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Abstract. Data mining often involves processing massive, retrospective datasets to

learn how to make predictions in the future. The researchers that compose the data
mining community have approached the prediction problem in their own fashion and

have produced a novel set of tools. This article discusses the complexity arising when

�tting prediction models to massive datasets, proposes a framework for algorithmic

solutions based on bagging and boosting, and poses some ideas for future directions.
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1. Introduction

Extracting predictive models from massive datasets is one of the pri-

mary data mining e�orts. Historically, much of statisticians' e�ort fo-

cused on extracting as much information as possible from relatively

small, structured datasets. The arrival of data mining and truly mas-

sive datasets changes how we approach data. However, the size of the

datasets allows us to examine models that are more complex than

ever before. In the last few years researchers working on the boundary

between statistics, computer science, and engineering have produced

an exciting set of new methods for discovering complex relationships
between items in massive datasets.

In this paper I will discuss the prediction problem for massive data-

sets. When faced with massive datasets we have the blessing that we can

increase model complexity to gain higher prediction accuracy with the

curse of increased data access complexity. The task we face is to discover

and tune algorithms that provide accurate predictions in spite of the

diÆculty of accessing the data. I conclude this paper by assembling

several recent innovations to produce a framework for solving a variety

of prediction problems for massive datasets.

2. Prediction and massive datasets

Massive datasets change the complexity of prediction problems in two

main ways. First, having an enormous amount of data allows the an-

alyst to �t more complex models. Second, when the dataset cannot

�t into the main memory of a computer, scanning the dataset can be
several orders of magnitude slower.
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Figure 1. Model complexity and data density. As the size of the dataset increases

the dataset exposes its more complex features allowing for more complex modeling

and more accurate prediction.

2.1. Model complexity

Figure 1 shows two graphs displaying data generated from the same

data generating mechanism. From this data we wish to learn how to

predict y from x. The �gure to the left shows a sparse dataset with ten

observations and the �gure to the right is denser with 100 observations.

With the data available in �gure 1a, an extremely parsimonious

model would �t the horizontal line to the average of the ten data points.

It is stable and rarely provides a disastrous prediction of y. However,

visually the data contain more information than the simple horizontal
�t, speci�cally that there is a decreasing trend. The linear model in

�gure 1a seems to capture that information and provides a reasonable

�t to the dataset and improved predictive performance. As the data

become more dense, as shown in �gure 1b, the linear model seems as

poor a model as the horizontal prediction model did in �gure 1a.

The �rst lesson in extracting prediction models from massive data-

sets is that we can �t more complex models. In particular we can model

non-linear terms, explore more potential predictor inputs, and learn

how those inputs interact to make predictions.

The main goal in constructing predictors is accurate prediction and,

therefore, relying on simple models can severely degrade predictive per-

formance. We often fall back on the simple models for many reasons the

common ones being, they are the ones with which we are most familiar,

they o�er an interpretable prediction rule, and the computational cost
of �tting these models might be small. According to Breiman's law
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(Breiman, 1997)

Interpretability�Accuracy = Breiman's constant (1)

indicating that if we want accurate predictions, interpretation has to

be a secondary priority. The evidence from �gure 1b demonstrates

that, particularly for large values of x, the linear model fails to make

good predictions. Having a massive dataset, in terms of having many

independent observations, allows prediction models to learn curvature

that would be missed in sparse datasets.

Over the years, statisticians and computer scientists have developed

a handful of Bayes risk consistent procedures, predictors that converge

to the optimal predictor as the sample size becomes large. These large

datasets almost make optimal predictors a reality rather than merely
a theory... if it were not for data access complexity.

2.2. Data access complexity

So far I have distinguished between \simple" and \complex" models

without solidifying their traits. Simple models generally make strong

assumptions about the relationship between the outcome and the input

variables. These assumptions often make computation and interpreta-

tion manageable (e.g. linear regression models, the best separating hy-

perplane classi�er). In the absence of a strong theory, which is generally

the case in data mining, we wish to avoid specifying a functional form

for the prediction model, allowing models that have greater capacity

for �tting non-linear and input interaction terms.

Massive datasets, de�ned to be those that cannot �t into the main

memory of a computer, can complicate the process of �tting non-linear
and interaction terms to data. The simplest models tend to require

few scans of the dataset to produce the best �t. In the case of linear

regression, the algorithm needs only one scan. Any other method that

permits non-linear terms and non-linear interactions almost certainly

requires many more scans of the dataset. If the dataset could �t into

main memory then multiple laps might not cause problems. On the

other hand, retrieving data from the disk is about one million times

slower than retrieval from main memory!

