
A Discussion of Disease Prediction and Model Validation

Greg Ridgeway
RAND Statistics Group

August 13, 2008

A few comments, additions, and views

Introduction

- ❖ A few comments, additions, and views

Calibration

Modern prediction methods

Weight of evidence scorecard

Conclusion

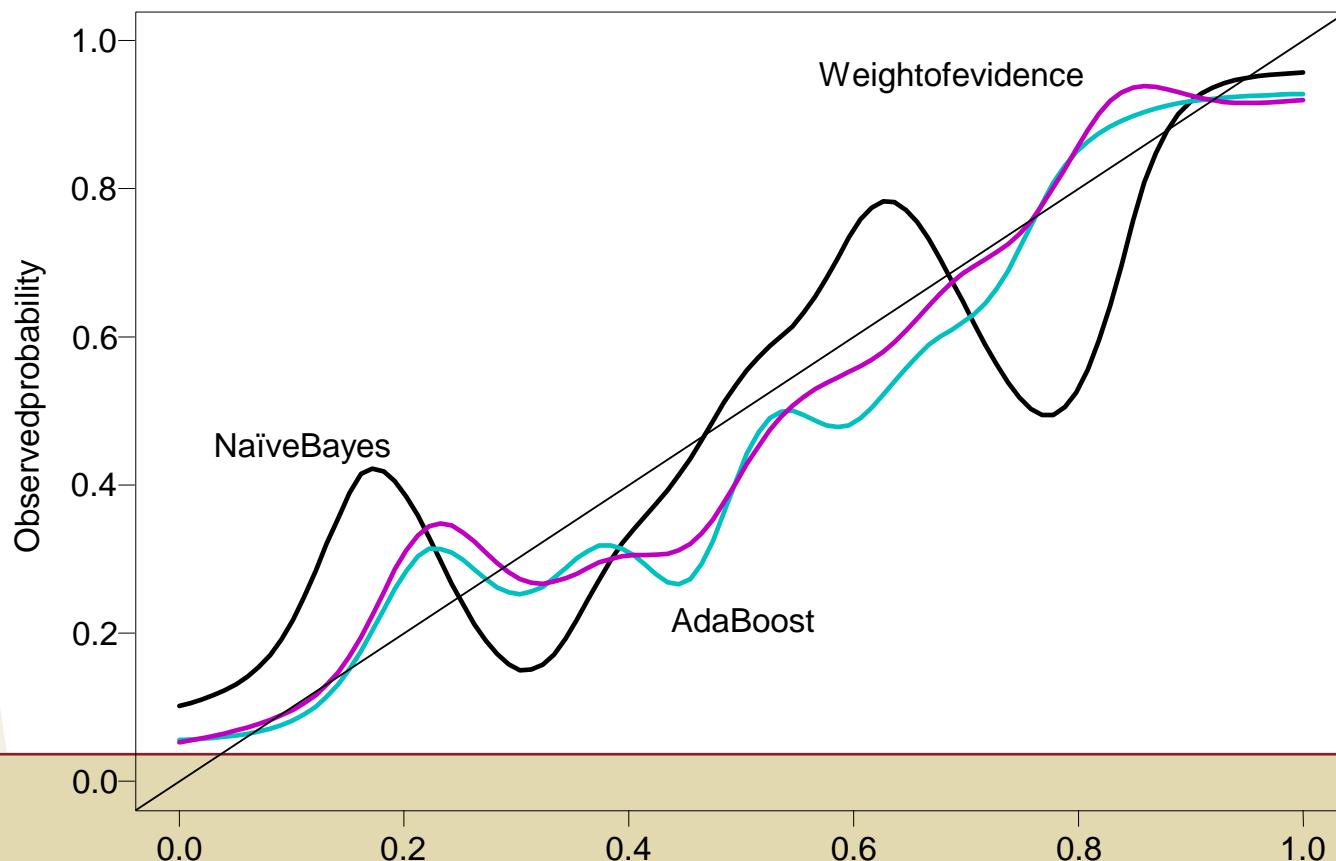
- Brier score: a useful decomposition of discrimination and calibration
- Modern statistical prediction methods: L_1 shrinkage with lots of covariates
- Weight of evidence scorecard

