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Abstract 

A statistical approach to estimating the probabilistic distribution of composite damage 

sizes using aircraft service inspection data has been investigated.  Bayesian updating 

methods were implemented to revise baseline composite damage size distributions using 

damage size data from the Federal Aviation Administration’s Service Difficulty 

Reporting System (SDRS).  Updating was performed on the Boeing 757 and 767 wing 

composite trailing edge devices, elevators and rudders, with the results demonstrating 

that the assumed baseline damage size estimates are conservative in nearly all cases.  

Component failure probabilities were recalculated using the updated damage size 

distributions, and these results show an overall improvement in reliability for the damage 

mechanisms analyzed.  The results of the analysis demonstrate that an inspection and 

maintenance program that reports damage characteristics can be used to monitor the 

reliability of damage tolerant structures on a quantitative statistical basis.  

Recommendations are also made for improving current inspection data reporting systems, 

which would enhance the ability to gather detailed information on the characteristics of 

each structural damage event.   
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Nomenclature 

A -  random variable for damage size 

a -  sample damage size from domain A 

a   -  sample mean of damage sizes 

ac -  critical damage size 

a50 -  median detection probability for Probability of Detection models 

D -  binary random variable for damage detection state (D = 1 indicates damage 

is detected) 

ESS -  Effective Sample Size 

fA(a) -  probability density function of A 

g -  importance-sampled probability density function 

k -  shape parameter for Log-Odds Probability of Detection model 

L -  likelihood function 

aln  -  sample mean of the log of damage sizes  

m -  importance sample size 

n -  sample size of damages used for updating 

P(Y) -  probability of Y 

PD(a) -  probability of detection for damage size a 

DP  -  sample mean of the log of probabilities of detection 

p(a) -  probability density function of actual damage size 

po(a) -  probability density function of detected damage size 
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PF -  Probability of Failure  

R -  Reliability 

w -  importance weight factor 

α -  shape parameter for prior distribution of Gamma model parameter θ 

β -  shape parameter for Weibull distribution of damage sizes, or scale parameter 

for prior distribution of Gamma model parameter θ 

θ -  scale parameter for actual damage size distributions 

σ - shape parameter for LogNormal Probability of Detection model 

τ -  shape parameter for Gamma distribution of damage sizes 

ξ -  truncation value for detected damage size distribution 

 

Introduction 

The non-deterministic approach to damage tolerance is beginning to gain acceptance as a 

means of quantifying safety and reliability in primary aircraft structures.  Probabilistic 

methods applied to damage-tolerant designs enable the characterization of uncertainty 

associated with damage accumulation and growth, inspection reliability and residual 

strength behavior of the structure.  Using these methods, the safety and reliability of a 

structure can be assessed on a quantitative basis, allowing aircraft manufacturers, 

operators and flight certification authorities to evaluate the risk associated with structural 

failures in an aircraft fleet.  A simplified probabilistic approach for quantifying the 

reliability of damage-tolerant structures has been previously investigated by Lin, Rusk 

and Du.1  Structural reliability for a single inspection opportunity is defined as the 
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compliment of the probability that a single flaw size larger than the critical flaw size for 

residual strength of the structure exists, and that the flaw will not be detected.  The 

current methodology derived from this definition is sufficient for use on composite 

structures designed for “no damage growth” certification criteria.  One of the most 

challenging aspects of applying this or any other probabilistic methodology to a damage 

tolerance problem is the determination of the appropriate distribution of actual damage 

sizes for each damage mechanism the structure will see in service.  During the design 

phase and early operational life of the structure, little damage size data may be available, 

since it is very difficult to simulate, in laboratory experiments, all of the conditions that 

cause damage to accumulate on an aircraft structure.  Under the current philosophy of 

commercial and military aircraft operations, periodic scheduled and unscheduled airframe 

inspections are typically carried out by maintenance personnel to ensure the airworthiness 

of the fleet.  These inspections provide a good opportunity to collect damage size 

information on all of the structural damage that accumulates in a fleet of aircraft.  One of 

the benefits of utilizing a probabilistic approach to damage tolerance is that Bayesian 

statistical tools can be used to update the damage size probability distributions when new 

data becomes available.  This technique was previously demonstrated by Harris for initial 

crack depths on a center-cracked panel.2  In this research, Bayesian updating techniques 

are used to revise initial estimates of damage size distributions using composite damage 

size data from the Federal Aviation Administration’s Service Difficulty Reporting 

