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Abstract
In problem situations where observations consist of a
sequence of events, Markov models often prove useful.
However, when there is suspected heterogeneity among
the Markov transition kernels generating the observed
sequences, more refined methods become necessary.  In
this paper we describe a probabilistic method for
clustering Markov processes with a pre-specified
number of clusters. We derive a Gibbs sampler and a
computationally efficient hybrid MCMC-constrained
EM algorithm.

Introduction

Consider an s-state discrete Markov process (Ross
[1993]) where the transition matrix for the process is
unknown.  Further assume that a dataset of N such
processes, possibly of different length, exists in which
each process came from one of m transition matrices
and an associated initial state distribution.  Therefore,
we should be able to cluster together those processes
that share the same underlying Markov transition
structure.  In this problem setting we do not know the
elements of the m transition matrices and their
associated initial state distributions, the proportion of
processes in each cluster, nor the cluster membership of
each process.  Since the cluster membership is an
unobservable or latent variable, closed form maximum
likelihood estimators are unobtainable.

Ridgeway [1997] describes an application to modeling
user traversal of web sites. Although unobservable, site
analysts might believe that certain classes of customers
visit their site, developers, investors, etc.  In order to
learn how users traverse their site, to improve site
design, and for collaborative filtering, the analyst needs
to consider the heterogeneity of the population when
clustering users.

Likelihood and posterior distribution

Let (�)Pij be the (i,j) element of the �th probability
transition matrix, or the probability that a process in
cluster � would transition from state i to state j.  Also let
(�)pi be the i th element of the initial state distribution of
processes from cluster �.  For each of the N Markov
processes, indexed by a superscript (k), we observe an
initial state, i0, and the number of times the process
transitioned from state i to state j, nij.  Lastly, δ

�

(k) is the
unobserved 0/1 indicator that process k belongs to
cluster �.  Therefore, the likelihood function is
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 In the absence of prior information, specifying
uninformative priors in straightforward.  The rows of
every cluster’s probability transition matrix and every
cluster’s initial state distribution all receive
uninformative, s dimensional Dirichlet priors.  Let α be
vector of length m of the mixture proportions so that δ(k)

will be distributed multinomial(1,α).  Lastly, we assign
an uninformative Dirichlet hyperprior to α.  Therefore,
the posterior distribution of the unknown model
parameters follows by Bayes’ Theorem.
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Assuming that the first order Markov assumption is
correct, this distribution captures all of the information
about the process clustering that is contained in the
data.  However, this distribution is rather complex and
all of the usual distribution summary values (mean,
variance, etc.) are extremely difficult to extract.
Appealing to a Markov Chain Monte Carlo approach
(Hastings [1970], Gelman, et al [1995]) to sample from
this distribution can avoid this problem with a degree of
computational cost.

In this paper we use a Gibbs sampling algorithm that
partitions the parameters into blocks for which
sampling from the conditional distribution of any block
given the remaining blocks is easy.  Each row of every
cluster’s probability transition matrix, each cluster’s
initial state distribution, the mixture proportions, and
each δ(k) form the blocks.  The Gibbs sampling
algorithm draws updates for each block in turn
conditional on the current values of the other blocks,
denoted by a superscript minus.
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Where Z is the appropriate normalizing constant.

These distributions have a rather intuitive interpretation
as well.  The row updates come from a distribution
where the expected value is approximately the MLE for
the row if the cluster assignments, δ, were known.  The
vector α come from a distribution where the expected
value is approximately the mixture proportions if,
again, the cluster assignments were known.  Lastly, the
cluster assignments are drawn such that the probability
of each cluster is proportional to the mixture probability
times the likelihood of the observation coming from the
associated transition matrix.

As with all MCMC implementations of parameter
estimation for mixture models, this method can suffer
from the “label switching” problem.  The posterior
density for a particular labeling of the clusters is equal
for any other permutation of the labels.  If the clusters
are “far apart” then it is unlikely that label switching
would occur.  However, with weak data or clusters that
are very close label switching can be common place.  In
normal mixture models constraints are often imposed to
insure identifiability.  However, constraints such as
these alter the posterior distribution and in a problem
such as this one might not even be possible. A more
appropriate method would detect switches in the labels
and make corrections.  Stephens [1996] proposes such a
method.

Furthermore, MCMC algorithms tend to be slow to
converge.  Here we propose a hybrid MCMC-
constrained EM algorithm that has shown substantial
computational improvement.

A Constrained EM algorithm

The block conditional distributions shown in the
previous section have a particularly nice feature.  All of
the probability parameters depend only on the cluster
assignments and the observable data.  The reassigning
of processes to clusters then depends only upon the
probabilities.  This observation leads to the following
algorithm.

1. Randomly assign the processes to clusters.

2. Rather than sampling from a Dirichlet to update the
probability estimates, estimate the probabilities
using the expected value of the block conditional.

3. Reassign each process to the cluster that most
likely generated it.  The vector of probabilities for
a process belonging to each cluster is exactly the
multinomial probability parameter for the δ(k) block
conditional.

4. If none of the processes have been assigned to a
different cluster then stop.  Otherwise, go to step 2.

Hartigan’s k-means algorithm (Hartigan, et al [1979],
Forgy [1967]) is analogous to this hard cluster
assignment formulation for normal mixture models.

The constrained EM approach lacks accuracy and detail
but has the advantage of speed.  The Gibbs sampler on
the other hand can be used to compute arbitrary
functionals of the distribution but takes several orders
of magnitude longer to iterate to reasonable accuracy.
Naturally a hybrid algorithm may be useful to borrow
from the strengths and diminish the affect of the
weaknesses of both algorithms.  A hybrid algorithm
iterates the constrained EM algorithm to convergence.
The cluster assignments from the constrained EM
algorithm provide initial assignments for the Gibbs
sampler.  Then, with little or no burn-in, the Gibbs
algorithm runs until it obtains decent estimates for the
posterior means and variance of the parameters.

Summary

Analysis of sequences of events in which homogeneity
of transition probabilities is suspect might benefit from
this method. This algorithm not only segments the
sequences but also gives interpretable results from
which the analyst can readily draw application specific
conclusions.
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