The second lesson is that in order to be useful for massive datasets,

the construction of prediction models must rely on algorithms that ei-

ther require very few scans of the dataset or can sequentially process the

dataset in blocks that can reside in main memory. The main objective

of constructing prediction models for massive datasets is to �t models

of appropriate model complexity with algorithms that can handle the
issues arising from data access complexity.
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3. Prediction methods

In this section I will discuss the nature of the prediction problem and

some of the methods used to construct prediction models and how they

relate to the issues of model complexity and data access complexity.

Let y be the quantity that we want to predict. It may be continuous

(pro�t from a particular customer, time until a part fails) or categorical

(whether or not a customer defaults on a loan, whether a patient has a

malignant, benign, or no tumor).1 Let x be a set of features measured

on the unit of observation. In the case of disease prediction this may

be a set of observed symptoms and patient characteristics. In the case

of credit approval this may be a customer's payment history.

Regardless of the situation, the problem is always to learn a function,

f(x), that minimizes the expected loss

J(f) = Ex;yL(y; f(x)) (2)

where L(y; f(x)) measures the cost associated with predicting f(x)

when the true value is y. For least-squares regression L(y; f(x)) =

(y� f(x))2 or for binary classi�cation L(y; f(x)) is the cost of labeling
an observation with f(x) when the true label is y. Equation (2) is known

as the generalization error of f(x). The expectation is with respect to

future observations drawn from the same distribution of (x; y).

Without knowing the exact distribution of (x; y) we try to infer

the f(x) that minimizes J(f) using a set of previously encountered

examples, (x1; y1); : : : ; (xn; yn). We can approximate the average in (2)

using our sample as

J(f) � Ĵ(f) =
1

n

nX

i=1

L(yi; f(xi)): (3)

The functional Ĵ(f) is the training error of f(x).

For regression and classi�cation problems, the f(x) that minimizes

the training error is one that predicts the training dataset exactly,

so that f(xi) = yi for all i. Although this minimizes Ĵ(f), the ap-

proximation in (3) breaks down. That is, if we choose f(x) so that

Ĵ(f) = 0 by perfectly �tting the training data then almost certainly

J(f) > 0. Various methods for constraining the capacity of f(x) prevent

over�tting the training data. These methods may impose smoothness

constraints, limit the number of model parameters, or otherwise control

the size of the set of candidate prediction models.

1 The outcome can also be unknown, the usual setting of a clustering problem.
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Figure 2. Decision tree produced by running the CART algorithm on the �rst half

of the dataset

The prediction problem reduces to �nding the f(x) that minimizes

the generalization error using only the information available from the

training dataset.

3.1. Decision trees

A decision tree learns a set of conjunctive rules to make predictions.

The most popular decision tree algorithms in use for data mining ap-

plications include CART (Breiman et al., 1984) and C4.5 (Quinlan,

1993). The CART algorithm initially tries to partition the dataset into

two groups such that each group is more homogeneous on the outcome.

CART considers all possible splits on each of the features and selects

the one that does the best job at reducing the training error. Imagine

using CART for predicting whether a student will drop out of high

school (at age 17 or 18) using information gathered at age 13. On the

�rst iteration, CART selects the split that best discriminates between

the dropouts and graduates. Subsequently, the algorithm recursively

splits the newly formed partitions until it meets some stopping crite-

ria designed to avoid over�tting (usually an ideal number of terminal

nodes selected by cross-validation). Figure 2 shows an example of a tree
constructed using CART. To estimate the probability of dropout for a

newly observed student, CART compares the features of the student

with the series of questions that the tree poses, true answers moving

to the left and false answers moving the right. The dropout probability

estimate for the newly classi�ed student is the percentage of dropouts

in the training data that are in the same terminal node.

The bene�ts of decision trees are that they model non-linear re-

lationships with variable interactions, accept continuous, ordinal, and

nominal features, and are relatively fast to construct from data and

use for future prediction. The fact that trees accept a variety of types

of data is especially important in data mining applications and few

other methods have this feature. In addition, the divide-and-conquer

nature of the algorithm is appealing when faced with a massive dataset.

Each recursion of the algorithm only has to deal with a fraction of
the observations that the parent processed (usually 25% to 75% less).
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Furthermore, specialized algorithms can take advantage of the fact that

choosing the split variable and the split point depends on inspecting
the input variables only one at a time (Gehrke et al., 2000). In this way

much of the data access can occur in main memory.

On the surface decision trees appear easy to interpret, however, they

are structurally unstable. Slight variations in the dataset can result in

completely di�erent structures making their interpretable appearance

very deceiving.

Although decision trees might not be interpretable, the main feature

that removes them as candidates for prediction models for massive

datasets is that they simply do not predict as well as other meth-

ods. Decision trees can pro�ciently reduce training error but generally

have poor generalization performance. Even the simple linear model

frequently outperforms CART. I believe, however, that research over

the last few years on merging multiple trees has produced the most

promising algorithms. The next section describes these methods.