System (SDRS) database.   
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Reliability Formulation 

The definition for damage-tolerant reliability derived in Ref. 1 will be used here for the 

subsequent analyses.  The resulting equations rely on a probabilistic characterization of 

actual structural damage sizes and damage detection capability for the inspection 

technique being used.   

 PFDaAPR c −==≥−= 1)0,(1  (1) 
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This definition assumes that only a single flaw is present in the structure at a single 

inspection opportunity, and that the flaw is not growing with time.  The definition should 

thus be sufficient for characterizing composite structures designed under “no damage 

growth” certification criteria.  An additional assumption is that a single characteristic 

dimension can parameterize the damage mechanism being modeled.   

The reliability equation itself is independent of the particular damage mechanism being 

modeled, since all of the configuration-specific information in the problem is contained 

within the parameters of the probability distributions.  Therefore, the choice of 

appropriate probability models is important to accurately describe the nature of 

uncertainty for the specific problem of interest.  Berens and Hovey3, 4 have conducted 

significant research to characterize Probability of Detection (POD) models for cracks in 

metal aircraft structures.  The results of these studies show that a cumulative LogNormal 

distribution (Eqn. 3) can be used to model the mean “hit/miss” response data from crack 

detection experiments.    
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Efforts to extend this research to the determination of POD characteristics for composite 

damage inspection techniques have so far been minimal.  Thus, for the purposes of this 

analysis, the cumulative LogNormal POD model is assumed to apply equally well to 

composite damage types.   

The form of the POD model is such that the probability of damage detection goes to zero 

as the damage size approaches either zero or some minimum detection threshold.  This 

means that the frequency of occurrence for structural damage sizes is not completely 

observable over the range of possible damage sizes, so the exact shape of p(a) can never 

be completely characterized.  An appropriate choice of probability models for p(a) that 

can account for this uncertainty is the Gamma (Eqn. 4) and Weibull (Eqn. 5) probability 

density functions (PDF’s).  Both of these models have shape factor terms that determine 

whether the density distribution goes to zero or approaches infinity as the damage size 

goes to zero.   
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Any damage size data collected from structural inspections represent a random sample 

not from the actual damage size distribution, but from the detected damage size 

distribution, which is a product of the actual damage size distribution and the detection 

probability of the particular inspection technique used (Eqn. 6).     
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The analytic detected damage size models are shown in Equation 7 for a Gamma actual 

damage size distribution, and in Equation 8 for a Weibull actual damage size distribution.   
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Baseline Damage Size Data 

One of the most difficult aspects of applying a probabilistic approach to damage-tolerant 

structural analyses is in determining the appropriate distribution of actual damage sizes 

that will accumulate on a structure in service.  At present, little quantitative data exists on 

the damage size characteristics of various composite structural applications.  One of the 

few published examples of such data was compiled by Gray and Riskalla.5  An excerpt of 

this data is reprinted in Table 1 in modified form, and was used to derive damage size 

distributions for the composite sandwich reliability analysis of Ref. 1.  The data will also 

be used here to provide a baseline estimate of damage size distributions for existing 

commercial aircraft composite structures.   

 Before fitting the baseline damage size data to Equations 7 & 8, the POD model 

parameter values for each damage inspection technique must be known beforehand.  The 

Log-Odds POD model parameter values previously assumed in Ref. 1 will be used here, 

after being transformed to the cumulative LogNormal POD parameters by the 

transformation relation outlined by Berens in Ref. 4 (Eqn. 9).   

