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INTRODUCTION

Knee complaints secondary to injury and overuse are common in both general and orthopedic
practice. They are particularly common in athletes and other physically active individuals. Knee
problems including significant meniscal tears, anterior cruciate ligament (ACL) tears, intraarticular
fractures and osteochondritis dessicans are often best managed with surgical treatment. On the other
hand, problems including patellofemoral pain, medial collateral ligament sprains, iliotibial band
syndrome, and patellar tendonitis are generally best managed non-operatively with appropriate
rehabilitation. Based on history and physical exam, it can be difficult to separate those patients with knee
pain likely to benefit from early surgical intervention from those in whom initial conservative treatment is
more appropriate.

Findings are mixed in prior studies assessing the ability of clinical examination to predict the
arthroscopic diagnosis in patients with knee complaints. Gibson, et al. found that clinical exam resulted
in an unequivocal diagnosis of internal derangement in only 35% of the cases [Gibson T, 1987 #5]. They
report a frequent discordance between clinical diagnosis and arthroscopic findings. Much of the literature
focuses on the diagnostic accuracy of clinical exam to predict meniscal tears. While some authors have
not found a clinical pattern that would reliably predict meniscal tears [Noble J, 1980 #6], others have
found that a combination of historical and physical examination variables can predict meniscal tears with
some accuracy [Barry OCD, 1983 #3]. Anderson and Libscomb [Anderson AF, 1986 #2] found that at
least one positive mechanical test in 79% of meniscal tears. Alternatively, Curtin, et al [Curtin W, 1992
#4] found that for 175 patients taken to arthroscopy, clinical exam and plain radiography demonstrated
poor specificity for medial meniscal tears and poor sensitivity for lateral meniscal tears. They
demonstrated better specificity for ACL tears and of 30 predicted, 26 were confirmed. There were 7 ACL
tears discovered arthroscopically that were not diagnosed on clinical exam. Finally, Abdon, et al [Abdon
P, 1990 #1] found that while clinical accuracy in detecting meniscal tears was 61%, employing a
multivariate analysis of 68 different clinical variables could correctly predict a meniscal tear in 80% of the
cases. Thislast study, like the others, demonstrates that making an accurate diagnosis based on history
and physical isdifficult. It suggests though, that analysis of the variables statistically may be more
accurate than the clinical impression based on those variables.

While the literature sited examines the accuracy of diagnosis following history and clinical exam,
an important question not directly addressed is the likelihood that a patient presenting with a knee
complaint will benefit from surgical intervention. For the primary care physician contemplating a referral
for surgery, or for a surgeon contemplating arthroscopy, the likelihood the patient will benefit from the
procedureis of primary concern. This study attempts to determine whether or not historical and clinical



variables at the time of presentation can accurately predict if a patient is likely to have a surgical knee
problem. It also examines the role of modern statistical techniques and machine learning to more
accurately predict the answer to this clinical question.

METHODS

Data were collected through a retrospective chart review in a university based orthopedic sports
medicine clinic. Chartswere pulled sequentially in alphabetical order and the record was reviewed for all
knee diagnoses. Data were collected for all patients in whom the surgical or non-surgical treatment was
satisfactorily completed. The patient’ s age and gender were noted, and binary data were collected for the
historical and clinical variables noted in Table 1.

History Physical

age effusion

gender range loss
swelling:none instability MCL
swelling: slow instability LCL
swelling: rapid (<12 hours) instability ACL
fracture on XR patellar crepitus
unilateral McMurray's

injury tender medial joint line
locking tender lateral joint line
instability tender anterior/patella
mechanical

anterior pain

localized pain (other than ant.)

sport related

industrial

prior surgery

prior injury

depression

Table 1: Historical and clinical variables
Data were collected on 99 patients, and analyzed using a boosted naive Bayes classifier.

Naive Bayes classification

Naive Bayes classification, a statistical technique with a moderate history in medical applications
[Spiegelhalter DJ, 1984 #7], seemed a well-suited approach for this scenario. The literature at times
refers to naive Bayes classification as simple, idiot’s, or independence Bayes classification. Using this
model we attempted to construct an accurate predictor of the necessity of knee surgery from historical and
clinical variables. The appendix contains an overview of the naive Bayes model.

