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Abstract. Data mining often involves processing massive, retrospective datasets to
learn how to make predictions in the future. The researchers that compose the data
mining community have approached the prediction problem in their own fashion and
have produced a novel set of tools. This article discusses the complexity arising when
fitting prediction models to massive datasets, proposes a framework for algorithmic
solutions based on bagging and boosting, and poses some ideas for future directions.
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1. Introduction

Extracting predictive models from massive datasets is one of the pri-
mary data mining efforts. Historically, much of statisticians’ effort fo-
cused on extracting as much information as possible from relatively
small, structured datasets. The arrival of data mining and truly mas-
sive datasets changes how we approach data. However, the size of the
datasets allows us to examine models that are more complex than
ever before. In the last few years researchers working on the boundary
between statistics, computer science, and engineering have produced
an exciting set of new methods for discovering complex relationships
between items in massive datasets.

In this paper I will discuss the prediction problem for massive data-
sets. When faced with massive datasets we have the blessing that we can
increase model complexity to gain higher prediction accuracy with the
curse of increased data access complexity. The task we face is to discover
and tune algorithms that provide accurate predictions in spite of the
difficulty of accessing the data. I conclude this paper by assembling
several recent innovations to produce a framework for solving a variety
of prediction problems for massive datasets.

2. Prediction and massive datasets
Massive datasets change the complexity of prediction problems in two
main ways. First, having an enormous amount of data allows the an-
alyst to fit more complex models. Second, when the dataset cannot

fit into the main memory of a computer, scanning the dataset can be
several orders of magnitude slower.
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a. Sparse data - simple models b. Dense data - more complex models

Figure 1. Model complexity and data density. As the size of the dataset increases
the dataset exposes its more complex features allowing for more complex modeling
and more accurate prediction.

2.1. MODEL COMPLEXITY

Figure 1 shows two graphs displaying data generated from the same
data generating mechanism. From this data we wish to learn how to
predict y from z. The figure to the left shows a sparse dataset with ten
observations and the figure to the right is denser with 100 observations.

With the data available in figure la, an extremely parsimonious
model would fit the horizontal line to the average of the ten data points.
It is stable and rarely provides a disastrous prediction of y. However,
visually the data contain more information than the simple horizontal
fit, specifically that there is a decreasing trend. The linear model in
figure 1a seems to capture that information and provides a reasonable
fit to the dataset and improved predictive performance. As the data
become more dense, as shown in figure 1b, the linear model seems as
poor a model as the horizontal prediction model did in figure 1a.

The first lesson in extracting prediction models from massive data-
sets is that we can fit more complex models. In particular we can model
non-linear terms, explore more potential predictor inputs, and learn
how those inputs interact to make predictions.

The main goal in constructing predictors is accurate prediction and,
therefore, relying on simple models can severely degrade predictive per-
formance. We often fall back on the simple models for many reasons the
common ones being, they are the ones with which we are most familiar,
they offer an interpretable prediction rule, and the computational cost
of fitting these models might be small. According to Breiman’s law
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(Breiman, 1997)
Interpretability x Accuracy = Breiman’s constant (1)

indicating that if we want accurate predictions, interpretation has to
be a secondary priority. The evidence from figure 1b demonstrates
that, particularly for large values of x, the linear model fails to make
good predictions. Having a massive dataset, in terms of having many
independent observations, allows prediction models to learn curvature
that would be missed in sparse datasets.

Over the years, statisticians and computer scientists have developed
a handful of Bayes risk consistent procedures, predictors that converge
to the optimal predictor as the sample size becomes large. These large
datasets almost make optimal predictors a reality rather than merely
a theory... if it were not for data access complexity.

2.2. DATA ACCESS COMPLEXITY

So far 1 have distinguished between “simple” and “complex” models

without solidifying their traits. Simple models generally make strong
assumptions about the relationship between the outcome and the input
variables. These assumptions often make computation and interpreta-
tion manageable (e.g. linear regression models, the best separating hy-
perplane classifier). In the absence of a strong theory, which is generally
the case in data mining, we wish to avoid specifying a functional form
for the prediction model, allowing models that have greater capacity
for fitting non-linear and input interaction terms.

Massive datasets, defined to be those that cannot fit into the main
memory of a computer, can complicate the process of fitting non-linear
and interaction terms to data. The simplest models tend to require
few scans of the dataset to produce the best fit. In the case of linear
regression, the algorithm needs only one scan. Any other method that
permits non-linear terms and non-linear interactions almost certainly
requires many more scans of the dataset. If the dataset could fit into
main memory then multiple laps might not cause problems. On the
other hand, retrieving data from the disk is about one million times
slower than retrieval from main memory!