 σπ 3=k  (9) 

The transformed POD parameter values are listed in Table 2, and the resulting POD 

curves are shown graphically in Figure 1.  Parameter values were chosen to represent 
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detection probabilities that can be reasonably obtained for operational inspections, and 

that would likely result in the distribution of damage sizes observed in Ref. 5.  The POD 

curves represent visual inspection capability for all hole and crack damage, and a 

combination of visual and tap testing capability for delaminations.  In addition, a POD 

curve representing an automated non-destructive evaluation (NDE) method for detecting 

delaminations is also assumed.   

To calculate the parameter values of p(a) from the baseline damage data, Equations 7 and 

8 must be integrated numerically over the damage sizes corresponding to the cumulative 

probability of occurrence data in Table 1.  A double-precision Fortran program was 

written to solve for the p(a) model parameters using the secant method for sets of non-

linear algebraic equations.6  The function integrations were solved using the SLATEC 

subroutines DQAG and DQAGI.7  Integrations were carried out to a relative precision of 

10-12.  Parameter values converged to a cumulative absolute error of 10-6, and were solved 

for each damage type, for both Gamma and Weibull actual damage size models.  Results 

are listed in Table 3, and are shown graphically for the delamination case in Figure 2.  

The figure demonstrates that the choice of either a Gamma or Weibull PDF for p(a) 

yields similar results for the damage type and the range of damage sizes shown.   

 
SDRS Data 

The damage size distributions derived from the data of Ref. 5 represent the aggregate 

response of a large number of composite structures to in-service damage.  To determine 

the response of specific structural components to damage, more detailed data needs to be 

collected for the structures in question.  Use of the damage-tolerant design philosophy 

requires periodic inspection to detect and repair structural damage, and the results from 
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those inspections can be used to revise the baseline damage size distributions as new data 

is accumulated.  The Federal Aviation Administration (FAA) requires commercial 

aircraft operators in the United States to submit their aircraft to periodic inspection, and 

to report any failure, malfunction or defect that threatens flight safety or exceeds 

allowable limits.  This information is submitted to the FAA in the form of a Malfunction 

or Defect Report, and the individual reports are collected in an electronic database called 

the Service Difficulty Reporting System (SDRS).  Although not expressly designed for 

the purpose, SDRS can be used in some cases to obtain damage size data for individual 

structural components.  Previous research efforts by Brewer utilized SDRS crack size 

data to estimate POD curves for inspection of metallic fuselage lap splice joints.8  In this 

study, damage size data available from SDRS will be used to demonstrate Bayesian 

updating of prior detected damage size distributions.  This data will also be used to 

validate the baseline composite damage densities derived from Ref. 5, for specific 

airframe structural components.  A third purpose in using this data will be to demonstrate 

how the existing commercial aircraft maintenance infrastructure can be adapted to gather 

statistically useful data on the damage threat environment of in-service aircraft.   

An archive of all SDR’s covering the period January 1990 to April 1999 was obtained 

from the FAA.  Only records pertaining to structural problems on large commercial 

transports with a significant number of high-performance composite components were 

retained.  All other records were deleted.  The remaining records were searched by 

aircraft type for damage occurring on any major composite structures.  Damage sizes and 

methods of detection are not required by the FAA to be submitted on structural damage 

reports.  However, many inspectors choose to report this information anyway.  The 
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largest sample set of reported damage sizes found in the database was for the Boeing 757 

and 767 airframes.   The breakdown of damage events, reported damage sizes and 

components affected are listed in Table 4 for the 757 and Table 5 for the 767.  Analysis 

of the records with damage sizes indicates that disbond and delamination damage is not 

consistently reported.  Often disbond damage is reported as delamination in the records.  

Dents, Gouges and General Damage have no apparent delamination associated with 

them, and so are treated as a separate case.  The detection method is usually not reported, 

so is assumed to be visual unless otherwise stated.   

