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● I-95 “turnpike” studies in the mid-1990s raised public
concern about racial profiling

● Public concern has led to state and local-level action

✦ At least 26 states have passed legislation
✦ Hundreds of other localities collect data; some

compelled by the Justice Department

● Congress considering the End of Racial Profiling Act
mandating data collection to receive Federal funds

● Should officers use racial profiling?

✦ Tenth Circuit: “unequal application of criminal
law to white and black persons was one of the
central evils addressed by the framers of the
Fourteenth Amendment”
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● A growing number of studies claim racial profiling
based on analysis of data collected

✦ Texas: Concluded that “75% of agencies stop
more black and Latino drivers than white drivers”

● And some studies hastily conclude no profiling
occurs based on analyzed data

✦ Sacramento:
% black drivers stopped =
% black crime suspect descriptions
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● The difference may result from:

✦ A race bias
✦ Car ownership, time on the road, and care
✦ Exposure to police
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● Gauge department wide
racial bias in the decision
to stop

● Identify potential prob-
lem officers with internal
benchmarking

● Assess racial bias in
post-stop activity with
propensity scores
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Grogger & Ridgeway (2006). “Testing for Racial Profiling in
Traffic Stops from Behind a Veil of Darkness,” JASA
101(475):878-887.

Central question: Does an officer’s ability to identify race
of driver in advance influence which drivers he stops?

● The ability to discriminate requires officers
identifying the race in advance (e.g. Goldin &
Rouse, bias in orchestra auditions)

● The ability to identify race in advance of the stop
decreases as it becomes dark

● We directly test whether the ability to identify the
race affects the race distribution of the stopped
drivers
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● CPD officers stop a greater
proportion of black drivers at
night than during the day

● This is counter to the racial pro-
filing hypothesis
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● In the absence of a race bias K(t) = 1

P (S|B, t, d = 0)

P (S|B̄, t, d = 0)
= K(t)

P (S|B, t, d = 1)

P (S|B̄, t, d = 1)

● Bayes’ Theorem and some algebra yield

K(t) =
P (B|S, t, d = 0)

P (B̄|S, t, d = 0)

P (B̄|S, t, d = 1)

P (B|S, t, d = 1)

P (B̄|t, d = 0)

P (B|t, d = 0)

P (B|t, d = 1)

P (B̄|t, d = 1)
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● There is some potential underreporting

P (B|S, t, d) =
P (B|R,S, t, d)P (R|S, t, d)

P (R|B,S, t, d)

log K(t) =

log
P (B|R, S, t, d = 0)

1 − P (B|R, S, t, d = 0)
− log

P (B|R, S, t, d = 1)

1 − P (B|R, S, t, d = 1)
+

log
P (B̄|t, d = 0)

P (B|t, d = 0)

P (B|t, d = 1)

P (B̄|t, d = 1)
+

log
P (R|B̄, S, t, d = 0)

P (R|B̄, S, t, d = 1)

P (R|B, S, t, d = 1)

P (R|B, S, t, d = 0)
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log K(t) = stop distribution + exposure + reporting

● We can estimate the stop ratio using logistic
regression

log
P (B|R,S, d, t)

1 − P (B|R,S, d, t)
= β0 + β1d + g(t)

● g(t) is some flexible function of t (e.g. t + t2 + t3)
● Assume exposure term is 0
● Assume reporting term is 0
● log K(t) = −β1
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Year K(t) 95% interval N
2003 1.01 (0.88,1.16) 4,013
2004 0.98 (0.86,1.12) 4,589
2005 1.07 (0.98,1.16) 10,890
Combined 1.02 (0.95,1.09) 19,492

● Includes all stops during the evening intertwilight
period
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Year K(t) 95% interval N
2003 1.15 (0.79,1.68) 470
2004 1.19 (0.79,1.80) 403
2005 1.11 (0.81,1.52) 764
Combined 1.10 (0.91,1.33) 1,637

● Includes all stops occurring within four weeks of the
spring or fall Daylight Saving Time change during
the evening intertwilight period
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● Consider a particular officer #534
● 71% of this officer’s stops involve a black driver

Percentage
Time (12-4pm] 9

(4-8pm] 57
(8pm-12am] 34

Day Mon 20
Tue 12
Wed 12
...

...
Month Jan 12

Feb 14
Mar 7
Apr 6
May 8
...

...
Area J 49

K 33
L 5
M 11
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● 46% of similarly situated stops made by other
officers involved black drivers

Percentage Comparison
Time (12-4pm] 9 9

(4-8pm] 57 56
(8pm-12am] 34 35

Day Mon 20 20
Tue 12 11
Wed 12 12
...

