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Abstract

Squashing is a lossy data compression technique that preserves statistical
information. Specifically, squashing compresses a massive dataset to a much
smaller one so that outputs from statistical analyses carried out on the smaller
(squashed) dataset reproduce outputs from the same statistical analyses carried
out on the original dataset. Likelihood-based data squashing (LDS) differs from
a previously published squashing algorithm insofar as it uses a statistical model
to squash the data. The results show that LDS provides excellent squashing
performance even when the target statistical analysis departs from the model

used to squash the data.

1 Introduction

Massive datasets containing millions or even billions of observations are increasingly

common. Such data arise, for instance, in large-scale retailing, telecommunications,



astronomy, computational biology, and internet logging. Statistical analyses of data
on this scale present new computational and statistical challenges. The computational
challenges derive in large part from the multiple passes through the data required by
many statistical algorithms. When data are too large to fit in memory, this becomes
especially pressing. A typical disk drive is a factor of 10° — 10° times slower in
performing a random access than is the main memory of a computer system (Gibson
et al,, 1996). Furthermore, the costs associated with transmitting the data may
be prohibitive. The statistical challenges are many: what constitutes “statistical
significance” when there are 100 million observations? how do we deal with the
dynamic nature of most massive datasets? how can we best visualize data on this
scale?

Much of the current research on massive datasets concerns itself with scaling up
existing algorithms - see, for example, Bradley et al. (1998) or Provost and Kolluri
(1999). In this paper we focus on the alternative approach of scaling down the data.
Most of the previous work in this direction has focused on sampling methods such
as random sampling, stratified sampling, duplicate compaction (Catlett, 1991), and
boundary sampling (Aha et al., 1991, Syed et al., 1999). Recently DuMouchel et al.
(1999) [DVJCP] proposed an approach that instead constructs a reduced dataset.
Specifically their data squashing algorithm seeks to compress (or “squash”) the data
in such a way that a statistical analysis carried out on the squashed data provides
the same outputs that would have resulted from analyzing the entire dataset. Success
with respect to this goal would deal very effectively with the computational challenges
mentioned above - the entire armory of statistical tools could then work with massive
datasets in a routine fashion and using commonplace hardware.

DVJCP’s approach to squashing is model-free and relies on moment-matching.
The squashed dataset consists of a set of pseudo data points chosen to replicate
the moments of the “mother-data” within subsets of a partition of the mother-data.
DVJCP explore various approaches to partitioning and also experiment with the or-
der of the moments. On a logistic regression example where the mother-data contains
750,000 observations, a squashed dataset of 8,443 points outperformed a simple ran-
dom sample of 7,543 points by a factor of amost 500 in terms of mean square error

with respect to the regression coefficients from the mother-data. DVJCP provide a



theoretical justification of their method by considering a Taylor series expansion of
an arbitrary likelihood function. Since this depends on the moments of the data,
their method should work well for any application in which the likelihood is well-
approximated by the first few terms of a Taylor series, at least within subsets of
the partitioned data. The empirical evidence provided to date is limited to logistic
regression.

In this paper we consider the following variant of the squashing idea: suppose we
declare a statistical model in advance. That is, suppose we use a particular statistical
model to squash the data. Can we thus improve squashing performance? Will this
improvement extend to models other than that used for the squashing? We refer to
this approach as “likelihood-based data squashing” or LDS.

LDS is similar to DVJCP’s original algorithm (or DS) insofar as it first partitions
the dataset and then chooses pseudo data points corresponding to each subset of
the partition. However the two algorithms differ in how they create the partition
and how they create the pseudo data points. For instance, in the context of logistic
regression with two continuous predictors, Figure 1 shows the partitions of the two-
dimensional predictor space generated by the two algorithms for a single value of the
dichotomous response variable. The DS algorithm partitions the data along certain
marginal quantiles, and then matches moments. The LDS algorithm partitions the
data using a likelihood-based clustering and then selects pseudo data points so as to
mimic the target sampling or posterior distribution. Section 2 describes the algorithm
in detail.

In what follows, we explore the application of LDS to logistic regression, variable
selection for logistic regression, and neural networks.