3.2. Boosting, bagging, and variations

Section 3.1 enumerated the decision tree properties desirable for build-

ing prediction models from massive datasets. Their ability to handle

various types of input variables and their scalability are essential for our

purposes. Although they can model complex, non-linear interactions,

other methods often exceed their predictive ability.

A series of papers by various authors on learning prediction models

from data (not necessarily massive datasets) have generated what I be-

lieve to be breakthrough concepts for �tting models to massive datasets.

Among these ideas are bagging (Breiman, 1996) and pasting (Breiman,
1999a), boosting algorithms (Freund and Schapire, 1997), and formu-

lating boosting as gradient descent in function space (Friedman, 1999a).

I will describe these concepts and suggest a way to assemble them into

a uni�ed framework for modeling massive datasets.

Bagging and pasting. Bagging (Bootstrap aggregating) simulates a

continuous stream of datasets drawn from the joint distribution of x and

y. The �rst step in the process is to sample with replacement from the

original dataset to produce a \bootstrap" dataset with the same num-

ber of observations as the original. Due to the random sampling with

replacement, this new dataset almost certainly contains some duplicate

observations so that about 37% of the original observations are not

in the bootstrap dataset. But the bootstrap dataset in some respects

resembles a draw from the joint distribution of x and y. Empirical
evidence shows that if we construct several bootstrap datasets, �t a
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decision tree to each, and produce predictions for new observations

by averaging the predictions from each model then we can achieve
a substantial improvement in accuracy over predicting with a single

decision tree. The heuristic argument is that the averaging reduces

variance in the predictions.

A natural question to ask is whether the bootstrap datasets need

to be as large as the original one. Pasting algorithms average across

models �t to randomly selected subsets of the original dataset. Em-

pirical evidence shows that substantial subsampling can still produce

an aggregated predictor with accuracy comparable to bagging. This is

great news to the data mining community that struggles with �tting

data into main memory!

A secondary bene�t that bootstrapping or subsampling o�ers is that

the �t of the prediction model is independent from those observations

not sampled. If we �t the model to a randomly selected half of the

dataset, then the remaining half can provide an unbiased estimate of
J(f). This will be an important feature for automating the model �tting

process.

Boosting. Boosting came to the forefront of classi�cation research

after various empirical studies concluded that boosting o�ered some

of the best performance on standard test datasets (Bauer and Kohavi,

1999). The original algorithms proceeded by �rst �tting a model to the

original dataset. In the next boosting iteration the observations that

were previously misclassi�ed receive higher weight and the correctly

classi�ed observations receive less weight. Subsequent iterations pile

more weight on the hard to classify observations so that most of the

weight ends up on those observations near the decision boundary. The

�nal prediction model is a weighted average of all of the models.

The observation reweighting suggested a nice heuristic for boost-
ing's uncanny classi�cation performance. However, for generalizing the

boosting framework to the more general prediction problem it hardly

gave a satisfactory explanation.

The boosting algorithm was later found to be equivalent to gradient

descent in function space. These results showed that boosting is a

greedy optimization algorithm for �nding a classi�er that minimized

an upper bound on the misclassi�cation error. The sample reweighting

is just a feature of the optimization method. The culmination of this

insight produced Friedman's gradient boosting algorithm for minimiz-

ing a wide class of loss functions for least-squares regression, robust

regression, as well as classi�cation. It is a simple step to further ex-

pand boosting to the class of exponential family and survival regression

models (Ridgeway, 1999).
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The gradient boosting algorithms proceed as follows. Initially set the

predictor f(x) = c, where c is the constant that minimizes Ĵ(c). For
least-squares regression c is the average of the yi. The next iteration

proposes improving f(x) by adding a new function to it. With f(x)

�xed, �nd a relatively simple g(x) such that Ĵ(f+g) < Ĵ(f). For many
useful loss functions �nding such a g(x) can reduce to �tting a decision

tree. We update our current prediction model as f(x)  f(x) + g(x).

Iterating in this fashion, the algorithm guides our f through the space

of prediction models on a path toward minimizing Ĵ(f).

Slight variations to this algorithm can further improve the perfor-

mance. The �rst variation is to reset g(x) as g(x)  �g(x), where

0 < � � 1, to shrink the proposed modi�cation toward 0 (Friedman,

1999a). The shrinkage smoothes the path through the space of predic-

tion models. The �nal model also tends to be smoother as well. The

second variation, inspired by a related algorithm known as adaptive

bagging (Breiman, 1999b), is to propose the modi�cations using a ran-

domly selected subset of the dataset (Friedman, 1999b). Results using

the stochastic gradient boosting algorithm have shown that proposing

the modi�cation based on around 50% of the dataset can result in
enormous improvements in the generalization error. Regardless of the

variations, to avoid over�tting the algorithm needs to halt before too

many components enter the model. We can use a hold-out dataset

to help determine the halting point although an automated stopping

criteria is much more desirable.

