)Ina+P]EFI_J§ I R Wep(x/e) {19
0o OT@ER ] - 07T (1) E[P, (X)]

Assuming some type of joint prior distribution for the model parameters r and 6, Bayes

theorem can provide an updated estimate of what the model parameter values should be

in light of the new damage size data (Egn. 16).

f,(1,6|a,a,,.,a,)0L(a,a,,..,a,|a>¢,1,6)f (1,6) (16)

The prior distributions of the model parameters 7 and 6 were assumed to be independent
for smplicity. For this analysis, a two-parameter Gamma PDF was used to model the
parameter prior distribution (Egn. 17), and an Inverse-Gamma PDF was used to model
the 8 parameter prior distribution (Eqn. 18). However, any continuous univariate PDF

can be used to model the prior distributions.

fo(0 = rl()r Lexp(=7/ ) (17)

(a+1)
f.(8) = ,G”I’( )e exp(-1/ B8) (18)
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To obtain the joint posterior distribution of the model parameters, Equation 16 must be
solved numerically. Thisistypically done using Monte Carlo simulation, however due to
the complexity of the likelihood function, it is not possible to sample directly from the
likelihood. In such cases, importance sampling can be used to circumvent this problem.

Gelman, et a. outline a method for estimating the marginal distribution of the joint
posterior model parameters using importance sampling.” A normalized PDF, (7, 6), is
introduced in the equation for the expected value of the updated marginal distribution
(Egn. 19). Idedly, the selected PDF can be efficiently sampled from, and is a close

approximation to the joint posterior parameter distribution.

00 00

Elr|a.a,,..a] :J,J,zfu(r,9|aléa(l;,.é),%)g(r,é’)dme (19)

The importance weight factor is defined as the ratio of the density to be ssimulated to the

approximating density (Egn. 20).

Wr.0) = fu(z,éé?;,g;,...,an) (20)

Taking m samples from the approximating density, the expected values of the model
parameters can be estimated for the unnormalized case of Equation 16 by the relations of

Equations 21 & 22.

r];]iriw(ri .6)

Elr|a,a,,..a,]= 1':m

EZW(Ti’ei)
~;§aw<ri,6z)

E[@|a,a,,....,a,]= 1nm
EZW(Ti .6)

(21)

(22)
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The efficiency and accuracy of importance sampling depends on how well the
approximating density matches the joint posterior distribution of the model parameters.
Kong, et a. define an Effective Sample Size (ESS) such that m draws from the
importance sampling distribution offers the same etimation accuracy astE&8ws
from the joint posterior distributiol!. For m importance sampled draws, the ESS is
expressed as a fractionmof as in Eqn. 23.

@wn(ri,a)g

ESS=—— (23)
mZ Wn2 (Ti 'gi )

Although derived here for the Gamma damage size model, these updating methods can be
applied equally well to the Weibull damage size model, or any other model one wishes to

choose.

Updated Damage Sizes
It is clear from Tables 4 and 5 that the small sample of damage sizes available from the
SDR database precludes the ability to derive, with any significant degree of confidence,
initial component damage size estimates from this data alone. However, with the
Bayesian updating formulations just derived, SDR damage size data can be used to revise
baseline probability distributions for each damage type. The baseline distributions used
here were derived previously from the data of Ref. 5. For all of the damage types
reported in Tables 4 and 5, only disbonds, delaminations, holes and cracks were used to
perform updating. Disbonds were grouped with delaminations because of the difficulty
of sorting out the specific damage mechanisms from the individual records. The

lightning strike damage on the 767 elevator was treated as a delamination. Four of the
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delaminations on the 767 were detected using NDT/UItrasound techniques, and these data

points were accounted for in the updating calculation by using a likelihood function that

incorporated multiple inspection techniques for a given damage type. SDR damage

records that report damage sizes usualy do not report damage shapes. For disbond,

delamination and hole records that only report a single dimension, the damage was

assumed to be circular. 1f more than one dimension is given, the damage was assumed to

be elliptical. The damage size was then recorded as the equivaent circular diameter of

the ellipse. Crack dimensions were assumed to be the overall crack length.