Note that both the DS and LDS algorithms produce pseudo data points with
associated weights. Use of the squashed data requires software that can use these

weights appropriately.

2 The LDS Algorithm

We motivate the LDS algorithm from a Bayesian perspective. Suppose we are com-

puting the distribution of some parameter § posterior to three data points dy, dy, and
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Figure 1: Data partitions created by LDS and DS

ds (the mother-data). We have:
PT(Q | dl,dg,dg) X Pr(d1 | 0)PT(d2 | 0)PT(d3 | Q)PT(G)

Now suppose Pr(d; | 8) ~ Pr(dy | ), at least for the values of # with non-trivial

posterior mass. Then one can construct a pseudo data point d* such that
(Pr(d* | 0))* = Pr(d, | 0)Pr(dy | 0).

A squashed dataset comprising d* with a weight of 2 and d3 with a weight of 1 (see
Table 1) will approximate the analysis posterior to the entire mother-data.

In practice, for every mother-data point d;, LDS first evaluates Pr(d; | 9) at a set of
k values of 0, {61, ...,0;} to generate a likelihood profile (Pr(d; | 61),..., Pr(d; | 0))
for each d;. Then LDS clusters the mother-data points according to these likelihood
profiles. Finally LDS constructs one or more pseudo data points from each cluster
and assigns weights to the pseudo data points that are functions of the cluster sizes.

Note that since LDS clusters the mother data points according to their likelihood

profiles, the resultant clusters typically bear no relationship to the kinds of clusters

4



Table 1: Simple example of squashing when Pr(dy | 0) ~ Pr(dy | 8). LDS constructs
the pseudo data point d* so that Pr(dy | 0)Pr(dy | 0)Pr(ds | 0) ~ (Pr(d* | 0))*Pr(ds |
9).

Mother-data Squashed-data

Instance  Weight | Instance  Weight

dy 1 d* 2
dsy 1
ds 1 ds 1

that would result from a traditional clustering of the data points. Figure 1, for ex-
ample, shows LDS constructing several clusters containing data points with disparate
(21, x2) coordinates. Figure 2 shows the LDS clusters in the context of simple linear
regression though the origin (i.e., a model with a single parameter). In this case, the
likelihood profiles for each data point d; represent the likelihoods for d; with a variety
of lines defined by a set of slopes {f31,...,8r}. The left-hand panel shows mother-
data generated from a bivariate normal distribution with zero correlation (i.e., noise)
whereas the right-hand panel shows mother-data generated from a model with a true
slope of 1. Both plots demonstrate substantial symmetries about the origin - the
likelihood of any point (x,y) is the same as that of (—a, —y) for all 5;. Both plots
also have a cluster centered on the origin. Since all the lines pass through the origin,
points near the origin should have similar likelihoods for all lines. The right-hand
panel exhibits distinctive radial clusters, since likelihood in this context is a function

of the distance from the data point to the line.

2.1 Detailed Description

Let observations y = (y1,. . ., y,) be realized values of random variables Y = (Y1,...,Y},).
Suppose that the functional form of the probability density function f(y;8) of YV is
specified up to a finite number of unknown parameters § = (6y,...,6,). Denote by

[(8;y) the log likelihood of 8, that is, I(6;y) = log f(y;8) and denote by 0 the value
of 6 that maximizes [(0;y).
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Figure 2: Data partitions created by LDS and DS

The base version of LDS (base-LDS) proceeds as follows:

[SELECT] Select Values of 6. Select a set of k values of 6 according to a central
composite design centered on §. # is an estimate of 0 generally based on at
most one pass through the mother-data. A central composite design (Box et
al., 1978) chooses k = 1 + 2p + 27 values of #: one central point (), 2p “star”
points along the axes of #, and 27 “factorial points” at the corners of a cube
centered on 6. Figure 3 illustrates the design for p = 3. This design is a basic
standard in response surface mapping (Box and Draper, 1987). Section 3 below

addresses the exact locations of the star and factorial points.

[PROFILE] Fvaluate the Likelihood Profiles. Evaluate [(6;;y;) for © = 1,...,n and
g =1,...,k. In a single pass through the mother-data, this creates a likelihood

profile for each observation.