Before using any of the SDR damage data in a statistical analysis, the limitations of the 

reported information must be addressed.  Structural damage classified as a major repair is 

often handled through the FAA’s Designated Engineering Representative (DER), or 

directly by the airframe manufacturer.  In those cases, an SDR may not be filed by the 

maintenance activity.  This means that the SDRS database does not contain all incidences 

of major structural damage that occur on a component in service.  Also, only damage that 

is beyond the maximum acceptable limits is required to be reported.  These limits are 

usually set by the airframe manufacturer’s Structural Repair Manual (SRM), and are 

specific to the damage type and location on each component.  Damage sizes below these 

limits are not required to be reported, and usually are not.  As a result, damage sizes 

derived from the SDRS database do not represent a random sample from the overall 

damage size distribution of a component.  These issues must be taken into account in the 

subsequent analysis, or the results will be significantly biased.   
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Bayesian Updating Formulation 

Damage size data from the SDRS database represent a sample from the detected damage 

size distribution for each damage type there is data for.  Using the form of Equation 7 or 

8  for po(a), the model parameters of the actual damage size distribution can be updated.  

The damage size data do not represent a random sample from po(a) however, because 

only damage sizes larger than the repair size limits are reported.  If the size threshold for 

reporting damage is known a priori, then a particular damage size data point will 

represent a random sample only from the area of the detected damage PDF that is above 

the size threshold.  This can be accounted for in probabilistic terms by the use of a 

truncated PDF, where the detected damage PDF can be expressed strictly as a function of 

damage sizes larger the threshold value (Eqn. 10).   
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The truncated version of Equation 7 is shown in Equation 11 for the Gamma actual 

damage size model.      
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Here, po(a) is now conditional on the damage size being larger than the truncation value, 

and on the Gamma model parameter values.  The entire actual damage size distribution 

model can now be updated with data sampled strictly from the region beyond the 

threshold limit.   
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For n new detected damage size data points, damage size sample estimators can be 

defined (Eqns. 12, 13, 14) which reduce the likelihood of Equation 11 to the form shown 

in Equation 15.   
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Assuming some type of joint prior distribution for the model parameters τ and θ, Bayes 

theorem can provide an updated estimate of what the model parameter values should be 

in light of the new damage size data (Eqn. 16).   

 ),(),,|,...,,(),...,,|,( 2121 θτθτξθτ onnu faaaaLaaaf >∝  (16) 

The prior distributions of the model parameters τ and θ  were assumed to be independent 

for simplicity.  For this analysis, a two-parameter Gamma PDF was used to model the τ 

parameter prior distribution (Eqn. 17), and an Inverse-Gamma PDF was used to model 

the θ parameter prior distribution (Eqn. 18).  However, any continuous univariate PDF 

can be used to model the prior distributions.   
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To obtain the joint posterior distribution of the model parameters, Equation 16 must be 

solved numerically.  This is typically done using Monte Carlo simulation, however due to 

the complexity of the likelihood function, it is not possible to sample directly from the 

likelihood.  In such cases, importance sampling can be used to circumvent this problem.   

Gelman, et al. outline a method for estimating the marginal distribution of the joint 

posterior model parameters using importance sampling.9  A normalized PDF, g(τ, θ), is 

introduced in the equation for the expected value of the updated marginal distribution 

(Eqn. 19).  Ideally, the selected PDF can be efficiently sampled from, and is a close 

approximation to the joint posterior parameter distribution.   
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The importance weight factor is defined as the ratio of the density to be simulated to the 

approximating density (Eqn. 20).   
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Taking m samples from the approximating density, the expected values of the model 

parameters can be estimated for the unnormalized case of Equation 16 by the relations of 

Equations 21 & 22.   
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The efficiency and accuracy of importance sampling depends on how well the 

approximating density matches the joint posterior distribution of the model parameters.  

Kong, et al. define an Effective Sample Size (ESS) such that m draws from the 

importance sampling distribution offers the same etimation accuracy as ESS×m draws 

from the joint posterior distribution.10  For m importance sampled draws, the ESS is 

expressed as a fraction of m, as in Eqn. 23.   
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Although derived here for the Gamma damage size model, these updating methods can be 

applied equally well to the Weibull damage size model, or any other model one wishes to 

choose.   