Each reported damage size has a maximum repair size limit associated with it, and the

limits are typically set by the manufacturer's SRM. All of the reported damage sizes

were cross-checked with the appropriate Boeing SRM to determine the corresponding

repair size limits. Without detailed dimensions of damage locations from the SDR data,

and drawings of the affected part, it was difficult to ascertain which repair limit criteria

caused the damage event to be reported. Using information in the SRM, criteria for

choosing repair limits were established to provide a systematic approach to setting

damage size thresholds based on the repair information reported in each SDR data record.

For each reported damage size, the repair limit criteria used were:

1. If the damage size is smaller than all SRM repair limits, the threshold is set to zero.

2. If the damage size is smaller than the permanent repair limits, and is repaired with an
unspecified permanent repair, then the threshold is set to the interim repair limit.

3. For damage sizes above all SRM repair limits, if the repair type is not specified, then

the threshold is set to the interim repair limit.
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4. For large damage with no size limit specified on the repair type, the threshold is set to
the largest repair limit for other repair types that is smaller than the reported damage
Size.

Applying the repair limit criteria gives a threshold value associated with the reported
damage size. The threshold value will be in terms of the largest damage dimension, and
must be corrected when the damage area is non-circular. This was accomplished by
calculating the aspect ratio of the reported damage area, and setting the major axis to the
threshold value, the minor axis of the threshold is calculated keeping the aspect ratio
constant. An equivalent circular diameter for the threshold limit is then calculated from
the major and minor axes dimensions. This technique reduces the effect of damage shape
variation on the damage size results, because the threshold values are calculated by
holding the damage shape constant.

A double-precision Fortran program was written to carry out the updating using the

damage size and threshold data. Integrations were carried out using the SLATEC

subroutines DQAG and DQAGI, to arelative precision of 10®. Importance samples were
drawn from a Gamma distribution of the 7 parameter, and an Inverse-Gamma distribution
of the @ parameter. The uniform random number generator used was the function DUNI
from the NMS software package (Ref. 7). The Gamma random number generator
function used was a variation of the program listed in the Appendix of Ripley for
sampling from a standard Gamma distribution.”*  The parameter values of the
importance-sampled Gamma distributions were optimized to maximize the Effective
Sample Size obtained for each program run, for an importance sample size of m = 1000.

The final computational runs were performed using an importance sample size of m =

17



100,000. This large sample size was used so that histograms of the marginal posterior
parameter distributions could be created. Generally, an importance sample size of only a
few hundred gives sufficient solution accuracy for ESS values greater than 50%.

Analysis cases were divided into three categories. The first category is 767 damage,
which is subdivided into two component groups of wing trailing edge surfaces and
empennage control surfaces. The second category is 757 damage, which consists of a
single component group of wing trailing edge surfaces. There were insufficient data
points to perform a separate analysis of the 757 empennage control surfaces. The third
category combines data for the 757 and 767 structures, and is subdivided into wing
trailing edge and empennage control surface component groups. The prior distributions
of the actual damage size model parameters are characterized in terms of two levels of
uncertainty. The low uncertainty level sets the Coefficient of Variation (COV) of the
prior parameter distributions to 25%. The high uncertainty level setsthe COV to 50% for
the prior parameter distributions. Prior mean values were taken from the baseline
damage size distributions for each damage type. The updated mean parameter values,
along with the Effective Sample Sizes for each analysis run, are shown in Table 6 for all
categories analyzed. The results show that Effective Sample Sizes of 90% or greater
were achieved for most of the analysis runs, with some exceptions. The effects of
Bayesian updating on the baseline damage size distributions can be quantified by
comparing the means and standard deviations of each damage size distribution. These
results are tabulated for the damage cases analyzed and are listed in Table 7. All values

have dimensions of inches.
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In nearly every case examined, damage size updating using SDR data resulted in a
significant reduction in the mean and standard deviation of the damage size distributions
compared to their baseline values. The only exception to this is the updated standard
deviation for 767 flap crack damage, which slowly increases as the prior uncertainty level
increases. Both flap delamination cases show a significant reduction in the updated mean
and standard deviation values over the baseline values. The rate of decrease is faster in
the 757 flap delamination case, mainly due to the smaller amount of scatter compared to
the 767 flap delamination data set.