[CLUSTER] Cluster the Mother-Data in a Single Pass. Select a sample of n’ < n
datapoints from the mother-data to form the initial cluster centers. For the

remaining n — n’ datapoints, assign each datapoint y; to the cluster ¢ that



minimizes:

Z( Jayz - (01’))2

7=1
where [.(0;;) denotes the average of the log likelihoods at #; for those data

points in cluster c.

[CONSTRUCT] Construct the Pseudo Data. For each of the n’ clusters, construct a sin-
gle pseudo datapoint. Consider a cluster containing m datapoints, (v, ..., Y, )-
Let y! denote the corresponding pseudo datapoint. The algorithm initializes y

to % Y1 Vi, and then optionally refines y by numerically minimizing:

k

m 2
Z(mxl (0;;97)) Z ],yzk) )

=1

The results reported in this paper do not include this optional step.

O \ —O

o

Figure 3: Central composite design for three variables

As described, the algorithm requires two passes over the mother-data: one to
estimate 6, and one to evaluate the likelihood profiles and perform the clustering.
The first pass can be omitted in favor of an estimate of 8 based on a random sample,
although this can adversely affect squashing performance - see Section 6 below.

There exist a variety of elaborations of the base algorithm, some of which we
discuss in what follows. For large p, the central composite design will choose an
unnecessarily large set of values of § at the SELECT phase. The literature on experi-
mental design (see, for example, Box et al., 1978) provides a rich array of fractional

factorial designs that efficiently scale with p. The clustering algorithm in base-LDS



can also be improved; Zhang et al. (1996) describe an alternative that could read-
ily provide a replacement for the CLUSTER phase. Other elaborations include using
alternative clustering metrics at the CLUSTER phase, varying both the number of
pseudo points and the construction algorithm at the CONSTRUCT phase, and iterat-
ing the entire LDS algorithm. Some but not all of these elaborations require extra

passes over the mother-data.

3 Evaluation: Logistic Regression

To evaluate the performance of LDS we conducted a variety of experiments with
datasets of various sizes. In each case our primary goal was to compare the parameter
estimates based on the mother-data with the corresponding estimates based on the
squashed data. To provide a baseline we also computed estimates based on a simple
random sample. We provide results both for simulated data and for the AT&T
data from DVJCP. Following DVJCP we report results in the form of residuals from
the mother-data parameter estimates, that is, (reduced-data parameter estimate -
mother-data parameter estimate). The residuals are standardized by the standard
errors estimated from the mother-data and are averaged over all the parameters in
the pertinent model.

Note that reproducing parameter estimates represents a more challenging target
than reproducing predictions since the former requires that we obtain high quality
estimates for all the parameters. Section 3.4 below shows that accurate parameter

estimate replication does result in high quality prediction replication.

3.1 Small-Scale Simulations

Implementation of base-LDS requires an initial estimate 6 of § and a choice of locations
for the k£ values of 0 used in the central composite design. We carried out extensive
experimentation with small-scale simulated mother-data in order to understand the
effects of various possible choices on squashing performance.

For the initial estimate § of § we considered three possibilities: éSRS, éONE, and 0.
éSRS is a maximum likelihood estimator of # based on a 10% random sample, éONE

is an approximate maximum likelihood estimator of § based on a single step of the



standard logistic regression Newton-Raphson algorithm (this requires a single pass
through the mother-data), and 0 is the maximum likelihood estimator of § based on
the mother-data.

In the central composite design, let dr denote the distance of the 27 “factorial
points” from § and let dg denote the distance of the 2p “star” points from 6, both
distances in standard error units. Here we considered dp = {0.1,0.5,1,3} and ds =
{0.1,0.5,1,3}.

In each case, the mother-data consisted of 1000 observations generated from the
following logistic regression model:

Pr(Y =1)
1 —Pr(Y =1)
with Xy =1, X5, X5, X4, X5 ~ U(0,1) and f4,...,05 ~ U(0,0.5).