 
Updated Damage Sizes 

It is clear from Tables 4 and 5 that the small sample of damage sizes available from the 

SDR database precludes the ability to derive, with any significant degree of confidence, 

initial component damage size estimates from this data alone.  However, with the 

Bayesian updating formulations just derived, SDR damage size data can be used to revise 

baseline probability distributions for each damage type.  The baseline distributions used 

here were derived previously from the data of Ref. 5.  For all of the damage types 

reported in Tables 4 and 5, only disbonds, delaminations, holes and cracks were used to 

perform updating.  Disbonds were grouped with delaminations because of the difficulty 

of sorting out the specific damage mechanisms from the individual records.  The 

lightning strike damage on the 767 elevator was treated as a delamination.  Four of the 
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delaminations on the 767 were detected using NDT/Ultrasound techniques, and these data 

points were accounted for in the updating calculation by using a likelihood function that 

incorporated multiple inspection techniques for a given damage type.  SDR damage 

records that report damage sizes usually do not report damage shapes.  For disbond, 

delamination and hole records that only report a single dimension, the damage was 

assumed to be circular.  If more than one dimension is given, the damage was assumed to 

be elliptical.  The damage size was then recorded as the equivalent circular diameter of 

the ellipse.  Crack dimensions were assumed to be the overall crack length.   

Each reported damage size has a maximum repair size limit associated with it, and the 

limits are typically set by the manufacturer’s SRM.  All of the reported damage sizes 

were cross-checked with the appropriate Boeing SRM to determine the corresponding 

repair size limits.  Without detailed dimensions of damage locations from the SDR data, 

and drawings of the affected part, it was difficult to ascertain which repair limit criteria 

caused the damage event to be reported.  Using information in the SRM, criteria for 

choosing repair limits were established to provide a systematic approach to setting 

damage size thresholds based on the repair information reported in each SDR data record.  

For each reported damage size, the repair limit criteria used were: 

1. If the damage size is smaller than all SRM repair limits, the threshold is set to zero.   

2. If the damage size is smaller than the permanent repair limits, and is repaired with an 

unspecified permanent repair, then the threshold is set to the interim repair limit.   

3. For damage sizes above all SRM repair limits, if the repair type is not specified, then 

the threshold is set to the interim repair limit.   
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4. For large damage with no size limit specified on the repair type, the threshold is set to 

the largest repair limit for other repair types that is smaller than the reported damage 

size.  

Applying the repair limit criteria gives a threshold value associated with the reported 

damage size.  The threshold value will be in terms of the largest damage dimension, and 

must be corrected when the damage area is non-circular.  This was accomplished by 

calculating the aspect ratio of the reported damage area, and setting the major axis to the 

threshold value, the minor axis of the threshold is calculated keeping the aspect ratio 

constant.  An equivalent circular diameter for the threshold limit is then calculated from 

the major and minor axes dimensions.  This technique reduces the effect of damage shape 

variation on the damage size results, because the threshold values are calculated by 

holding the damage shape constant.    

A double-precision Fortran program was written to carry out the updating using the 

damage size and threshold data.  Integrations were carried out using the SLATEC 

subroutines DQAG and DQAGI, to a relative precision of 10-8.  Importance samples were 

drawn from a Gamma distribution of the τ parameter, and an Inverse-Gamma distribution 

of the θ parameter.  The uniform random number generator used was the function DUNI 

from the NMS software package (Ref. 7).  The Gamma random number generator 

function used was a variation of the program listed in the Appendix of Ripley for 

sampling from a standard Gamma distribution.11  The parameter values of the 

importance-sampled Gamma distributions were optimized to maximize the Effective 

Sample Size obtained for each program run, for an importance sample size of m = 1000.  

The final computational runs were performed using an importance sample size of m = 
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100,000.  This large sample size was used so that histograms of the marginal posterior 

parameter distributions could be created.  Generally, an importance sample size of only a 

few hundred gives sufficient solution accuracy for ESS values greater than 50%.   