The effect that the Bayesian updated damage size distributions have on the reliability for
each damage mechanism can be demonstrated by recal culating the Probability of Failure
(Egn. 2) using the posterior parameter values for the actua damage size distributions.
These integrations were carried out numerically to a relative precision of 10" Selected
results are plotted as a function of design critical damage size in Fig. 3 through Fig. 8.
Bayesian updating of the damage sizes reduces the Failure Probability in nearly all
damage cases studied. The only exception is the 767 flap crack case, where there was no
significant change in the Failure Probability curve due to updating. For this case,
Bayesian updating serves to validate the baseline damage size distribution assumption
with actual damage size data.

Another noteworthy aspect of the analysis results is how Bayesian updating reduces the
uncertainty in the parameter distributions of the damage size model. Histograms of the
posterior marginal parameter distributions can be plotted by summing the normalized
importance weights over intervals of the sampled parameter values. Examples of this

type of plot are shown in Fig. 9 and Fig. 10 for the two prior levels of uncertainty
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assumed. These charts show the relative reduction in variance of the parameter values
over the prior variances, and aso illustrate the shift in the distribution mean values due to
updating.

The overall results of the Bayesian updating analysis demonstrate that damage size data
from scheduled and unscheduled aircraft structural inspections can be effectively utilized
to refine damage size distributions on a quantitative basis. Even with the uncertainties
associated with the damage size data reported in the SDR system, the results clearly
demonstrate that significant reductions in damage size mean and scatter values are
achievable, compared to conservative baseline values. These results transate into
reduced Failure Probabilities for current designs, and increase confidence that reliability-

based methods can quantify uncertainty in damage-tolerant structural designs.

Data Reporting Criteria
The results of the Bayesian updating analysis using Service Difficulty Report data
demonstrate that an inspection and maintenance program that reports damage
characteristics can be used to monitor the reliability of damage tolerant structures on a
guantitative statistical basis. The criteria for reporting damage to SDRS poses some
unique challenges when trying to use the data to update reliability predictions. Since
only damage beyond the maximum repair size limit is reported, the volume of damage
size data that accumulates is highly dependent on how large the repair size limits are in
relation to the mean values of typical damage sizes. If the repair size limits cover nearly
all damage sizes seen in service, only a few exceptiona data points will available for
updating. It would therefore be difficult to make any meaningful statistical inferences

from such asmall data set. Ideally, one would like to have data on all damage events that
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are detected for every inspection opportunity. However, documenting all of this
information could prove to be excessively burdensome for those doing the inspections.
One compromise would be to report all damage sizes that are repaired. This should
provide a much larger set of data to work with than only reporting events beyond the
repair size limits.

Another issue related to the SDRS reporting requirements is whether or not all damage
sizes larger than the repair size limits were actually reported. The size and effect that this
missing data set has on the Bayesian updating results presented here is unknown. What is
also unknown is the effect the records with unreported damage sizes have on the results.
It is evident from the datain Table 4 and Table 5 that the mgjority of the damage events
reported to SDRS do not have damage sizes associated with them. The Bayesian
updating analysis using this data assumes that the recorded damage sizes represent a
random sample from al of the damage events reported. It may be such that only in the
worst cases of damage were the damage sizes actually reported. This would skew the
analysis results towards a larger damage size distribution than would otherwise be the
case.

Many of the concerns about SDRS data arise primarily from trying to extract damage size
information from a system that was not designed to record such data. If the updating
methods were using data from an inspection and maintenance program that was
specifically tailored to report damage characteristics, most of these problems would be
eliminated, or at least significantly reduced. Modifications to the system’s current data
reporting format are suggested here, which would enhance the ability to gather detailed

information on the characteristics of each structural damage event. These suggestions are
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not unique to the SDR system, and should be equally applicable to any other inspection

and maintenance program that records damage information for use in structura reliability

estimates.

1. Distinguish between disbond and delamination damage on composite sandwich
structures.

2. Add acheck box on form for reported damage size beyond Structural Repair Manual
limits.

3. Add database fields for recording number of damages, damage sizes, damage
detection methods, and number of airframe hours or cycles for each report.