For each of 100 simulated mother-datasets from this model, LDS generated 48

log = X1 + B Xy + B3 X + Ba Xy + 35 X5 (1)

squashed datasets corresponding to the 48 (3 x 4 x 4) design settings. Parameter
estimates based on each of these, as well as on an SRS sample were computed. The
LDS and SRS datasets were of size 100.

Figure 4 shows boxplots of the standardized residuals of the parameter estimates.
The residuals are with respect to the parameter estimates from the mother-data, and
are standardized by the standard errors of the estimates from the mother-data.

Several features are immediately apparent:

o With appropriate choices for dr, LDS outperforms random sampling for all three

settings of . Note that the results are shown on a log;o scale; for instance, for
LDS-MLE with ds = 0.1 and dr = 0.1, LDS outperforms SRS by a factor of
about 10°.

e Squashing performance improves as the quality of § improves from Osrs to dong

to é

o There is a dependence between the size of dy and the quality of §. For § = éSRS,
dr = 3 is the optimal setting amongst the four choices. For H = éONE, several
choices of dp vield equivalent performance. For § = é, drp = 0.1 is the optimal

setting amongst the four choices.

o The choice of dg has a relatively small effect on squashing performance.

9
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Figure 4: Small Scale Simulation Results. Fach boxplot shows a particular setting of

0, dp, and ds. The horizontal aves show the log-ratio of the mean square error from

random sampling to the mean square error from LDS.

10



Since @ defines the center of the design matrix where LDS evaluates the likelihood
profiles, it is hardly surprising that performance degrades as 6 departs from 0. Tt is
evidently more important to cluster datapoints that have similar likelihoods in the
region of the maximum likelihood estimator (which with large datasets will be close to
the posterior mean) than to cluster datapoints that have similar likelihoods in regions
of negligible posterior mass. What is perhaps somewhat surprising is the extent to
which the design points need to depart from § when 6§ # 0. In that case it is best to
evaluate the likelihood profiles at a diffuse set of values of § most of which are far out
in the tails of 8’s posterior distribution. In fact, choosing ds and dr as large as 10 still
gives acceptable performance when 6 +* 0. This implies that when LDS doesn’t have
a very good estimate of é, it needs to ensure a very broad coverage of the likelihood

surface.

3.2 Medium-Scale Simulations

Here we consider the performance of LDS in a somewhat larger-scale setting. In
particular, we simulated mother-datasets of size 100,000 from the logistic regression
model specified by (1) again with Xy =1, X5, X3, X4, X5 ~ U(0,1) and 3y,..., 35 ~
U(0,0.5). Figure 5 shows the results for different choices of 0.

Clearly setting 6 = fsrs yields substantially poorer squashing performance than
either § = éONE or ) =9. However, Section 6 below describes how this can be allevi-
ated with an iterative version of LLDS that achieves squashing performance comparable
to that for = é, but starting with 0 = éSRS.

Note that even with 100,000 observations the five parameters in the model speci-
fied by (1) are often not all significantly different from zero. Experiments with models
in which either all of the parameters are indistinguishable from zero or all of the pa-
rameters are significantly different from zero yielded LDS performance results that

are similar to those reported here. For simplicity we only report the results from

model (1).
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Figure 5: Performance of Base-LDS for 30 repetitions of the medium-scale simulated
data. “SRS” refers to the performance of a 1% random sample. “LDS-SRS” refers
to base-LDS with 0 = éSRS (i.e., a mazimum likelihood estimator of 0 based on a 1%
random sample), “LDS-ONE” refers to base-LDS with 0 = Oong (i.e., a mazimum
likelihood estimator of § based on a single pass through the mother-data), and “LDS-
MLE” refers to base-LDS with 6 = 0 (i.e., the maximum likelihood estimator of 0
based on the mother-data). For LDS-SRS and LDS-ONFE we set dp = ds = 3 whereas
for LDS-MLE we set dp = ds = 0.25. Note that the vertical axis is on the log scale.
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Table 2: Performance of Base-LDS for the ATET data. k is the number of evalu-

ations of the likelihood per data point. % is the average MSFE for simple random

sampling (154.04 in this case) divided by the MSE for LDS (i.e., the improvement
factor over simple random sampling). Hprect(%) shows the most comparable results

from DVJCP (Note that HypRect(3) uses 8,373 observations as compared with 7,450

observations in the other rows).