Furthermore, empirical studies have shown that building a sequence of classification models and merging
them together to form one model often increases the predictive performance of the classifier. An
interesting class of such methods consists of the “ Adaptively Resample and Combine” algorithms
[Breiman L, 1996 #11]. These algorithms sequentially generate classifiers where the observationsin the
training set that the current classifier predicted poorly receive a higher weight on the next iteration.
Adaptively reweighting the training set in this manner forces successive classifiers to work harder on the
regions of the sample space that are difficult to classify. After afixed number of iterations the set of
classifiers vote on the final prediction. We reweighted the observations as defined by the AdaBoost
algorithm [Freund, 1995 #9] and applied the voting scheme developed in Ridgeway, et al [Ridgeway G,
1998 #12]. Thisdrives the misclassification rate on the training set to zero exponentialy quickly and
provides an interpretable model with improved generalization accuracy. Elkan [Elkan C, 1997 #8]
applied boosting to the naive Bayes classifier and showed that it is mathematically equivalent to a non-



parametric, non-linear generalization of logistic regression. We applied the boosted naive Bayes
classification model to the prediction of the necessity of knee surgery.

We evaluated our model according to procedures common in the statistics and machine learning
communities. We first randomly divided the patient sample of 99 observations into two groups, a training
set and atest set. We estimated the parameters of the boosted naive Bayes model as well as the optimal
number of boosting iterations using only the training set. The estimated model was then used to predict
the necessity of knee surgery on the patients in the test set and compute the misclassification rate of the
test set. Repeating these steps for severa partitions of the sample and averaging the misclassification rate
for each partition yields an estimate of the accuracy of the classifier on future observations. The standard
jackknife procedure is a special case of this evaluation method where the test set contains only one patient
and the remaining patients compose the training set. We also varied the proportion of the observations
used in the training set to estimate a “learning curve” for the knee injury classification problem that helps
determine the number of patients needed for constructing an accurate model.

Weights of evidence

In making clinical decisions, the physician needs to know how the states of the individual variables
contribute to the classifier’sfinal diagnosis. That is, knowledge of the extent to which the presence of a
symptom is evidence for or against a diagnosisis critical to the utility of any medical decision support
system. Spiegelhalter and Knill-Jones [ Spiegelhalter DJ, 1984 #7] advocate extensive use of weights of
evidence in medical diagnosis and propose evidence balance sheets as a means of viewing the reasoning
process of the naive Bayes classifier (also Seymour, et a ) [Seymour DG, 1990 #14]. We found weights of
evidence to be a simple and transparent way of visualizing the boosted naive Bayes classifier’ s reasoning
process for knee surgery recommendation.

A weight of evidence is the logarithm of the odds in favor of knee surgery. Let Y represent the necessity
of knee surgery (Y=0 indicates no surgery, Y=1 indicates surgery). Let X represent the collection of d
indicants (symptoms, history, medical exam variables, etc.). For the non-boosted naive Bayes classifier,
writing the log-odds in favor of Y=1 we abtain the following

P(Y =1| X) log P(r=1, ¢ o P(X; 1Y =1)
P(Y =0| X) P(Y=0) % " P(X;|Y=0)

d
=w,+a w;(X;)
j=1

The w; are the weights of evidence described by Good [Good 1J, 1965 #16]. A positive w;j(X;) indicates
that the state of X; is evidence in favor of the hypothesis that Y=1. A negative weight is evidence for Y=0.
More recently, Madigan, et al [Madigan D, 1996 #17] and Becker, et al [Becker B, 1997 #15] further
discuss and develop the explanatory strengths of weights of evidence. Ridgeway, et al [Ridgeway G,

1998 #12] propose an extension of the weight of evidence for the boosted naive Bayes classifier, discussits
properties, and demonstrate its performance on several data sets.

