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INTRODUCTION
Knee complaints secondary to injury and overuse are common in both general and orthopedic

practice. They are particularly common in athletes and other physically active individuals.   Knee
problems including significant meniscal tears, anterior cruciate ligament (ACL) tears, intraarticular
fractures and osteochondritis dessicans are often best managed with surgical treatment.  On the other
hand, problems including patellofemoral pain, medial collateral ligament sprains, iliotibial band
syndrome, and patellar tendonitis are generally best managed non-operatively with appropriate
rehabilitation.  Based on history and physical exam, it can be difficult to separate those patients with knee
pain likely to benefit from early surgical intervention from those in whom initial conservative treatment is
more appropriate.

Findings are mixed in prior studies assessing the ability of clinical examination to predict the
arthroscopic diagnosis in patients with knee complaints.  Gibson, et al. found that clinical exam resulted
in an unequivocal diagnosis of internal derangement in only 35% of the cases [Gibson T, 1987 #5].  They
report a frequent discordance between clinical diagnosis and arthroscopic findings.  Much of the literature
focuses on the diagnostic accuracy of clinical exam to predict meniscal tears.  While some authors have
not found a clinical pattern that would reliably predict meniscal tears [Noble J, 1980 #6], others have
found that a combination of historical and physical examination variables can predict meniscal tears with
some accuracy [Barry OCD, 1983 #3].  Anderson and Libscomb [Anderson AF, 1986 #2] found that at
least one positive mechanical test in 79% of meniscal tears. Alternatively, Curtin, et al  [Curtin W, 1992
#4] found that for 175 patients taken to arthroscopy, clinical exam and plain radiography demonstrated
poor specificity for medial meniscal tears and poor sensitivity for lateral meniscal tears.  They
demonstrated better specificity for ACL tears and of 30 predicted, 26 were confirmed.   There were 7 ACL
tears discovered arthroscopically that were not diagnosed on clinical exam.  Finally, Abdon, et al  [Abdon
P, 1990 #1] found that while clinical accuracy in detecting meniscal tears was 61%, employing a
multivariate analysis of 68 different clinical variables could correctly predict a meniscal tear in 80% of the
cases.  This last study, like the others, demonstrates that making an accurate diagnosis based on history
and physical is difficult.  It suggests though, that analysis of the variables statistically may be more
accurate than the clinical impression based on those variables.

While the literature sited examines the accuracy of diagnosis following history and clinical exam,
an important question not directly addressed is the likelihood that a patient presenting with a knee
complaint will benefit from surgical intervention.  For the primary care physician contemplating a referral
for surgery, or for a surgeon contemplating arthroscopy, the likelihood the patient will benefit from the
procedure is of primary concern. This study attempts to determine whether or not historical and clinical
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variables at the time of presentation can accurately predict if a patient is likely to have a surgical knee
problem.  It also examines the role of modern statistical techniques and machine learning to more
accurately predict the answer to this clinical question.

METHODS
Data were collected through a retrospective chart review in a university based orthopedic sports

medicine clinic.  Charts were pulled sequentially in alphabetical order and the record was reviewed for all
knee diagnoses.  Data were collected for all patients in whom the surgical or non-surgical treatment was
satisfactorily completed.  The patient’s age and gender were noted, and binary data were collected for the
historical and clinical variables noted in Table 1.

History Physical
age effusion
gender range loss
swelling:none instability MCL
swelling: slow instability LCL
swelling: rapid (<12 hours) instability ACL
fracture on XR patellar crepitus
unilateral McMurray's
injury tender medial joint line
locking tender lateral joint line
instability tender anterior/patella
mechanical
anterior pain
localized pain (other than ant.)
sport related
industrial
prior surgery
prior injury
depression

Table 1: Historical and clinical variables

Data were collected on 99 patients, and analyzed using a boosted naïve Bayes classifier.