k| 0 |dr|ds| MSE | 252
85 | foxe | 5 | 5 | 0.023 | 6697
149 | fone | 5 | 5 | 0.019 | 8107

DS HypRect(3) 0.24 642

SRS (10 replications) | 154.04 1

3.3 Larger-Scale Application: The AT&T Data

DVJCP describe a dataset of 744,963 customer records. The binary response variable
identifies customers who have switched to another long-distance carrier. There are
seven predictor variables. Five of these are continuous and two are 3-level categorical
variables. Thus for logistic regression there are 10 parameters. As before we consider
1% random and squashed samples. With 10 parameters, the central composite design
requires 1,024 factorial points, 20 star points, and 1 central point for a total of 1,045
points. This would incur a significant computational effort. In place of the fully
factorial component of the central composite design, we evaluated two fractional
factorial designs, a resolution V design requiring 128 factorial points and a resolution
IV design requiring 64 points (Box et al., 1978, p.410). In brief, a Resolution V
design does not confound main effects or two-factor interactions with each other,
but does confound two-factor interactions with three-factor interaction, and so on.
A Resolution IV design does not confound main effects and two-factor interactions
but does confound two-factor interactions with other two-factor interactions. Table 2
describes the results.

LDS outperforms SRS by a wide margin and also provides better squashing per-

formance than DS in this case.
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Table 3: Comparison of predictions for the ATET data using logistic regression with
all 10 main effects. For each reduced dataset the N = 744,963 predictive residuals are
defined as (Probability based on reduced dataset) - (Probability based on the mother-
data) x 10,000. Fach row of the table describes the distribution of the corresponding

residuals for a given reduction method.

Method Mean | StDev | Min | Max
Random Sample | -41 193 | -870 | 679
LDS 0.4 2 -5 11
HypRect(3) -2 9 37 | 34

If the actual parameter estimates from the mother-data are used for 6 in the first
step of the algorithm (i.e. setting 0 = é), then it is possible to reduce the MSE to
0.01 (k=149). At the other extreme setting 0 = éSRS increases the MSE disimproves
to 1.04 (k=149).

3.4 Prediction

Our primary goal so far has been to emulate the mother-data parameter estimates.
A coarser goal is to see how well squashing emulates the mother-data predictions.
Following DVJCP we consider the AT&T data where each observation in the dataset
is assigned a probability of being a Defector. We used the parameter estimates from a
1% random sample and from a 1% squashed dataset to assign this probability and the
compared these with the “true” probability of being a Defector from the mother-data
model. For each observation in the mother-data, we compute (Probability based on
reduced dataset) - (Probability based on the mother-data), multiplied by 10000 for
descriptive purposes. Table 3 describes the results. LDS performs about two orders of

magnitude better than simple random sampling and also outperforms the comparable

model-free HypRect(1) method from DVJCP.
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4 Evaluation: Variable Selection

The preceding results demonstrate that using a particular logistic regression model
to squash a dataset allows one to accurately retrieve the parameter estimates for
that model with a 1% squashed sample. However, the utility of the algorithm is
enhanced by its ability to facilitate other analyses that an analyst might have per-
formed on the mother-data. Since variable selection is a widely used modeling step
in regression analysis, we consider the following question: would a variable selection
algorithm applied to the squashed data select the same model that the algorithm
would select when applied to the mother-data? In what follows we examine all possi-
ble subsets of the predictor variables (“all-subsets”) and score the competing models
using the Bayesian Information Criterion (BIC, Schwarz, 1978). BIC is a penalized
log-likelihood evaluated at the MLE:

BIC = —2[(@; y) + plog(n)

where n is the number of datapoints and p is the dimensionality of 6.

For the AT&T data, all-subsets applied to the mother-data, a 1% random sample,
and a 1% squashed dataset all select the full model. However the rank correlation
between the BIC scores for the mother-data and the BIC scores for the squashed data
is 0.9995 as opposed to 0.9922 for the mother-data-SRS comparison.