RESULTS
Estimated weights of evidence

Table 2 shows the estimated weights of evidence, W i (X i ) . The point estimates shown are the expected

value of the boosted weight of evidence. The number shown in parentheses is a bootstrap estimate of the
standard deviation of W i (X i ) . If the weight of evidence estimates were normally distributed then the
ratio of the estimate to the estimated standard deviation would provide a standard normal test statistic for

testing whether the weight of evidence differed significantly from 0. However, the bootstrap distribution
of the estimates were often skewed, indicating substantial departures from normality. According to the



bootstrap distribution, if IS(W ;(X;)>0) islessthan 0.025 or exceeds 0.975 (evidence that the weight

of evidence is strongly negative or strongly positive respectively) then we boldfaced the variable in Table
2. Thisamounts to a a=0.05 test based on the bootstrap percentile interval [Efron B, 1993 #13]. Thisis
analogous to the p < .05 used to determine statisical significance in other statistical models. The bold
faced weights of evidence indicate that the associated variable is an independent significant predictor for
or against surgery.

[ Prior | -1(11) |
Variable negative positive
Unilatera -29 (64) 5(7)
Injury -50 (23) 39 (14)
Locking -6 (3) 172 (50)
Instability -14 (5) 88 (50)
M echanical -1 (31) -4 (25)
Anterior pain 0(17) -4 (38)
Local pain 23(32) -10 (12)
Sports related 14 (15) -19 (15)
Industrial -5(8) 34 (96)
Prior surgery 12 (8) -26 (41)
Prior injury -7 (9) 20 (33)
Depression -5(8) 14 (64)
Effusion -72 (24) 85 (29)
Range loss -8 (15) 12 (22)
Instability MCL 6 (4) -140 (53)
Instability LCL -4 (2) 133 (36)
Instability ACL -34 (7) 298 (19)
Patella crepitus -11 (29) 13 (34)
McMurray’s -38 (25) 56 (52)
Tender med JL -30 (14) 49 (18)
Tender lat JL -20 (9) 50 (29)
Tender anterior 13 (6) -72 (89)

Male Female

[ Sex -6 (13) 8 (14)

£24| 25-32 33-46 3 47

[ Age -3(37) | 28(22) -1 (26) -12 (23)
None Sow Rapid

| Swelling -41 (40) 58 (37) -29 (23)
No Yes Arthritis

| XR-fracture 64 (75) -22 (14) 45 (60)

Table 2: Estimated weights of evidence

Theweightsin Table 2 are additive. That is, to determine the total weight of evidencein favor of a
patient needing knee surgery the physician merely needs to elicit a collection of indicants, sum the
associated weights, and note the magnitude and sign of the total weight. The total weight may be
converted into a probability by the following formula



1

P = I+ exp(- W/ 100)

or by the conversion table shown in Table 3 aswell asin Figure 1.

Probability

weight of evidence

Totd

10%
20%
30%
40%
50%
60%
70%
80%
90%

-220
-139
-85
-41
0
41
85
139
220

Table 3: Conversion from weight of evidence to probability
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Figure 1: Conversion from weight of evidence to probability

For anew patient a physician could easily create an evidence balance sheet (Spiegelhalter and Knill-
Jones) [Spiegelhalter DJ, 1984 #7] from Table 2. Table 4 shows an example of such an evidence balance

sheet.

Evidence in favor of knee surgery

Evidence against knee surgery

Femae +8 Age 50 -12
Kneeis unstable +88 No effusion -72
Knee locks +172  Negative McMurray’s -38
Tender med JL +49

Total positive evidence +317 Total negative evidence -122
Total evidence +195

Probability of knee surgery 88%

Table 4: Example evidence balance sheet



Performance

As described in the methods, during the construction of the boosted naive Bayes classifier the classifier
has access to the records of a subset of the patients. The model, using parameter estimates obtained from
these observations, then attempts to predict which of the remaining patients will require knee surgery.
Restricting the number of patients in the training set and estimating the misclassification rate on the test
set yields the model’s “learning curve”. Figure 2 shows the estimated learning curve for the necessity of
knee surgery. With our training set of 66 patients we predicted knee surgery in the test group of 33
patients with 87% accuracy.