Naïve Bayes classification
Naïve Bayes classification, a statistical technique with a moderate history in medical applications
[Spiegelhalter DJ, 1984 #7], seemed a well-suited approach for this scenario.  The literature at times
refers to naïve Bayes classification as simple, idiot’s, or independence Bayes classification.  Using this
model we attempted to construct an accurate predictor of the necessity of knee surgery from historical and
clinical variables.  The appendix contains an overview of the naïve Bayes model.

Furthermore, empirical studies have shown that building a sequence of classification models and merging
them together to form one model often increases the predictive performance of the classifier.  An
interesting class of such methods consists of the “Adaptively Resample and Combine” algorithms
[Breiman L, 1996 #11].  These algorithms sequentially generate classifiers where the observations in the
training set that the current classifier predicted poorly receive a higher weight on the next iteration.
Adaptively reweighting the training set in this manner forces successive classifiers to work harder on the
regions of the sample space that are difficult to classify.  After a fixed number of iterations the set of
classifiers vote on the final prediction.  We reweighted the observations as defined by the AdaBoost
algorithm [Freund, 1995 #9] and applied the voting scheme developed in Ridgeway, et al [Ridgeway G,
1998 #12].  This drives the misclassification rate on the training set to zero exponentially quickly and
provides an interpretable model with improved generalization accuracy.  Elkan [Elkan C, 1997 #8]
applied boosting to the naïve Bayes classifier and showed that it is mathematically equivalent to a non-
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parametric, non-linear generalization of logistic regression.  We applied the boosted naïve Bayes
classification model to the prediction of the necessity of knee surgery.

We evaluated our model according to procedures common in the statistics and machine learning
communities.  We first randomly divided the patient sample of 99 observations into two groups, a training
set and a test set.  We estimated the parameters of the boosted naïve Bayes model as well as the optimal
number of boosting iterations using only the training set.  The estimated model was then used to predict
the necessity of knee surgery on the patients in the test set and compute the misclassification rate of the
test set.  Repeating these steps for several partitions of the sample and averaging the misclassification rate
for each partition yields an estimate of the accuracy of the classifier on future observations.  The standard
jackknife procedure is a special case of this evaluation method where the test set contains only one patient
and the remaining patients compose the training set.  We also varied the proportion of the observations
used in the training set to estimate a “learning curve” for the knee injury classification problem that helps
determine the number of patients needed for constructing an accurate model.

Weights of evidence
In making clinical decisions, the physician needs to know how the states of the individual variables
contribute to the classifier’s final diagnosis.  That is, knowledge of the extent to which the presence of a
symptom is evidence for or against a diagnosis is critical to the utility of any medical decision support
system.  Spiegelhalter and Knill-Jones [Spiegelhalter DJ, 1984 #7] advocate extensive use of weights of
evidence in medical diagnosis and propose evidence balance sheets as a means of viewing the reasoning
process of the naïve Bayes classifier (also Seymour, et al ) [Seymour DG, 1990 #14].  We found weights of
evidence to be a simple and transparent way of visualizing the boosted naïve Bayes classifier’s reasoning
process for knee surgery recommendation.

A weight of evidence is the logarithm of the odds in favor of knee surgery.  Let Y represent the necessity
of knee surgery (Y=0 indicates no surgery, Y=1 indicates surgery).  Let X represent the collection of d
indicants (symptoms, history, medical exam variables, etc.).  For the non-boosted naïve Bayes classifier,
writing the log-odds in favor of Y=1 we obtain the following
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The wj are the weights of evidence described by Good [Good IJ, 1965 #16].  A positive w j(X j) indicates
that the state of Xj is evidence in favor of the hypothesis that Y=1.  A negative weight is evidence for Y=0.
More recently, Madigan, et al   [Madigan D, 1996 #17] and Becker, et al  [Becker B, 1997 #15] further
discuss and develop the explanatory strengths of weights of evidence.  Ridgeway, et al  [Ridgeway G,
1998 #12] propose an extension of the weight of evidence for the boosted naïve Bayes classifier, discuss its
properties, and demonstrate its performance on several data sets.