For the simulated medium-scale mother-data with 100,000 datapoints and 5 pre-
dictors (see Section 3.2), a 1% LDS-squashed sample with 0 = 0 selected the correct
model in each of 30 replications. By comparison, a 1% SRS selected the correct model
in 10 of the 30 replications. Table 4 shows some results.

These results suggest that it is possible to achieve a 100-fold reduction in compu-
tational effort for variable selection for certain model classes. This would facilitate the
application of expensive variable selection algorithms such as all-subsets or Bayesian
model averaging to massive data. Furthermore, the costs associated with transmitting
a dataset over a network could be greatly reduced if variable selection is the target
activity. Note that for linear and certain non-linear regression models Furnival and
Wilson (1974) and Lawless and Singhal (1978) describe a highly efficient approach
to variable selection that does not require maximum likelihood estimation for each

individual model.
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Table 4: LDS for logistic regression vartable selection. “LDS Correct” shows the
percentage of the n replications in which LDS selected the correct model (i.e., the
model selected by the mother-data). “SRS Correct” shows the percentage of the n

replications in which a simple random sample selected the correct model.

Model: LDS SRS
logit(Y) =¥ 3:.X; N Pl n | Correct | Correct
By =010, =025 35 = 0.5, 3 = 0.75. 35 = 1.0 | 100,000 | 5 | 30 | 100% | 33%
B; ~ unif(0, 1) 100,000 | 5 |30 | 100% | 27%
8; ~ unif(0,0.5) 100,000 | 5 |30 | 100% | 23%

5 Evaluation: Neural Networks

The evaluations thus far have focused on logistic regression. Here we consider the
application of LDS (still using a logistic regression model to perform the squashing)
to neural networks. We simulated data from a feed-forward neural network with two
input units, one hidden layer with three units, and a single dichotomous output unit
(Venables and Ripley, 1997). The left-hand panel of Figure 6 compares the test-data
misclassification rate using a neural network model based on the mother-data (10,000
points) with the test-data misclassification rate based on either a simple random sam-
ple of size 1,000 (black dots) or an LDS squashed dataset of size 1,000 (red dots).
In either case, predictions are based on a holdout sample of 1,000 generated from
the same neural network model that generated the mother-data. The results are for
30 replications. It is apparent that LDS consistently reproduces the misclassification
rate of the mother-data. The right-hand panel of Figure 6 compares the predictive
residuals (i.e., (Probability based on reduced dataset) - (Probability based on the
mother-data)) for the two methods. Table 5 shows the results in a format compara-
ble with Table 3. These predictive results are not as good as those for the logistic
regression analysis of the AT&T data (Table 3), but here the application is to differ-
ent a model class to that used for the squashing and LDS substantially outperforms

simple random sampling nonetheless.
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Figure 6: Comparison of neural network predictions for random sampling and LDS.
The left-hand panel shows the misclassification rates for the mother-data predictions
versus the reduced-data predictions. The right-hand panel shows the predictive resid-
uals. Both panels reflect performance on 1,000 hold-out datapoints generated from
from the same neural network model that generated the mother-data. The figure is

based on 30 replications.
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axis shows the equivalent predicted probabilities from neural network model fitted to
the reduced datasets. The points on the diagonal line are where the predictions agree.

The figure shows 9 replications.
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Table 5: Comparison of neural network predictions for random sampling and LDS.
For each reduced dataset the 1,000 residuals from the hold-out data are defined as
(Probability based on reduced dataset) - (Probability based on the mother-data). Each
row of the table describes the distribution of the corresponding residuals for a given

reduction method. The results are averaged over 30 replications.

Method Mean | StDev | Min | Max
Random Sample | -0.005 | 0.08 |-0.29 | 0.25
LDS 0.0002 | 0.02 |-0.06 | 0.07

Figure 7 shows the individual predictions for nine of the replications with LDS
predictions (red dots) superimposed on SRS predictions (black dots). Points on the
diagonal line represent predictions where the reduced-data prediction and the mother-
data prediction agree. The variability of the prediction from random sampling is
apparent. Note that for both LDS and SRS, the back-propagation algorithm used
to fit the neural network is itself a source of variability since convergence to local

log-likelihood maxima frequently occurs.