...
...

Month Jan 12 12
Feb 14 15
Mar 7 7
Apr 6 6
May 8 7
...

...
...

Area J 49 48
K 33 34
L 5 5
M 11 11
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● Reweight stops that other officers made so that they
have the same distribution of features

f(x|t = 1) = w(x)f(x|t = 0)

● Solving for w(x) yields the propensity score weight

w(x) =
f(t = 1|x)

f(t = 0|x)
K =

p(x)

1 − p(x)
K

where p(x) is the probability that a stop with features
x involves the officer in question

● Estimate p(x) using a flexible, non-parametric
version of logistic regression

● Compare the percentage of black drivers among the
officer’s stops with the weighted percentage of black
drivers among other stops using weights
wi = p(xi)/(1 − p(xi))
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● A common approach is to compute z-statistics for
each officer

z =
pt − pc

√

pt(1−pt)
nt

+ pc(1−pc)
ESS

● In the absence of racial bias this would be
distributed N(0,1) and a cutoff of 2.0 would be
reasonable

● With 133 officers and 133 correlated zs an
appropriate reference distribution can be much
wider (Efron 2006).
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● Estimate f0(z) and f(z) from the observed zs
● Right tail consists of 5 officers with “problem officer”

probabilities ranging from 70% to 86%

 

z 

D
is

tr
ib

ut
io

n 
of

 z

-6 -4 -2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Empirical null,  
N(0,5.0) 

Theoretical null,  
N(0,1) 



Step #3: Assessing race bias
post-stop

Introduction

Bias in the decision
to stop

Internal
benchmarking

Assessing race bias
post-stop

❖ Central question

❖ Reweighting
balances the group

❖ Results:
Cincinnati stop
duration
❖ Results:
Cincinnati search
rates

Summary

Racial profiling analysis 2007 – 21 / 26

G. Ridgeway (2006). “Assessing the effect of race bias in post-traffic stop outcomes

using propensity scores,” JQC 22(1):1-29.

● Central question: Are black drivers more/less likely
to be cited, have long stop durations, or be
searched?

Stop feature % Black drivers % Nonblack drivers
(N=3,703) (N=3,033)

Region
A 32% 14%

Time of day
12am-4am 16% 8%

Resident 76% 64%
Age

18-29 47% 38%
Reason

Mechanical/ 26% 16%
Registration

Male 75% 74%
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● w(x) = P (black|x)
1−P (black|x)

Stop feature % Black drivers % Nonblack drivers % Nonblack drivers
(N=3,703) weighted (ESS=1,689.2) (N=3,033)

Region
A 32% 33% 14%

Time of day
12am-4am 16% 16% 8%

Resident 76% 76% 64%
Age

18-29 47% 48% 38%
Reason

Mechanical/ 26% 26% 16%
Registration

Male 75% 76% 74%
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Year Stop Duration Black Nonblack
(Minutes) Drivers (reweighted) (unweighted)

2003 n = 16,708 4,881 18,548
(0,10) 40% 43% 56%

2004 n = 18,721 5,190 20,390
(0,10) 40% 44% 59%

2005 n = 15,571 4,965 20,431
(0,10) 45% 47% 60%

● Black drivers in 2005 were three times more likely to
have invalid licenses than white drivers (23% vs.
7%)
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Year Discretion Black Nonblack
(Minutes) Drivers (reweighted) (unweighted)

2003 n = 16,708 4,881 18,548
High 5.9% 5.4% 2.8%
Low 8.1% 5.5% 2.7%

2004 n = 18,721 5,190 20,390
High 6.7% 6.2% 3.2%
Low 10.7% 7.0% 3.9%

2005 n = 19,375 6,141 25,163
High 6.1% 5.2% 2.8%
Low 4.4% 3.5% 1.6%

● Hit rates for black and white drivers are about 28%
for high discretion searches.
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● Racial profiling analyses have generally confused
the issue by studying irrelevant comparisons

● Credible and relevant comparisons are not difficult

✦ Assess whether the ability to identify race in
advance influences who gets stopped

✦ Compare similarly situated officers
✦ Equalize race groups on the obvious features on

which they might legitimately differ
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● Oakland 2003 report endorsed by OPD, the ACLU, the NAACP,
and the Oakland CPRB

● Oakland Tribune reported “blacks are more likely than other
races to be pulled over by police”

● Cincinnati Enquirer “Study: No bias in traffic stops, But many
perceive discrimination based on race”

More available at http://www.i-pensieri.com/gregr/rp.shtml or
Google “racial profiling analysis” or “Greg Ridgeway”

http://www.i-pensieri.com/gregr/rp.shtml
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