While bagging's intention is to reduce prediction variation, gradi-

ent boosting is explicitly reducing prediction bias. In empirical studies

boosting has consistently outperformed bagging. However, somewhere

in between there must be a place where these two methods meet to

produce a low variance, low bias predictor.

3.3. Putting the pieces together

The previous section presented prediction methods with some very

desirable features.

� Decision trees capture non-linear interaction e�ects.

� Decision trees can handle continuous, ordinal, and nominal vari-

ables as well as missing values.

� Decision trees are scalable to massive datasets.

� Bagging reduces prediction variance.

� Pasting provides an implementation of bagging that reduces the
size of the dataset that needs to be in main memory.
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� Bagging and pasting preserve an independent test set that can give

unbiased estimates of generalization error.

� Boosting reduces prediction bias and is applicable to a large class

of prediction problems.

Borrowing the principles from each of these methods forms a frame-

work for building predictive models from massive datasets. Consider

the following framework.

1. Initialize f(x) = c where c minimizes Ĵ(c).

2. Subsample k observations from the dataset. Save the other obser-

vations for a validation set.

3. Propose modifying f(x) by �nding a simple and stable function

g(x) such that Ĵ(f + g) < Ĵ(f), using only the k subsampled

observations to compute Ĵ .

4. Shrink the proposed improvement function as g(x) �g(x) where

0 < � � 1.

5. Estimate the improvement g(x) makes in generalization error using

the other half of the dataset.

�J =
X

i2validation

L(yi; f(xi) + g(xi))� L(yi; f(xi)) (4)

6. If �J is positive then update the current predictor as f(x)  

f(x) + g(x) and return to (2). Otherwise if on the previous several

iterations �J has been consistently negative, exit the algorithm.

Step one initializes the predictor to the best constant predictor. As
in bagging, pasting, and stochastic gradient boosting, step two uses a

fraction of the dataset in order to decrease the variance of the pre-

dictor modi�cation and to preserve some observations for validation.

In practice, half-sampling seems to work well. Step three relates to

boosting's greedy step by �nding an improvement that seems to o�er a

decrease in the training error. Shrinking the proposed g(x) in step four

requires the algorithm to perform more iterations and therefore more

computation time. But since using � < 1 empirically seems essential

to obtaining the best prediction models, the rule of thumb is to make

it as small as computationally possible. Step �ve takes advantage of

the fact that learning g(x) did not involve some of the observations so

that we can compute a nearly unbiased estimate of the improvement in

generalization error. This automates the process in step six of deciding

when to halt the iterations. Plots comparing �J with the generalization
error show that the iterations for which �J begins to go below zero
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correspond to minimal values of the generalization error. Note that

another path may have reduced the generalization error further, but
at least on the greedily selected path this framework describes we can

regularly �nd the best predictor.

4. Discussion

The framework described in section 3.3, borrowing strength from each

of the algorithms discussed, can generate algorithms that are accurate,

scalable, and completely automated. By substituting the loss function

of our choice and a scalable prediction model like decision trees, the
framework produces algorithms that seem ideal for massive datasets.

Future research will need to tune the steps in the framework and adapt

it for special applications. Already this framework has produced an

eÆcient algorithm for high-dimensional density estimation for massive

datasets (Ridgeway, 2000). Furthermore, research at RAND is learning

the relationship between cost of health care and patient characteristics

from large Medicare datasets. Algorithms derived from this framework

are producing the best estimates we have seen to date.

To conclude, in this paper I have argued that when extracting pre-

diction models from massive datasets

� the analyst can �t more 
exible and accurate prediction models

� and the computational cost of �tting those models can be enor-

mous due to complexity in storing and accessing the data.

The task before us is to discover and tune algorithms that provide

accurate predictions in the face of data access complexity. The pa-

pers referred to earlier show extensive empirical evidence that these

innovations show remarkable improvement in prediction accuracy. The

framework presented here, is modular so that we can tune parts of

the derived algorithms for massive dataset applications. Specialized

subsampling algorithms, such as delegate sampling (Breiman and Fried-
man, 1984) and data squashing (Madigan et al., 2000), and even more

eÆcient tree algorithms are likely to provide workable solutions. I be-

lieve the next line of empirical research will continue to verify that these

algorithms can produce some of the best predictive and computational

performance to date.
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