RESULTS
Estimated weights of evidence

Table 2 shows the estimated weights of evidence, )ˆ ( jj Xw . The point estimates shown are the expected

value of the boosted weight of evidence.  The number shown in parentheses is a bootstrap estimate of the

standard deviation of )ˆ ( jj Xw .  If the weight of evidence estimates were normally distributed then the

ratio of the estimate to the estimated standard deviation would provide a standard normal test statistic for
testing whether the weight of evidence differed significantly from 0.  However, the bootstrap distribution
of the estimates were often skewed, indicating substantial departures from normality.  According to the
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bootstrap distribution, if )0)ˆ(ˆ ( >jj XwP  is less than 0.025 or exceeds 0.975 (evidence that the weight

of evidence is strongly negative or strongly positive respectively) then we boldfaced the variable in Table
2.  This amounts to a α=0.05 test based on the bootstrap percentile interval [Efron B, 1993 #13].  This is
analogous to the p < .05 used to determine statisical significance in other statistical models.  The bold
faced weights of evidence indicate that the associated variable is an independent significant predictor for
or against surgery.

Prior -1 (11)

Variable negative positive
Unilateral -29 (64) 5 (7)
Injury -50 (23) 39 (14)
Locking -6 (3) 172 (50)
Instability -14 (5) 88 (50)
Mechanical -1 (31) -4 (25)
Anterior pain 0 (17) -4 (38)
Local pain 23 (32) -10 (12)
Sports related 14 (15) -19 (15)
Industrial -5 (8) 34 (96)
Prior surgery 12 (8) -26 (41)
Prior injury -7 (9) 20 (33)
Depression -5 (8) 14 (64)
Effusion -72 (24) 85 (29)
Range loss -8 (15) 12 (22)
Instability MCL 6 (4) -140 (53)
Instability LCL -4 (2) 133 (36)
Instability ACL -34 (7) 298 (19)
Patella crepitus -11 (29) 13 (34)
McMurray’s -38 (25) 56 (52)
Tender med JL -30 (14) 49 (18)
Tender lat JL -20 (9) 50 (29)
Tender anterior 13 (6) -72 (89)

Male Female
Sex -6 (13) 8 (14)

≤ 24 25 - 32 33 - 46 ≥ 47
Age -3 (37) 28 (22) -1 (26) -12 (23)

None Slow Rapid
Swelling -41 (40) 58 (37) -29 (23)

No Yes Arthritis
XR-fracture 64 (75) -22 (14) 45 (60)

Table 2: Estimated weights of evidence

The weights in Table 2 are additive.  That is, to determine the total weight of evidence in favor of a
patient needing knee surgery the physician merely needs to elicit a collection of indicants, sum the
associated weights, and note the magnitude and sign of the total weight.  The total weight may be
converted into a probability by the following formula
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or by the conversion table shown in Table 3 as well as in Figure 1.

Probability Total
weight of evidence

10% -220
20% -139
30% -85
40% -41
50% 0
60% 41
70% 85
80% 139
90% 220

Table 3: Conversion from weight of evidence to probability

Total weight of evidence
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Figure 1: Conversion from weight of evidence to probability

For a new patient a physician could easily create an evidence balance sheet (Spiegelhalter and Knill-
Jones) [Spiegelhalter DJ, 1984 #7] from Table 2.  Table 4 shows an example of such an evidence balance
sheet.

Evidence in favor of knee surgery Evidence against knee surgery
Female +8 Age 50 -12
Knee is unstable +88 No effusion -72
Knee locks +172 Negative McMurray’s -38
Tender med JL +49
Total positive evidence +317 Total negative evidence -122

Total evidence +195
Probability of knee surgery 88%

Table 4: Example evidence balance sheet
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Performance
As described in the methods, during the construction of the boosted naïve Bayes classifier the classifier
has access to the records of a subset of the patients.  The model, using parameter estimates obtained from
these observations, then attempts to predict which of the remaining patients will require knee surgery.
Restricting the number of patients in the training set and estimating the misclassification rate on the test
set yields the model’s “learning curve”.  Figure 2 shows the estimated learning curve for the necessity of
knee surgery.  With our training set of 66 patients we predicted knee surgery in the test group of 33
patients with 87% accuracy.