6 TIterative LDS

Except where noted, the evaluations reported thus far utilize a single pass through
the mother-data to compute 6. In the case of logistic regression, 6 is the output of the
first step of the standard Newton-Raphson algorithm for estimating f. In fact, this
provides a remarkably accurate estimate of 0 and results in squashing performance
close to that provided by setting § = 0.

For those cases where there does not exist a high-quality, one-pass estimate of é,
and furthermore many passes through the data are required for an exact estimate of
é, iterative LDS (ILDS) provides an alternative approach. ILDS works as follows:

1. Set § = éSRS, an estimate of § based on a simple random sample from the

mother data.

2. Squash the mother-data using LLDS (this requires one pass through the moth-
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Table 6: “Cooling” schedule for ILDS

Iteration | dp dg

1 3 3
2 3 3
3 2 2
4 0.5 | 0.5

>=35 ]0.250.25

erdata).

3. Use the squashed data to estimate éLDS.
4. Set § = O ps and go to (2).

In practice, this procedure requires three or four iterations to achieve squashing
performance similar to the performance achievable when § = 0 with each iteration
requiring a pass through the mother data.

Figure 8 shows the MSE reduction achievable with seven iterations. This is
based on a 1% squashed sample from mother-data generated from model (1) with
N=100,000 and 30 repetitions. Based on the experiments reported in Section 3.1, we
reduced dp and dg as the iterations proceeded. Table 6 shows the schedule for results
in Figure 8. Generally the performance is not sensitive to the particular schedule

although it is important not to reduce dr and dg too quickly.

7 Discussion

There are many possible refinements to LDS:

o The clustering algorithm in base-LDS assigns each datapoint y; to the cluster ¢

that minimizes:
_ 2
(1(0555:) — 1033))
7=1

where [.(0;;) denotes the average of the log likelihoods at #; for those data
points in cluster ¢. Note that this approach is independent of the method
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Figure 8: Squashing performance of ILDS. The first iteration sets 0 equal to a maz-
imum likelihood estimator of 0 based on a 1% random sample. Subsequent iterations
set O to the mazimum likelihood estimator based on the squashed 1% sample from the

previous iteration.
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subsequently used to select the pseudo-data points. An obvious alternative is
to instead assign each datapoint y; to the cluster ¢ that minimizes:

(106:97) — 1055))

J=1

where y7 is the current pseudo-point for cluster ¢. However, as with the similar
optional step in the CLUSTER phase of base-LDS, our initial results suggest

that the impact on squashing performance is negligible.

LDS selects a single pseudo-data point per cluster. In contrast DVJCP’s ap-
proach constructs multiple points per cluster choosing the points to match mo-
ments in the mother-data. It is possible to combine both approaches. That
is, use DVJCP’s moment matching approach to construct points in the LDS-
derived clusters. Other approaches include sampling multiple points per cluster
or selecting multiple points to minimize the criterion described in the previous

point.

Breiman and Friedman (1984) proposed a squashing methodology they called
“delegate sampling.” The basic idea is to construct a tree such that datapoints
at the leaves of the tree are approximately uniformly distributed. Delegate
sampling then samples datapoints from the leaves in inverse proportion to the
density at the leaf and assigns weights to the sampled points that are propor-
tional to the leaf density. In principle, this could be combined with either LDS
or DS.

Our evaluations of LLDS assume that the same response variable is used in both

the squashing and the subsequent analysis. When this is not the case we would expect

DS to outperform LDS.

Statistical methods that depend strongly on local data characteristics such as

trees and non-parametric regression may be particularly challenging for squashing

algorithms. A concern is that minor deviations in the location of the squashed data

points may result in substantial changes to the fitted model. In this case, a con-

structive approach to squashing may be more promising than methods based on

partitioning.
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We have yet to evaluate LDS with a large number of input variables (i.e., large p).
In the neural network context, preliminary experiments suggest that the squashing
performance of base-LDS for neural networks does degrade as the number of units in
the input layer increases. Including interaction terms in the logistic regression model

used for the squashing alleviates the problem somewhat.

LDS Software in both C and R is available from madigan@research.att.com.
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