Analysis cases were divided into three categories.  The first category is 767 damage, 

which is subdivided into two component groups of wing trailing edge surfaces and 

empennage control surfaces.  The second category is 757 damage, which consists of a 

single component group of wing trailing edge surfaces.  There were insufficient data 

points to perform a separate analysis of the 757 empennage control surfaces.  The third 

category combines data for the 757 and 767 structures, and is subdivided into wing 

trailing edge and empennage control surface component groups.  The prior distributions 

of the actual damage size model parameters are characterized in terms of two levels of 

uncertainty.  The low uncertainty level sets the Coefficient of Variation (COV) of the 

prior parameter distributions to 25%.  The high uncertainty level sets the COV to 50% for 

the prior parameter distributions.  Prior mean values were taken from the baseline 

damage size distributions for each damage type.  The updated mean parameter values, 

along with the Effective Sample Sizes for each analysis run, are shown in Table 6 for all 

categories analyzed.  The results show that Effective Sample Sizes of 90% or greater 

were achieved for most of the analysis runs, with some exceptions.  The effects of 

Bayesian updating on the baseline damage size distributions can be quantified by 

comparing the means and standard deviations of each damage size distribution.  These 

results are tabulated for the damage cases analyzed and are listed in Table 7.  All values 

have dimensions of inches.   
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In nearly every case examined, damage size updating using SDR data resulted in a 

significant reduction in the mean and standard deviation of the damage size distributions 

compared to their baseline values.  The only exception to this is the updated standard 

deviation for 767 flap crack damage, which slowly increases as the prior uncertainty level 

increases.  Both flap delamination cases show a significant reduction in the updated mean 

and standard deviation values over the baseline values.  The rate of decrease is faster in 

the 757 flap delamination case, mainly due to the smaller amount of scatter compared to 

the 767 flap delamination data set.   

The effect that the Bayesian updated damage size distributions have on the reliability for 

each damage mechanism can be demonstrated by recalculating the Probability of Failure 

(Eqn. 2) using the posterior parameter values for the actual damage size distributions.  

These integrations were carried out numerically to a relative precision of 10-12.  Selected 

results are plotted as a function of design critical damage size in Fig. 3 through Fig. 8.  

Bayesian updating of the damage sizes reduces the Failure Probability in nearly all 

damage cases studied.  The only exception is the 767 flap crack case, where there was no 

significant change in the Failure Probability curve due to updating.  For this case, 

Bayesian updating serves to validate the baseline damage size distribution assumption 

with actual damage size data.   

Another noteworthy aspect of the analysis results is how Bayesian updating reduces the 

uncertainty in the parameter distributions of the damage size model.  Histograms of the 

posterior marginal parameter distributions can be plotted by summing the normalized 

importance weights over intervals of the sampled parameter values.  Examples of this 

type of plot are shown in Fig. 9 and Fig. 10 for the two prior levels of uncertainty 
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assumed.  These charts show the relative reduction in variance of the parameter values 

over the prior variances, and also illustrate the shift in the distribution mean values due to 

updating.   

The overall results of the Bayesian updating analysis demonstrate that damage size data 

from scheduled and unscheduled aircraft structural inspections can be effectively utilized 

to refine damage size distributions on a quantitative basis.  Even with the uncertainties 

associated with the damage size data reported in the SDR system, the results clearly 

demonstrate that significant reductions in damage size mean and scatter values are 

achievable, compared to conservative baseline values.  These results translate into 

reduced Failure Probabilities for current designs, and increase confidence that reliability-

based methods can quantify uncertainty in damage-tolerant structural designs.   

 
Data Reporting Criteria 

The results of the Bayesian updating analysis using Service Difficulty Report data 

demonstrate that an inspection and maintenance program that reports damage 

characteristics can be used to monitor the reliability of damage tolerant structures on a 

quantitative statistical basis.  The criteria for reporting damage to SDRS poses some 

unique challenges when trying to use the data to update reliability predictions.  Since 

only damage beyond the maximum repair size limit is reported, the volume of damage 

size data that accumulates is highly dependent on how large the repair size limits are in 

relation to the mean values of typical damage sizes.  If the repair size limits cover nearly 

all damage sizes seen in service, only a few exceptional data points will available for 

updating.  It would therefore be difficult to make any meaningful statistical inferences 

from such a small data set.  Ideally, one would like to have data on all damage events that 
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are detected for every inspection opportunity.  However, documenting all of this 

information could prove to be excessively burdensome for those doing the inspections.  