Accuracy
0.84  0.86 0.88 0.90
| I | !

0.82
1

0.80
1

0.78
|

T T 1 T T T T
20 30 40 50 60 70 80

Number of training examples

Figure 2: Learning curve for predicting the necessity of knee surgery
(mean misclassification with 1% and 3" quartiles)

DISCUSSION

For a patient with a knee complaint at initial presentation, the results support the hypothesis that
applying statistical methods to analyze historical and physical exam variables can accurately predict the
probability that the patient will need knee surgery. In our patient population with atraining set of 66
patients, the model predicts the likelihood of surgery with 87% accuracy employing all of the variables
collected. As evidenced by the learning curve, for up to about 50 patients the accuracy increases steeply
and beyond that the curve beginsto level off. However, extrapolating the learning curve beyond 80
patients seems to indicate that the accuracy can potentially improve further with the addition of more
patients. Thisinformation is useful in planning an appropriate sized training set which any practice could
employ to develop amodel based on its own patient popul ation.

The greatest advantage of thistool isthat a practitioner can develop a model using his’/her own
training set so the predictions will reflect their practice experience. Our patient training set allows
accurate estimates for our clinic, but can not estimate surgical probability with the same accuracy over a
wide range of patient populations. For the data collection period, our clinic was staffed by two orthopedic
surgeons and one primary care sports physician. A proportion of our patients had ACL tears and were
referred for surgery. Asaresult, in this patient set, the finding of anterior laxity had a significant weight
of evidence toward surgery. Were the data set collected in a non-surgical, non-sports clinic, a greater
number of ACL tearswould likely be managed successfully without surgery. Our weights of evidence



would not be accurate for that patient population, but the classification system using those patients as a
training set would accurately predict surgical probability for that practice.

A second useful feature of the model is the ability to provide weights of evidence for individual
variables. When faced with conflicting clinical variables, it is useful to have an understanding of the
significance of those variables relative to a given outcome. For example, in a patient with localized
medial tenderness to palpation, an effusion, and a negative McMurray’s; the surgical probability is 70% to
80%. The negative McMurray’s goes against a surgical diagnosis, but it is outweighed by the other two
findings. Adding alocked knee to the clinical picture increases the surgical probability to greater than
90%. On the other hand, adding medial instability to the original findings drops the probability of
surgery to just under 40%. Clinically this makes sense because with medial instability, an MCL tear,
generally managed non-operatively becomes amore likely diagnosis. The effusion, more likely with
internal derangement than an isolated MCL tear, adds to the probability of surgery. If the effusion is
absent, leaving only medial joint line tenderness and medial instability, the likelihood of an isolated MCL
tear increases, and the probability of surgery drops to less than 30%. The model achievesits high
accuracy incorporating all of the clinical variables. Practically speaking though, without the aid of a
computer, the process of clinical decision making involves assessing the relative importance of a handfull
of clinical variables. The model is also useful in this arena, by assigning specific weights to individual
variables, thereby assisting the practitioner in unraveling seemingly conflicting findings.

The surgical probabilities also provide useful information regarding further diagnostic tests.
Many surgeons feel pressured by patients or their insurance companies to order an MRI as additional
“proof” that a patient needs a surgical intervention for their suspected clinical diagnosis. In apatient with
a high probability of surgery, it may be more cost effective to proceed directly to arthroscopy than to invest
time and money obtaining an MRI. In patients with an intermediate probability of surgical intervention,
an MRI may provide useful additional information regarding diagnosis and subsequent treatment.