The second lesson is that in order to be useful for massive datasets,
the construction of prediction models must rely on algorithms that ei-
ther require very few scans of the dataset or can sequentially process the
dataset in blocks that can reside in main memory. The main objective
of constructing prediction models for massive datasets is to fit models
of appropriate model complexity with algorithms that can handle the
issues arising from data access complexity.
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3. Prediction methods

In this section I will discuss the nature of the prediction problem and
some of the methods used to construct prediction models and how they
relate to the issues of model complexity and data access complexity.

Let y be the quantity that we want to predict. It may be continuous
(profit from a particular customer, time until a part fails) or categorical
(whether or not a customer defaults on a loan, whether a patient has a
malignant, benign, or no tumor).! Let = be a set of features measured
on the unit of observation. In the case of disease prediction this may
be a set of observed symptoms and patient characteristics. In the case
of credit approval this may be a customer’s payment history.

Regardless of the situation, the problem is always to learn a function,
f(x), that minimizes the expected loss

J(f) = Bey Ly, f(x)) (2)

where L(y, f(z)) measures the cost associated with predicting f(x)
when the true value is y. For least-squares regression L(y, f(x)) =
(y — f(z))? or for binary classification L(y, f(x)) is the cost of labeling
an observation with f(z) when the true label is y. Equation (2) is known
as the generalization error of f(x). The expectation is with respect to
future observations drawn from the same distribution of (z,y).

Without knowing the exact distribution of (z,y) we try to infer
the f(z) that minimizes J(f) using a set of previously encountered
examples, (z1,91), ..., (Zn,yn). We can approximate the average in (2)
using our sample as

n

T = T = 3 Ll (). Q)

=1

The functional J(f) is the training error of f(z).

For regression and classification problems, the f(x) that minimizes
the training error is one that predicts the training dataset exactly,
so that f(z;) = y; for all . Although this minimizes J (f), the ap-
proximation in (3) breaks down. That is, if we choose f(z) so that
J (f) = 0 by perfectly fitting the training data then almost certainly
J(f) > 0. Various methods for constraining the capacity of f(z) prevent
overfitting the training data. These methods may impose smoothness
constraints, limit the number of model parameters, or otherwise control
the size of the set of candidate prediction models.

! The outcome can also be unknown, the usual setting of a clustering problem.
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Discipline problem < 0.224

Socio-economic status < -0.8075 Parents’ aspirations for kid < 9.5
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Figure 2. Decision tree produced by running the CART algorithm on the first half
of the dataset

The prediction problem reduces to finding the f(z) that minimizes
the generalization error using only the information available from the
training dataset.

3.1. DECISION TREES

A decision tree learns a set of conjunctive rules to make predictions.
The most popular decision tree algorithms in use for data mining ap-
plications include CART (Breiman et al., 1984) and C4.5 (Quinlan,
1993). The CART algorithm initially tries to partition the dataset into
two groups such that each group is more homogeneous on the outcome.
CART considers all possible splits on each of the features and selects
the one that does the best job at reducing the training error. Imagine
using CART for predicting whether a student will drop out of high
school (at age 17 or 18) using information gathered at age 13. On the
first iteration, CART selects the split that best discriminates between
the dropouts and graduates. Subsequently, the algorithm recursively
splits the newly formed partitions until it meets some stopping crite-
ria designed to avoid overfitting (usually an ideal number of terminal
nodes selected by cross-validation). Figure 2 shows an example of a tree
constructed using CART. To estimate the probability of dropout for a
newly observed student, CART compares the features of the student
with the series of questions that the tree poses, true answers moving
to the left and false answers moving the right. The dropout probability
estimate for the newly classified student is the percentage of dropouts
in the training data that are in the same terminal node.

The benefits of decision trees are that they model non-linear re-
lationships with variable interactions, accept continuous, ordinal, and
nominal features, and are relatively fast to construct from data and
use for future prediction. The fact that trees accept a variety of types
of data is especially important in data mining applications and few
other methods have this feature. In addition, the divide-and-conquer
nature of the algorithm is appealing when faced with a massive dataset.
Each recursion of the algorithm only has to deal with a fraction of
the observations that the parent processed (usually 25% to 75% less).
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Furthermore, specialized algorithms can take advantage of the fact that
choosing the split variable and the split point depends on inspecting
the input variables only one at a time (Gehrke et al., 2000). In this way
much of the data access can occur in main memory.

On the surface decision trees appear easy to interpret, however, they
are structurally unstable. Slight variations in the dataset can result in
completely different structures making their interpretable appearance
very deceiving.