One compromise would be to report all damage sizes that are repaired.  This should 

provide a much larger set of data to work with than only reporting events beyond the 

repair size limits.  

Another issue related to the SDRS reporting requirements is whether or not all damage 

sizes larger than the repair size limits were actually reported.  The size and effect that this 

missing data set has on the Bayesian updating results presented here is unknown. What is 

also unknown is the effect the records with unreported damage sizes have on the results.  

It is evident from the data in Table 4 and Table 5 that the majority of the damage events 

reported to SDRS do not have damage sizes associated with them.  The Bayesian 

updating analysis using this data assumes that the recorded damage sizes represent a 

random sample from all of the damage events reported.  It may be such that only in the 

worst cases of damage were the damage sizes actually reported.  This would skew the 

analysis results towards a larger damage size distribution than would otherwise be the 

case.   

Many of the concerns about SDRS data arise primarily from trying to extract damage size 

information from a system that was not designed to record such data.  If the updating 

methods were using data from an inspection and maintenance program that was 

specifically tailored to report damage characteristics, most of these problems would be 

eliminated, or at least significantly reduced.  Modifications to the system’s current data 

reporting format are suggested here, which would enhance the ability to gather detailed 

information on the characteristics of each structural damage event.  These suggestions are 
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not unique to the SDR system, and should be equally applicable to any other inspection 

and maintenance program that records damage information for use in structural reliability 

estimates.   

1. Distinguish between disbond and delamination damage on composite sandwich 

structures.   

2. Add a check box on form for reported damage size beyond Structural Repair Manual 

limits.   

3. Add database fields for recording number of damages, damage sizes, damage 

detection methods, and number of airframe hours or cycles for each report.   

4. Add capability for characterizing damage events with multiple damage mechanisms 

present.   

5. Include dimensional locations of damage site in report.   

6. Specify repair method used to repair damage.   

 
Conclusions 

The results of this analysis demonstrate that Bayesian updating provides an efficient 

means to revise damage size probabilities of aircraft structural components when new 

damage data becomes available.  Unfortunately, there is not enough relevant information 

contained in current Federal Aviation Administration maintenance databases to 

characterize damage size distributions for individual composite components, at least with 

any reasonable degree of confidence. However, the Bayesian updating results using FAA 

data served to validate initial composite damage size assumptions derived from prior 

literature.  In nearly every case, the results show that the baseline distributions are a 

conservative estimate of the range of damage sizes encountered on commercial 
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composite structural applications.  The only exceptions were the results for the 767 flap 

crack cases, where the damage size distributions did not noticeably change from prior 

estimates.   

In light of these results, changes to current inspection and maintenance reporting 

procedures are recommended that would allow the continuous collection of statistically 

useful structural damage data for application to reliability analyses.  The increase in 

relevant data resulting from these changes would allow much more refined estimates of 

airframe component reliabilities compared to estimates derived from existing data only.  

Updating of damage size data would also allow fleet reliability estimates to be revised on 

an ongoing basis, and enable the highlighting of adverse reliability trends before they 

lead to catastrophic failure.   
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References Table 1.  Composite Damage Size Data from Ref. 5 

 

Damage Type Damage Size (in.) 
 < 1.5 1.5 to 3.0 > 3.0 
Hole Damage 51.4% 34.3% 14.3% 
Delaminations 11.1% 31.1% 57.8% 
Cracks 30% 30% 40% 
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Table 2.  Parameters for Cumulative LogNormal Detection Probability 
Distributions 

 
Damage Type a50 V�

Hole Damage 0.5 0.726 
Delaminations 2.0 0.698 
Delaminations (NDE) 0.5 0.698 
Cracks 0.8 1.01 
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Table 3.  Model Parameters for Actual Damage Size Distributions 

 
Gamma  p(a) Weibull  p(a)  