4. Add capability for characterizing damage events with multiple damage mechanisms
present.

5. Include dimensional locations of damage site in report.

6. Specify repair method used to repair damage.

Conclusions
The results of this analysis demonstrate that Bayesian updating provides an efficient
means to revise damage size probabilities of aircraft structura components when new
damage data becomes available. Unfortunately, there is not enough relevant information
contained in current Federal Aviation Administration maintenance databases to
characterize damage size distributions for individual composite components, at least with
any reasonable degree of confidence. However, the Bayesian updating results using FAA
data served to validate initial composite damage size assumptions derived from prior
literature. In nearly every case, the results show that the baseline distributions are a

conservative estimate of the range of damage sizes encountered on commercial
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composite structural applications. The only exceptions were the results for the 767 flap
crack cases, where the damage size distributions did not noticeably change from prior
estimates.

In light of these results, changes to current inspection and maintenance reporting
procedures are recommended that would allow the continuous collection of statistically
useful structural damage data for application to reliability analyses. The increase in
relevant data resulting from these changes would alow much more refined estimates of
airframe component reliabilities compared to estimates derived from existing data only.
Updating of damage size data would also allow fleet reliability estimates to be revised on
an ongoing basis, and enable the highlighting of adverse reliability trends before they

lead to catastrophic failure.
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References Table 1. Composite Damage Size Data from Ref. 5

Damage Type Damage Size (in.)
<15 1.51t03.0 > 3.0
Hole Damage 51.4% 34.3% 14.3%
Delaminations 11.1% 31.1% 57.8%
Cracks 30% 30% 40%
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Table2. Parametersfor Cumulative LogNor mal Detection Probability

Distributions
Damage Type aso o
Hole Damage 0.5 0.726
Delaminations 2.0 0.698
Delaminations (NDE) 0.5 0.698
Cracks 0.8 1.01
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Table3. Modd Parametersfor Actual Damage Size Distributions

Gamma p(a) Weibull p(a)
Damage Type 7 6 B 6
Hole Damage 1.26 1.09 1.10 1.40
Delaminations 0.834 2.63 0.919 2.16
Cracks 0.752 2.85 0.869 2.07
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Table4. SDR Damage Data for 757 Composite Structure

Damage Type SDR Records
Ailerons, Flaps & Spoilers Damage Events  Damage Sizes
Dents, Gouges & Gen. Damage 26 9
Cracks 16 5
Delaminations 39 9
Holes 76 9
Lightning Strike 2 0
Elevators & Rudders Damage Events  Damage Sizes
Dents, Gouges & Gen. Damage 3 0
Cracks 1 1
Delaminations 7 1
Holes 26 2
Lightning Strike 5 0
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Table5. SDR Damage Data for 767 Composite Structure

Damage Type SDR Records
Ailerons, Flaps & Spoilers Damage Events Damage Sizes
Dents, Gouges & Gen. Damage 27 7
Cracks 11 6
Disbonds 3 0
Delaminations 32 9
Holes 8 1
Lightning Strike 3 0
Wing TE Skin Panels Damage Events Damage Sizes
Cracks 1 1
Delaminations 2 1
Elevators & Rudders Damage Events Damage Sizes
Dents, Gouges & Gen. Damage 14 3
Cracks 6 1
Delaminations 15 7
Holes 27 17
Lightning Strike 2 1
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Table 6. Bayesian Updated Composite Damage Size Parametersfor 757 & 767
Component Groups

Component Baseline 25% COV 50% COV
Damage T e r 7] ESS T e ESS
767 FlapDelam. 0834 263 0.735 252 97.0% 0567 257 93.0%
767 FlapCrack 0752 285 0.726 292 984% 0.658 3.08 92.8%
767 Tail Hole 126 109 111 0815 850% 125 0666 59.8%
767 Tail Delam. 0834 263 0.730 246 93.7% 0579 244 90.9%
757 Flap Hole 126 109 114 0939 921% 110 0.857 73.9%
757 FlapDelam. 0834 2.63 0528 248 953% 0.269 271 93.3%
All Flap Hole 126 109 106 0912 921% 0933 0841 76.5%
All FlapDelam.  0.834 263 0496 252 943% 0239 281 927%
All Flap Crack 0752 285 068 273 96.3% 0580 279 87.7%
All Tail Hole 126 109 102 078 844% 103 0668 62.7%
All Tall Delam. 0834 263 0746 275 955% 0580 3.08 89.5%
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Table7. Mean and Standard Deviation of Updated Actual Damage Size
Distributionsfor 757 & 767 Composite Components

Component Baseline 25% COV 50% COV
Damage Mean S.D. Mean S.D. Mean SD.