Although decision trees might not be interpretable, the main feature
that removes them as candidates for prediction models for massive
datasets is that they simply do not predict as well as other meth-
ods. Decision trees can proficiently reduce training error but generally
have poor generalization performance. Even the simple linear model
frequently outperforms CART. I believe, however, that research over
the last few years on merging multiple trees has produced the most
promising algorithms. The next section describes these methods.

3.2. BOOSTING, BAGGING, AND VARIATIONS

Section 3.1 enumerated the decision tree properties desirable for build-
ing prediction models from massive datasets. Their ability to handle
various types of input variables and their scalability are essential for our
purposes. Although they can model complex, non-linear interactions,
other methods often exceed their predictive ability.

A series of papers by various authors on learning prediction models
from data (not necessarily massive datasets) have generated what I be-
lieve to be breakthrough concepts for fitting models to massive datasets.
Among these ideas are bagging (Breiman, 1996) and pasting (Breiman,
1999a), boosting algorithms (Freund and Schapire, 1997), and formu-
lating boosting as gradient descent in function space (Friedman, 1999a).
I will describe these concepts and suggest a way to assemble them into
a unified framework for modeling massive datasets.

Bagging and pasting. Bagging (Bootstrap aggregating) simulates a
continuous stream of datasets drawn from the joint distribution of  and
y. The first step in the process is to sample with replacement from the
original dataset to produce a “bootstrap” dataset with the same num-
ber of observations as the original. Due to the random sampling with
replacement, this new dataset almost certainly contains some duplicate
observations so that about 37% of the original observations are not
in the bootstrap dataset. But the bootstrap dataset in some respects
resembles a draw from the joint distribution of z and y. Empirical
evidence shows that if we construct several bootstrap datasets, fit a
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decision tree to each, and produce predictions for new observations
by averaging the predictions from each model then we can achieve
a substantial improvement in accuracy over predicting with a single
decision tree. The heuristic argument is that the averaging reduces
variance in the predictions.

A natural question to ask is whether the bootstrap datasets need
to be as large as the original one. Pasting algorithms average across
models fit to randomly selected subsets of the original dataset. Em-
pirical evidence shows that substantial subsampling can still produce
an aggregated predictor with accuracy comparable to bagging. This is
great news to the data mining community that struggles with fitting
data into main memory!

A secondary benefit that bootstrapping or subsampling offers is that
the fit of the prediction model is independent from those observations
not sampled. If we fit the model to a randomly selected half of the
dataset, then the remaining half can provide an unbiased estimate of
J(f). This will be an important feature for automating the model fitting
process.

Boosting. Boosting came to the forefront of classification research
after various empirical studies concluded that boosting offered some
of the best performance on standard test datasets (Bauer and Kohavi,
1999). The original algorithms proceeded by first fitting a model to the
original dataset. In the next boosting iteration the observations that
were previously misclassified receive higher weight and the correctly
classified observations receive less weight. Subsequent iterations pile
more weight on the hard to classify observations so that most of the
weight ends up on those observations near the decision boundary. The
final prediction model is a weighted average of all of the models.

The observation reweighting suggested a nice heuristic for boost-
ing’s uncanny classification performance. However, for generalizing the
boosting framework to the more general prediction problem it hardly
gave a satisfactory explanation.

The boosting algorithm was later found to be equivalent to gradient
descent in function space. These results showed that boosting is a
greedy optimization algorithm for finding a classifier that minimized
an upper bound on the misclassification error. The sample reweighting
is just a feature of the optimization method. The culmination of this
insight produced Friedman’s gradient boosting algorithm for minimiz-
ing a wide class of loss functions for least-squares regression, robust
regression, as well as classification. It is a simple step to further ex-
pand boosting to the class of exponential family and survival regression
models (Ridgeway, 1999).
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The gradient boosting algorithms proceed as follows. Initially set the
predictor f(z) = ¢, where ¢ is the constant that minimizes J(c). For
least-squares regression c is the average of the y;. The next iteration
proposes improving f(z) by adding a new function to it. With f(x)
fixed, find a relatively simple g(z) such that J(f+g¢) < J(f). For many
useful loss functions finding such a g(z) can reduce to fitting a decision
tree. We update our current prediction model as f(z) < f(z) + g(x).
Iterating in this fashion, the algorithm guides our f through the space
of prediction models on a path toward minimizing .J (f)-

Slight variations to this algorithm can further improve the perfor-
mance. The first variation is to reset g(z) as g(z) < Ag(z), where
0 < XA < 1, to shrink the proposed modification toward 0 (Friedman,
1999a). The shrinkage smoothes the path through the space of predic-
tion models. The final model also tends to be smoother as well. The
second variation, inspired by a related algorithm known as adaptive
bagging (Breiman, 1999b), is to propose the modifications using a ran-
domly selected subset of the dataset (Friedman, 1999b). Results using
the stochastic gradient boosting algorithm have shown that proposing
the modification based on around 50% of the dataset can result in
enormous improvements in the generalization error. Regardless of the
variations, to avoid overfitting the algorithm needs to halt before too
many components enter the model. We can use a hold-out dataset
to help determine the halting point although an automated stopping
criteria is much more desirable.

