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Gradient-based approaches

Goal: find a model, f(x), that minimizes J(f)

J(f) = Ey,x (y − f(x))2

J(f) = −2Ey,x yf(x)− log(1 + exp(f(x)))

General strategy:
Initialize f(x) = c

Iteratively set f(x)← f(x) + g(x), where
J(f + g) < J(f)

Use the gradient J(f)
f(xi)

to suggest g(x)
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Examples

IRLS (Nelder and Wedderburn, 1972)

f(x)← f(x) + βx where βx is a particular
linear approximation to J(f)

f(x)

LARS (Efron, Hastie, Johnstone, Tibshirani 2004)

f(x)← f(x) + λxj where xj is the predictor
most correlated with J(f)

f(xi)
. λ ≈ 0.0001

Boosting (Freund & Schapire, 1997; Friedman, 2001)

f(x)← f(x) + λ× tree(x) where tree(x) is
a regression tree fit to J(f)

f(xi)
. λ ≈ 0.0001
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Open issues

Model selection (number of iterations)
IRLS: If d < N , iterate until convergence
LARS: Use cross-validation
Boosting: Use a held out test dataset

Variable selection
IRLS does none, LARS essentially uses
the LASSO penalty,

∑
|βj|, for selection

Boosting uses the LASSO for selecting a
set of trees, but is not useful in eliminating
redundant predictors
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Generalized boosted models

This presentation will focus on boosting as
implemented in the gbm library

f(x) =
 

-0.571 Use days < 2.5 

-0.094 0.597 

TMI < 1.5 

-0.048 Somatic < 0.5 

-0.002 0.159 

Complex beh < 1.5 

+ -0.452 + + … 

To predict for a new observation, predict with
each tree and sum the results
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Generalized boosted models

GBM’s advantages include:

1. Excellent estimation of f(x)

2. The resulting model handles continuous,
nominal, ordinal, and missing xs

3. Invariant to 1-to-1 transformations of the xs

4. Model higher interaction terms with more
complex regression trees

5. Implemented in R in the gbm library
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Estimating number of iterations

Current practice is to set aside some fraction
of observations as a test set

Those left out observations may have
useful information on the model structure
Seems excessive to use 80% to estimate
model structure and 20% to estimate
regularization
In high dimensions, each left out variable is
likely to be informative about a region with
little data in the training set
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Stochastic gradient boosting

Friedman (2002), performance improves
using a random subsample each iteration
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Out-of-bag estimation

When bootstrapping, Efron (1983) & Breiman
(1996) utilized the 27% of the observations
not in the bootstrap sample as an
independent test set

Idea: Use those “out-of-bag” observations to
estimate the improvement in predictive
performance

∆J = J(ft)− J(ft+1) ≈
∑

i∈OOB

L(yi, ft(xi))− L(yi, ft(xi) + λg(xi))
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Bias in the OOB estimator

Out-of-bag underestimates performance
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OOB underperforms
Reduction in error relative to the best

Best performer is the most expensive
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Variable selection

Hastie and Pregibon
(1990), shrinking trees

Extending, λj ∈ [0, 1]

f(xi, λ) =
∑

j∈path(i) θj(1− λs(j))
∏

k<j λs(k)

∂f(xi,λ)
∂λj

is also computable

 

0.571 x1 < 2.5 

0.597 

x1 < 1.5   

0.048 x5 < 0.5 

0.002 0.159 

x2 < 1.5 

λ2 λ2 

λ5 λ5 

λ1 λ1 

λ1 λ1 
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Variable selection

1. Set λj = 0 for all j

2. Let j∗ = arg minj
∂J(f,λ)

∂λj

3. Update λj∗ ← λj∗ + ε

4. Go to step 2.
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Variable selection
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R with gbm screenshot
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GBM Summary

An effective nonparametric modeling tool

Need efficient regularization of boosted
models

Out-of-bag estimate is conservative

Variable selection can improve predictive
performance

On some real datasets we find post hoc
selection removes no variables
Indicates a need to simultaneously fit
model and select variables
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Related talks at JSM

Dan McCaffrey
Propensity Score Estimation

with Boosted Regression
Tuesday 10:35AM, TCC-714A

Saharon Rosset
1-norm Regularization: Efficient and Effective

Wednesday 2:05PM, TCC-709
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