767 Flap Delam.  2.195 2.404 1.857 2.166 1414 1.859
767 Flap Crack 2.139 2.467 2121 2.488 2.027 2.499
767 Tail Hole 1.382 1230 09078 0.8600 0.8329 0.7447
767 Tail Delam. 2.195 2.404 1.795 2.101 1.414 1.859
757 Flap Hole 1.382 1.230 1.071 1.002 0.9383 0.8965
757 Flap Delam.  2.195 2.404 1.307 1.799 0.7311 1409
All Flap Hole 1.382 1230 09705 09410 0.7850 0.8125
All Flap Delam. 2.195 2.404 1.250 1.775 06697 1371
All Flap Crack 2.139 2.467 1.875 2.264 1.617 2.123
All Tal Hole 1.382 1230 08061 0.7974 0.6859 0.6770
All Tail Delam. 2.195 2.404 2.052 2.376 1.790 2.349




=
N

- |
o
N—
s 1 _ - T
Q | P ‘ - T
208 - —e= T
3 : gl
S 06 d
_ ,/
- L
& |
- o —— Holes
S 0.4 | y
2 | l,' -—--Delams
&)
2 5o | - ----- Delams (NDE)
s ‘,/ ------- Cracks
‘l
O - \ \ \ \ \
0 1 2 3 4 5

Damage Size a (in)

31



Actual Damage Density p(a)

0.6

0.5

0.4

0.3

0.2

0.1

—— Gamma
------- Weibull

1 2 3 4
Delamination Size a (in)

32



_% 1.E+00 ]
© 1Eo01 — Prior
E OLE02 1 N, T e5 7 OV
S s -----50% COV
> 1.E-04
= 1.E-05 -
_g i
S 1E-06
O 1.E-07 -
2 f
5 1.E-08 - o
£ 1E09 -

0 2 4 6

Design Critical Hole Size a. (in.)

33



S 1.E+00 +
O : — Prior
"é 1E'01 4 NI~ T 25% Mean
" --—--50% Mean
T 1.E-02 -
2 1
2 1.E-03
Q i
o i DR
all ~\_\ Te.
o 1.E-04 - -
= 1
P 1.E-05 \ \ \

0 2 4 6 8

Design Critical Delamination Size a. (in.)



o 1.E+00 -
° - — Prior
£ ol N 25% COV
5 T T -.---50% COV
©
3 1
= 1.E-02 -
@) J
©
Q _|
O
o 1.E-03 -
8 1
=) |
$ 1.E-04
0 2 4 6 8

Design Critical Crack Size a. (in.)

35



1.E+00

i®) .
S f -
5 ] — Prior
= B I > 25% Mean
& 1.E-01 4
7 1 --—--50% Mean
E |
g |
E 1.E-02 -
o) .
© ]
@)
S |
n 1.E-03 -
o 1
= | ~
= | X
L 1.E-04 ‘ ‘ ‘
0 2 4 6 8

Design Critical Delamination Size a. (in.)

36



'% 1.E+00
© 1.E-01 {° —— Prior
2 1E02 | N 25% COV
= 1.E-03 - —.—.-50% COV
S 1.E-04 -
> ]
= 1.E-05
< 1.E-06 -
®) ] .~
o 1.E-07 - e
o 1 SR
s 1E-08 o
3 1.E-09 )
® 1.E-10 - \ \ | | | |

0 2 4 6

Design Critical Hole Size a. (in.)

37



S 1.E+00 -
3 : — Prior
E et 1 =™ 25% COV
= -.---50% COV
-lc—s‘ _|
s ]
= 1.E-02 4
Q ]
G ]
o) |
o
: 5 N
E | o
L‘E 1.E-04 w | |
0 2 4 6 8

Design Critical Delamination Size a. (in.)