While bagging’s intention is to reduce prediction variation, gradi-
ent boosting is explicitly reducing prediction bias. In empirical studies
boosting has consistently outperformed bagging. However, somewhere
in between there must be a place where these two methods meet to
produce a low variance, low bias predictor.

3.3. PUTTING THE PIECES TOGETHER

The previous section presented prediction methods with some very
desirable features.
— Decision trees capture non-linear interaction effects.

— Decision trees can handle continuous, ordinal, and nominal vari-
ables as well as missing values.

— Decision trees are scalable to massive datasets.
— Bagging reduces prediction variance.

— Pasting provides an implementation of bagging that reduces the
size of the dataset that needs to be in main memory.
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— Bagging and pasting preserve an independent test set that can give
unbiased estimates of generalization error.

— Boosting reduces prediction bias and is applicable to a large class
of prediction problems.

Borrowing the principles from each of these methods forms a frame-
work for building predictive models from massive datasets. Consider
the following framework.

1. Initialize f(z) = ¢ where ¢ minimizes J(c).

2. Subsample k observations from the dataset. Save the other obser-
vations for a validation set.

3. Propose modifying f(z) by finding a simple and stable function
g(z) such that J(f +g) < J(f), using only the k subsampled
observations to compute J.

4. Shrink the proposed improvement function as g(z) < Ag(z) where
0<A<I1.

5. Estimate the improvement g(z) makes in generalization error using
the other half of the dataset.

AJ = Y Ly, f(:) + g(x:)) — Llyi, f (i) (4)

ievalidation

6. If AJ is positive then update the current predictor as f(z)
f(z)+ ¢g(z) and return to (2). Otherwise if on the previous several
iterations AJ has been consistently negative, exit the algorithm.

Step one initializes the predictor to the best constant predictor. As
in bagging, pasting, and stochastic gradient boosting, step two uses a
fraction of the dataset in order to decrease the variance of the pre-
dictor modification and to preserve some observations for validation.
In practice, half-sampling seems to work well. Step three relates to
boosting’s greedy step by finding an improvement that seems to offer a
decrease in the training error. Shrinking the proposed g(z) in step four
requires the algorithm to perform more iterations and therefore more
computation time. But since using A < 1 empirically seems essential
to obtaining the best prediction models, the rule of thumb is to make
it as small as computationally possible. Step five takes advantage of
the fact that learning g(z) did not involve some of the observations so
that we can compute a nearly unbiased estimate of the improvement in
generalization error. This automates the process in step six of deciding
when to halt the iterations. Plots comparing AJ with the generalization
error show that the iterations for which AJ begins to go below zero
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correspond to minimal values of the generalization error. Note that
another path may have reduced the generalization error further, but
at least on the greedily selected path this framework describes we can
regularly find the best predictor.

4. Discussion

The framework described in section 3.3, borrowing strength from each
of the algorithms discussed, can generate algorithms that are accurate,
scalable, and completely automated. By substituting the loss function
of our choice and a scalable prediction model like decision trees, the
framework produces algorithms that seem ideal for massive datasets.
Future research will need to tune the steps in the framework and adapt
it for special applications. Already this framework has produced an
efficient algorithm for high-dimensional density estimation for massive
datasets (Ridgeway, 2000). Furthermore, research at RAND is learning
the relationship between cost of health care and patient characteristics
from large Medicare datasets. Algorithms derived from this framework
are producing the best estimates we have seen to date.

To conclude, in this paper I have argued that when extracting pre-
diction models from massive datasets

— the analyst can fit more flexible and accurate prediction models

— and the computational cost of fitting those models can be enor-
mous due to complexity in storing and accessing the data.

The task before us is to discover and tune algorithms that provide
accurate predictions in the face of data access complexity. The pa-
pers referred to earlier show extensive empirical evidence that these
innovations show remarkable improvement in prediction accuracy. The
framework presented here, is modular so that we can tune parts of
the derived algorithms for massive dataset applications. Specialized
subsampling algorithms, such as delegate sampling (Breiman and Fried-
man, 1984) and data squashing (Madigan et al., 2000), and even more
efficient tree algorithms are likely to provide workable solutions. I be-
lieve the next line of empirical research will continue to verify that these
algorithms can produce some of the best predictive and computational
performance to date.
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