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In problem situations where observations consist of a =0 =1 =t
sequence of events, Markov models often prove usefuln the absence of prior information, specifying
However, when there is suspected heterogeneity amowiginformative priors in straightforward. The rows of
the Markov transition kernels generating the observezlery cluster’s probability transition matrix and every
sequences, more refined methods become necessarycluster's initial state distribution all receive
this paper we describe a probabilistic method fauninformative,s dimensional Dirichlet priors. Let be
clustering Markov processes with a pre-specifiedector of lengthm of the mixture proportions so tha?
number of clusters. We derive a Gibbs sampler and\@| pe distributed multinomial(Ly). Lastly, we assign
computationally efficient hybrid MCMC-constrained 5, ,ninformative Dirichlet hyperprior ta. Therefore,

EM algorithm. the posterior distribution of the unknown model
Introduction parameters follows by Bayes’ Theorem.

Consider ans-state discrete Markov process (Rossf(p,P,d,a|n)0

[1993]) where the transition matrix for the process is — ®

unknown. Further assume that a dataseNo$uch N s & e H LR
processes, possibly of different length, exists in which “ H El) pigp I_] I_l R * ﬂ H a

each process came from one moftransition matrices o - o

and an associated initial state distribution. Thereforassuming that the first order Markov assumption is
we should be able to cluster together those process@grect, this distribution captures all of the information
that share the same underlying Markov transitioBphout the process clustering that is contained in the
structure. In this problem setting we do not know thgata. However, this distribution is rather complex and
elements of them transition matrices and their g of the usual distribution summary values (mean,
associated initial state distributions, the proportion Gfariance, etc.) are extremely difficult to extract.
processes in each cluster, nor the cluster membershippggpea”ng to a Markov Chain Monte Carlo approach
each process. Since the cluster membership is Bastings [1970], Gelmamt al [1995]) to sample from

unobservable or latent variable, closed form maximufhis distribution can avoid this problem with a degree of
likelihood estimators are unobtainable. computational cost.

Ridgeway [1997] describes an application to modeling, this paper we use a Gibbs sampling algorithm that
user traversal of web sites. Although unobservable, sigtitions the parameters into blocks for which
analysts might believe that certain classes of customefgmpling from the conditional distribution of any block
visit their site, developers, investors, etc. In order tgiven the remaining blocks is easy. Each row of every
learn how users traverse their site, to improve sit§uster's probability transition matrix, each cluster's
design, and for collaborative filtering, the analyst needgitial state distribution, the mixture proportions, and
to consider the heterogeneity of the population wheg,chy 89 form the blocks. The Gibbs sampling

clustering users. algorithm draws updates for each block in turn
- . N conditional on the current values of the other blocks,
Likelihood and posterior distribution denoted by a superscript minus.

Let )P; be the (j) element of the/™ probability . W . . S 5091101
transition matrix, or the probability that a process inf(,pl,p".0 O[], Pl = K A 1L
cluster/ would transition from stateto statg. Also let i o -
(Pi be thei™ element of the initial state distribution of
processes from clustét For each of thé\ Markov N s I ié‘mn&n
processes, indexed by a superscrigt e observe an f(,R. [ R MO H %1 oB’ E = ” 0B
initial state,io, and the number of times the process o L
transitioned from stateto statg, n;. Lastly,5,% is the = Dirichlefd + 3 5" ,... 1+ 3 5"n" H
unobserved 0/1 indicator that processbelongs to

cluster?. Therefore, the likelihood function is

= Dirichlet[y.+ FEMIIY =1), . 1+ TP = 9f
k=1 k=1




$ 50 3. Reassign each process to the cluster that most

f@la”,n O Ua.: likely generated it. The vector of probabilities for
o W © N g a process belonging to each cluster is exactly the
= D'r'ChleﬁJr 20 At 3 0y E multinomial probability parameter for th# block
n . . W id® conditional.
f(@“ 6%, 0 D%’w'uﬁ“u i oh’ a 4. If none of the processes have been assigned to a

different cluster then stop. Otherwise, go to step 2.

] s .S () s .S )
= Mult %Wl. O pﬂk) &) PU T T (m pm m P“ i % i . .
E' oo rJ R s ” ﬂ " Hartigan's k-means algorithm (Hartigaet al [1979],
WhereZ is the appropriate normalizing constant. Forgy [1967]) is analogous to this hard cluster

These distributions have a rather intuitive interpretatio%SSIgnment formulation for normal mixture models.

as well. The row updates come from a distributiofhe constrained EM approach lacks accuracy and detail
where the expected value is approximately the MLE fdsut has the advantage of speed. The Gibbs sampler on
the row if the cluster assignmends were known. The the other hand can be used to compute arbitrary
vector a come from a distribution where the expectedunctionals of the distribution but takes several orders
value is approximately the mixture proportions if0f magnitude longer to iterate to reasonable accuracy.
again, the cluster assignments were known. Lastly, tiNaturally a hybrid algorithm may be useful to borrow
cluster assignments are drawn such that the probabilffpm the strengths and diminish the affect of the
of each cluster is proportional to the mixture probabilityveaknesses of both algorithms. A hybrid algorithm
times the likelihood of the observation coming from théterates the constrained EM algorithm to convergence.
associated transition matrix. The cluster assignments from the constrained EM

) ) i algorithm provide initial assignments for the Gibbs
As with all MCMC implementations of parametergympier  Then, with litle or no burn-in, the Gibbs

estimation for mixture models, this method can suffeg,qorithm runs until it obtains decent estimates for the
from the “label switching” problem. The posterior,qsterior means and variance of the parameters.
density for a particular labeling of the clusters is equal

for any other permutation of the labels. If the clusters Summary

are “far apart’ then it iunlikely that label switching Analysis of sequences of events in which homogeneity

would occur. However', W'.th weak data or clusters th transition probabilities is suspect might benefit from
are very close label switching can be common place. fis method. This algorithm not only segments the

normal mixture models constraints are often imposed : .

insure identifiability. However, constraints SFL)JCh ag, guences but also gives mterpretab!e r'esults frqm
. P . hich the analyst can readily draw application specific

these alter the posterior distribution and in a prObIe'&)nclusions

such as this one might not even be possible. A more ’
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