For primary care providers the probabilities are useful regarding medical decision making and
referrals. For patients with high surgical probahilities, an orthopedic referral may be more cost effective
than further diagnostic testing or a course of non-surgical treatment. With lower probabilities of surgery,
further diagnostic testing may establish an accurate diagnosis and then based upon the diagnosis, a
rehabilitation program may be prescribed. Some of these patients may eventually come to surgery, but the
probability is that they will not, and an unnecessary orthopedic referral may be avoided. This assumes of
course that the primary care provider is able to make a working diagnosis on which to base treatment.
Regardless of the surgical probability, referral to a musculoskeletal specialist is always warranted if the
diagnosis remains elusive and the patient is not seeing improvement over a reasonable time course.

The data also may be useful for patient triage in a system partitioning patients between surgical
and non-surgical providers. Using our weights of evidence; patients with a history of injury, locking, or
instability would best be referred to a surgeon for evaluation because the probability that they will need
surgery ishigh. Alternatively, patients who deny swelling, injury, locking, or instability could start with a
non-surgical provider because the probability that they will need to be referred on for surgery is low.

Limitations of this study include retrospective data collection. We are currently in the process of
collecting prospective data in the same clinic to validate the accuracy of the model. Because two of the
three providers in the clinic were orthopedic surgeons, one can argue that the patient population was
biased toward surgical intervention. While this may be true, this model can accurately reflect any patient
population by simply using that population as the training set. We are currently in the process of
designing an interface through which different training sets can be easily entered. We are also working
on amodification of the classifier that would allow the prediction of a diagnosisin addition to a surgical
probability. A given diagnosis, unlike the probability of surgery, is not a binary variable complicating the
statistical analysis. A multidimensional weight of evidence table would be cumbersome, but the model
may be able to pick amost likely diagnosis out of a group of possibilities. Thiswork is ongoing.



One potentia inconsistency in the resultsis that swelling is not significant as an isolated variable
but the presence or absence of effusion is highly significant. Clinically we do not feel that this datais
inconsistent because effusion is an objective finding and swelling a subjective report. Many times,
patients erroneously think their knees are swollen or do not recognize an effusion that is clearly present on
exam. Not surprisingly, swelling has large weights of evidence, but also large standard deviations
resulting in its lack of significance as an isolated variable.

In conclusion, our findings support the notion that statistical analysis of clinical variables can
predict the probability of surgery with close to 90% accuracy. Analysis of the variables using a boosted
naive Bayes classifier can estimate the probability of a surgical outcome, as well as provide weights of
evidence for the individual variables. An attractive characteristic of this model isthat it has the potential
to “train” on any patient population for which the clinical variables and surgical outcome are compiled,
and as aresult, the predictions can be made directly applicable to any given practice. In amedical
workplace with increasing utilization of computer technology and a practice environment with increasing
pressures to control costs, referrals, and diagnostic procedures, computer assisted diagnostic tools will
likely gain in popularity. The boosted naive Bayes classifier is one example of a computer diagnostic tool
with arolein clinical practice.

Appendix A: Naive Bayes classification

If the random variable Y represents the necessity of knee surgery (0 — not necessary, 1 — necessary) then
Bayesian classification predicts Y to be the label k which maximizes P(Y=k | Xy, ..., Xg). That is, givena
list of observed features Xy, ..., X4 consisting of historical and clinical exam variables, predict that knee
surgery isnecessary if P(Y=1| Xy, ..., Xq) > P(Y=0 | Xy, ..., Xg) and otherwise predict that knee surgery is
not necessary. The naive Bayes assumption is that the observed features, X;, are independent of one
another given the necessity or non-necessity of knee surgery. Although thisis amost never satisfied in
practice, the model has repeatedly proved itself to be robust to dependencies (Domingos and Pazzani)
[Domingos, 1996 #10]. Furthermore, this assumption greatly simplifies the estimation of the parameters
and the classification rule.

Naive Bayes classification model

Classify an observation to the class k that maximizes

P =k | X+, Xy) wherek =0or1
M P(X,, X, Y =K)P(Y =k) Bayes Theorem
=P(X, Y =K)----- P(X, [Y =Kk): P(Y =k) Naive Bayesassumption

The parameters of the naive Bayes classification model, the P(X; | Y=k)'s and P(Y=k)'s, are trivial to
estimate from a training data set even in the presence of missing X’s.