38



> B

@ B

m O N

= X K8

Q n 0

- [i

v « a

O =N

S =y

o —

_H_ 7 s

| ——

—

=

=

ﬁ ﬁ ﬁ ﬁ —

[Q\| —i 00) o < N (@)
-1 oo © o o o
o o o o o

91ey 92Ua1iNd90 PazifewIoN

Gamma Shape Parameter & (in.)

39



Normalized Occurrence Rate

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02

3 Posterior

| . | — Prior 50% COV

O DB A N D O H AN H O

\'. \'. (1/. (‘1/. (1/. (b. (b. b‘. b‘. b‘.
Gamma Shape Parameter & (in.)

40



List of Figures

Figure 1. Cumulative LogNormal Detection Probability Functions

Figure2. Actual Delamination Size Distributionsfor Gamma and Weibull Models

Figure 3. Bayesian Updated Failure Probabilitiesfor 757 Flap Holes

Figure 4. Bayesian Updated Failure Probabilitiesfor 757 Flap Delaminations

Figure 5. Bayesian Updated Failure Probabilitiesfor 767 Flap Cracks

Figure 6. Bayesian Updated Failure Probabilitiesfor 767 Flap Delaminations

Figure 7. Bayesian Updated Failure Probabilitiesfor 767 Tail Holes

Figure 8. Bayesian Updated Failure Probabilitiesfor 767 Tail Delaminations

Figure 9. Bayesian Updated @ Distribution for 757 & 767 Flap Delaminations (L ow
Uncertainty)

Figure 10. Bayesian Updated @ Distribution for 757 & 767 Flap Delaminations (High
Uncertainty)

! Lin, K.Y., Rusk, D.T. and Du, J., “An Equivalent Level of Safety Approach to Damage
Tolerant Aircraft Structural Design,” AIAA Paper 2000-1371, Apr. 2000.
% Harris, D. O., “Probabilistic Crack Growth and Modelindz&liability-Based Mechanical

Design, edited by T. A. Cruse, Marcel Dekker, New York, 1997, pp. 300-318.

41



3 Berens, A. P. and Hovey, P. W., “Statistical Methods for Estimating Crack Detection
Probabilities,” Probabilistic Fracture Mechanics and Fatigue Methods: Applications for
Sructural Design and Maintenance, STP 798, ASTM, Philadelphia, 1983, pp. 79-94.

* Berens, A. P., “NDE Reliability Data AnalysisNondestructive Evaluation and Quality
Control, edited by S. R. Lampman and T. B. Zorc, Vol. 17, Metals Handbook, Ninth Edition,
ASM International, Metals Park, OH, 1989, pp. 689-701.

> Gray, P. M. and Riskalla, M. G., “Development of Probabilistic Design Methodology for
Composite Structures,” Federal Aviation Administration, DOT/FAA/AR-95/17, Washington,
DC, Aug. 1997.

® Hoffman, J.D., “Numerical Methods for Engineers and Scientists,” McGraw-Hill, New York,
1992, pp. 101-104.

" Boisvert, R.F., Howe, S.E., Kahaner, D.K. and Springman, J.L., “The Guide to Available
Mathematical Software,” National Institute of Standards and Technology (NIST), NISTR 90-
4237, Gaithersburg, MD, Apr. 1990.

8 Brewer, J.C., “Estimate of Probability of Crack Detection from Service Difficulty Report
Data,” Federal Aviation Administration, DOT/FAA/CT-94/90, Washington, DC, Sept. 1994.

° Gelman, A.B., Carlin, J.S., Stern, H.S. and Rubin, D.B., “Bayesian Data Analysis,” Chapman
& Hall/CRC, New York, 1995, pp. 307-311.

19 Kong, A, Liu, J.S. and Wong, W.H., “Sequential Imputations and Missing Data Problems,”
Journal of the American Statistical Association, Vol. 89, No. 425, March 1994, pp. 278-288.

1 Ripley, B.D., “Stochastic Simulation,” John Wiley & Sons, New York, 1987, pp. 230-231.

42



2 Rusk, D.T., “Reliability-Based Methods Applied to the Design of Damage Tolerant Aircraft
Structures,” Department of Aeronautics and Astronautics Masters Thesis, University of

Washington, Seattle, Washington, 5 Jun. 2000.