Damage Type τ θ β θ 
Hole Damage 1.26 1.09 1.10 1.40 
Delaminations 0.834 2.63 0.919 2.16 
Cracks 0.752 2.85 0.869 2.07 
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Table 4.  SDR Damage Data for 757 Composite Structure 

 
Damage Type SDR Records 

Ailerons, Flaps & Spoilers Damage Events Damage Sizes 
Dents, Gouges & Gen. Damage 26 9 
Cracks 16 5 
Delaminations 39 9 
Holes 76 9 
Lightning Strike 2 0 

Elevators & Rudders Damage Events Damage Sizes 
Dents, Gouges & Gen. Damage 3 0 
Cracks 1 1 
Delaminations 7 1 
Holes 26 2 
Lightning Strike 5 0 
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Table 5.  SDR Damage Data for 767 Composite Structure 

 
Damage Type SDR Records 

Ailerons, Flaps & Spoilers Damage Events Damage Sizes 
Dents, Gouges & Gen. Damage 27 7 
Cracks 11 6 
Disbonds 3 0 
Delaminations 32 9 
Holes 8 1 
Lightning Strike 3 0 

Wing TE Skin Panels Damage Events Damage Sizes 
Cracks 1 1 
Delaminations 2 1 

Elevators & Rudders Damage Events Damage Sizes 
Dents, Gouges & Gen. Damage 14 3 
Cracks 6 1 
Delaminations 15 7 
Holes 27 17 
Lightning Strike 2 1 
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Table 6.  Bayesian Updated Composite Damage Size Parameters for 757 & 767 
Component Groups 

 
Baseline 25% COV 50% COV Component 

Damage τ θ τ θ ESS τ θ ESS 
767 Flap Delam. 0.834 2.63 0.735 2.52 97.0% 0.567 2.57 93.0% 
767 Flap Crack 0.752 2.85 0.726 2.92 98.4% 0.658 3.08 92.8% 
767 Tail Hole 1.26 1.09 1.11 0.815 85.0% 1.25 0.666 59.8% 
767 Tail Delam. 0.834 2.63 0.730 2.46 93.7% 0.579 2.44 90.9% 
757 Flap Hole 1.26 1.09 1.14 0.939 92.1% 1.10 0.857 73.9% 
757 Flap Delam. 0.834 2.63 0.528 2.48 95.3% 0.269 2.71 93.3% 
All Flap Hole 1.26 1.09 1.06 0.912 92.1% 0.933 0.841 76.5% 
All Flap Delam. 0.834 2.63 0.496 2.52 94.3% 0.239 2.81 92.7% 
All Flap Crack 0.752 2.85 0.686 2.73 96.3% 0.580 2.79 87.7% 
All Tail Hole 1.26 1.09 1.02 0.789 84.4% 1.03 0.668 62.7% 
All Tail Delam. 0.834 2.63 0.746 2.75 95.5% 0.580 3.08 89.5% 
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Table 7.  Mean and Standard Deviation of Updated Actual Damage Size 
Distributions for 757 & 767 Composite Components 

 
Baseline 25% COV 50% COV Component 

Damage Mean S.D. Mean S.D. Mean S.D. 
767 Flap Delam. 2.195 2.404 1.857 2.166 1.414 1.859 
767 Flap Crack 2.139 2.467 2.121 2.488 2.027 2.499 
767 Tail Hole 1.382 1.230 0.9078 0.8600 0.8329 0.7447 
767 Tail Delam. 2.195 2.404 1.795 2.101 1.414 1.859 
757 Flap Hole 1.382 1.230 1.071 1.002 0.9383 0.8965 
757 Flap Delam. 2.195 2.404 1.307 1.799 0.7311 1.409 
All Flap Hole 1.382 1.230 0.9705 0.9410 0.7850 0.8125 
All Flap Delam. 2.195 2.404 1.250 1.775 0.6697 1.371 
All Flap Crack 2.139 2.467 1.875 2.264 1.617 2.123 
All Tail Hole 1.382 1.230 0.8061 0.7974 0.6859 0.6770 
All Tail Delam. 2.195 2.404 2.052 2.376 1.790 2.349 
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