Number of training examples

A
cc

ur
ac

y

20 30 40 50 60 70 80

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

Figure 2: Learning curve for predicting the necessity of knee surgery
(mean misclassification with 1st and 3rd quartiles)

DISCUSSION

For a patient with a knee complaint at initial presentation, the results support the hypothesis that
applying statistical methods to analyze historical and physical exam variables can accurately predict the
probability that the patient will need knee surgery.  In our patient population with a training set of 66
patients, the model predicts the likelihood of surgery with 87% accuracy employing all of the variables
collected.  As evidenced by the learning curve, for up to about 50 patients the accuracy increases steeply
and beyond that the curve begins to level off.  However, extrapolating the learning curve beyond 80
patients seems to indicate that the accuracy can potentially improve further with the addition of more
patients.  This information is useful in planning an appropriate sized training set which any practice could
employ to develop a model based on its own patient population.

The greatest advantage of this tool is that a practitioner can develop a model using his/her own
training set so the predictions will reflect their practice experience. Our patient training set allows
accurate estimates for our clinic, but can not estimate surgical probability with the same accuracy over a
wide range of patient populations.  For the data collection period, our clinic was staffed by two orthopedic
surgeons and one primary care sports physician.  A proportion of our patients had ACL tears and were
referred for surgery.  As a result, in this patient set, the finding of anterior laxity had a significant weight
of evidence toward surgery.  Were the data set collected in a non-surgical, non-sports clinic, a greater
number of ACL tears would likely be managed successfully without surgery.  Our weights of evidence
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would not be accurate for that patient population, but the classification system using those patients as a
training set would accurately predict surgical probability for that practice.

A second useful feature of the model is the ability to provide weights of evidence for individual
variables.  When faced with conflicting clinical variables, it is useful to have an understanding of the
significance of those variables relative to a given outcome.  For example, in a patient with localized
medial tenderness to palpation, an effusion, and a negative McMurray’s; the surgical probability is 70% to
80%.  The negative McMurray’s goes against a surgical diagnosis, but it is outweighed by the other two
findings.  Adding a locked knee to the clinical picture increases the surgical probability to greater than
90%.  On the other hand, adding medial instability to the original findings drops the probability of
surgery to just under 40%.  Clinically this makes sense because with medial instability, an MCL tear,
generally managed non-operatively becomes a more likely diagnosis.  The effusion, more likely with
internal derangement than an isolated MCL tear, adds to the probability of surgery. If the effusion is
absent, leaving only medial joint line tenderness and medial instability, the likelihood of an isolated MCL
tear increases, and the probability of surgery drops to less than 30%.  The model achieves its high
accuracy incorporating all of the clinical variables.  Practically speaking though, without the aid of a
computer, the process of clinical decision making involves assessing the relative importance of a handfull
of clinical variables.  The model is also useful in this arena, by assigning specific weights to individual
variables, thereby assisting the practitioner in unraveling seemingly conflicting findings.

The surgical probabilities also provide useful information regarding further diagnostic tests.
Many surgeons feel pressured by patients or their insurance companies to order an MRI as additional
“proof” that a patient needs a surgical intervention for their suspected clinical diagnosis.  In a patient with
a high probability of surgery, it may be more cost effective to proceed directly to arthroscopy than to invest
time and money obtaining an MRI.  In patients with an intermediate probability of surgical intervention,
an MRI may provide useful additional information regarding diagnosis and subsequent treatment.

