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Gradient-based approaches

Goal: find a model, f(x), that minimizes J(f)
- J(f) = Eyx (y — f(x))°

» J(f) = 2By x y f(x) — log(1 + exp(f(x)))
General strategy:

» Initialize f(x) =c¢

. Iteratively set f(x) «— f(x) + g(x), where

J(f +9) < J(f)

» Use the gradient f((f)) to suggest g(x)
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Examples

IRLS (Nelder and Wedderburn, 1972)
. f(x) «— f(x) + fx where gx is a particular

linear approximation to %

LARS (Efron, Hastie, Johnstone, Tibshirani 2004)
» f(x) < f(x)+ Az; where z; is the predictor

most correlated with % A ~ 0.0001

Boosting (Freund & Schapire, 1997; Friedman, 2001)
» f(x) « f(x) + X\ x tree(x) where tree(x) is

a regression tree fit to % A =~ 0.0001
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Open Issues

Model selection (number of iterations)

. IRLS: If d < N, iterate until convergence
» LARS: Use cross-validation

» Boosting: Use a held out test dataset

Variable selection

» IRLS does none, LARS essentially uses
the LASSO penalty, > |3;|, for selection

» Boosting uses the LASSO for selecting a
set of trees, but is not useful in eliminating
redundant predictors
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Generalized boosted models

This presentation will focus on boosting as
Implemented in the gbmlibrary

TMI<1.5 Complex beh < 1.5
-0.571 Use days <25 -0.048 Somatic < 0.5
-0.452 + m + —‘ +
-0.094 0.597 -0.002 0.159

To predict for a new observation, predict with
each tree and sum the results
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Generalized boosted models

GBM'’s advantages include:
1. Excellent estimation of f(x)

2. The resulting model handles continuous,
nominal, ordinal, and missing xs

3. Invariant to 1-to-1 transformations of the zs

4. Model higher interaction terms with more
complex regression trees

5. Implemented in R in the gbmlibrary
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Estimating number of iterations

Current practice Is to set aside some fraction
of observations as a test set

» Those left out observations may have
useful information on the model structure

, Seems excessive to use 80% to estimate
model structure and 20% to estimate
regularization

n high dimensions, each left out variable Is
Ikely to be informative about a region with
ittle data in the training set
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Stochastic gradient boosting

Friedman (2002), performance improves
using a random subsample each iteration
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Out-of-bag estimation

When bootstrapping, Efron (1983) & Breiman
(1996) utilized the 27% of the observations
not in the bootstrap sample as an
Independent test set

ldea: Use those “out-of-bag” observations to
estimate the improvement in predictive
performance

AJ = J(ft) — J(ftr1) =
> Ly, fr(x:)) — Lys, fr(xi) + Ag(x3))

1€0O0B
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Bias in the OOB estimator

Out-of-bag underestimates performance
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OOB underperforms

Reduction In error relative to the best

Best performer Is the most expensive
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Method for selecting the number of iterations
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Variable selection

X1 <15

A1

Hastie and Pregibon 0571 <25
(1990), shrinking trees

Extending, A\; € [0, 1]

/11 Al

X2<15  0.597

A2

(%5, A) = Zieparn) 05 (1 — Asi) Tewj Asqry 2

. 5 0.048 X5<0.5
0It:A) s also computable
J

A5 s

0.002 0.159
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Variable selection

1. Set \; = 0 forall 5

2. Let j* = argmin; —8‘]8({’_A)

3. Update A\« < A\« + €
4. Go to step 2.
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Variable selection

Test set squared error loss
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with gbm screenshot
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Fits generalized boosted regression models
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offset = NOLL,
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GBM Summary

An effective nonparametric modeling tool

Need efficient regularization of boosted
models

» Out-of-bag estimate is conservative
Variable selection can improve predictive
performance

» On some real datasets we find post hoc
selection removes no variables

» Indicates a need to simultaneously fit
model and select variables



Related talks at JSM

Dan McCaffrey
Propensity Score Estimation
with Boosted Regression
Tuesday 10:35AM, TCC-714A

Saharon Rosset
1-norm Regularization: Efficient and Effective
Wednesday 2:05PM, TCC-709
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