For primary care providers the probabilities are useful regarding medical decision making and
referrals.  For patients with high surgical probabilities, an orthopedic referral may be more cost effective
than further diagnostic testing or a course of non-surgical treatment.  With lower probabilities of surgery,
further diagnostic testing may establish an accurate diagnosis and then based upon the diagnosis, a
rehabilitation program may be prescribed.  Some of these patients may eventually come to surgery, but the
probability is that they will not, and an unnecessary orthopedic referral may be avoided.  This assumes of
course that the primary care provider is able to make a working diagnosis on which to base treatment.
Regardless of the surgical probability, referral to a musculoskeletal specialist is always warranted if the
diagnosis remains elusive and the patient is not seeing improvement over a reasonable time course.

The data also may be useful for patient triage in a system partitioning patients between surgical
and non-surgical providers.  Using our weights of evidence; patients with a history of injury, locking, or
instability would best be referred to a surgeon for evaluation because the probability that they will need
surgery is high.  Alternatively, patients who deny swelling, injury, locking, or instability could start with a
non-surgical provider because the probability that they will need to be referred on for surgery is low.

Limitations of this study include retrospective data collection.  We are currently in the process of
collecting prospective data in the same clinic to validate the accuracy of the model.  Because two of the
three providers in the clinic were orthopedic surgeons, one can argue that the patient population was
biased toward surgical intervention.  While this may be true, this model can accurately reflect any patient
population by simply using that population as the training set.  We are currently in the process of
designing an interface through which different training sets can be easily entered.  We are also working
on a modification of the classifier that would allow the prediction of a diagnosis in addition to a surgical
probability.  A given diagnosis, unlike the probability of surgery, is not a binary variable complicating the
statistical analysis.  A multidimensional weight of evidence table would be cumbersome, but the model
may be able to pick a most likely diagnosis out of a group of possibilities.  This work is ongoing.
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One potential inconsistency in the results is that swelling is not significant as an isolated variable
but the presence or absence of effusion is highly significant.  Clinically we do not feel that this data is
inconsistent because effusion is an objective finding and swelling a subjective report.  Many times,
patients erroneously think their knees are swollen or do not recognize an effusion that is clearly present on
exam.  Not surprisingly, swelling has large weights of evidence, but also large standard deviations
resulting in its lack of significance as an isolated variable.

In conclusion, our findings support the notion that statistical analysis of clinical variables can
predict the probability of surgery with close to 90% accuracy.  Analysis of the variables using a boosted
naïve Bayes classifier can estimate the probability of a surgical outcome, as well as provide weights of
evidence for the individual variables.  An attractive characteristic of this model is that it has the potential
to “train” on any patient population for which the clinical variables and surgical outcome are compiled,
and as a result, the predictions can be made directly applicable to any given practice.  In a medical
workplace with increasing utilization of computer technology and a practice environment with increasing
pressures to control costs, referrals, and diagnostic procedures; computer assisted diagnostic tools will
likely gain in popularity.  The boosted naïve Bayes classifier is one example of a computer diagnostic tool
with a role in clinical practice.

Appendix A: Naïve Bayes classification
If the random variable Y represents the necessity of knee surgery (0 – not necessary, 1 – necessary) then
Bayesian classification predicts Y to be the label k which maximizes P(Y=k | X1, …, Xd).  That is, given a
list of observed features X1, …, Xd consisting of historical and clinical exam variables, predict that knee
surgery is necessary if P(Y=1 | X1, …, Xd) > P(Y=0 | X1, …, Xd) and otherwise predict that knee surgery is
not necessary.  The naïve Bayes assumption is that the observed features, Xi, are independent of one
another given the necessity or non-necessity of knee surgery.  Although this is almost never satisfied in
practice, the model has repeatedly proved itself to be robust to dependencies (Domingos and Pazzani)
[Domingos, 1996 #10].  Furthermore, this assumption greatly simplifies the estimation of the parameters
and the classification rule.
Naïve Bayes classification model
Classify an observation to the class k that maximizes
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The parameters of the naïve Bayes classification model, the P(Xi | Y=k)’s and P(Y=k)’s, are trivial to
estimate from a training data set even in the presence of missing X’s.