Gönen: Calibration matters

Introduction

Calibration

❖ Gönen:
Calibration matters


❖ Brier score

Modern prediction
methods

Weight of evidence
scorecard

Conclusion

- Better performance through improved calibration - criticized at a data mining conference as irrelevant
- Yates (1982) suggested that organizational psychologists were too focused on calibration

Brier score

Introduction

Calibration

❖ Gönen:
Calibration matters

❖ Brier score

Modern prediction
methods

Weight of evidence
scorecard

Conclusion

$$\frac{1}{N} \sum_{i=1}^N (y_i - p(\mathbf{x}_i))^2$$

$$= \bar{y}(1 - \bar{y}) - \frac{1}{N} \sum_{k=1}^K n_k (\bar{y}_k - \bar{y})^2 + \frac{1}{N} \sum_{k=1}^K n_k (p_k - \bar{y}_k)^2$$

= uncontrollable variation + resolution + calibration

- Resolution is large (very negative) when we can discriminate the 0 outcomes from the 1s, when the average outcome given prediction p_k near 0 or 1
- Calibration is the ability to assign meaningful probabilities to the outcomes.

Sun & Bang: Logistic regression

[Introduction](#)

[Calibration](#)

[Modern prediction
methods](#)

**❖ Sun & Bang:
Logistic regression**

**❖ L_1 shrinkage and
regression**

[Weight of evidence
scorecard](#)

[Conclusion](#)

- Indicate good out-of-sample predictive performance
- Both carefully handled data (e.g. survey weights, correlations)
- Modern statistical prediction methods might squeeze out more signal, especially with $N = 12,000$

L_1 shrinkage and regression

Introduction

Calibration

Modern prediction
methods

❖ Sun & Bang:
Logistic regression

❖ L_1 shrinkage and
regression

Weight of evidence
scorecard

Conclusion

$$\ell(\beta) = \sum_{i=1}^n y_i \beta' \mathbf{h}(\mathbf{x}_i) - \log \left(1 + e^{\beta' \mathbf{h}(\mathbf{x}_i)} \right) - \lambda \sum_{j=1}^J |\beta_j|$$

- Let $\mathbf{h}(\mathbf{x})$ be piecewise constant functions of the x_j s and their interactions, $I(BMI < 20)$, $I(COPD \text{ Hx=NA})$, or $I(\text{age} < 40)I(\text{waist} > 90)$
- Efron *et al* (2004) LARS essentially showed that boosting essentially implements this, but avoids constructing the full design matrix
- The `gbm` package in R implements this

Spiegelhalter & Knill-Jones (1984)

Introduction

Calibration

Modern prediction
methods

Weight of evidence
scorecard

❖ Spiegelhalter &
Knill-Jones (1984)

❖ Weights of
evidence

❖ Evidence balance
sheet

Conclusion

- Report: "Despite encouraging results in a research context, statistical systems have had limited practical impact"
- Suggest the failure of statistical systems results from being *too simplistic, inapplicable, and incomprehensible*
- Present a weight-of-evidence scorecard that accommodates "ignorance" and "conflict of evidence"

Weights of evidence

Introduction

Calibration

Modern prediction
methods

Weight of evidence
scorecard

❖ Spiegelhalter &
Knill-Jones (1984)

❖ Weights of
evidence

❖ Evidence balance
sheet

Conclusion

$$\begin{aligned} WOE &= \log \frac{P(Y = 1 | \mathbf{X} = \mathbf{x})}{P(Y = 0 | \mathbf{X} = \mathbf{x})} \\ &= \log \frac{P(Y = 1)}{P(Y = 0)} + \log \frac{P(X_1 = x_1 | Y = 1)}{P(X_1 = x_1 | Y = 0)} + \dots \\ &\quad + \log \frac{P(X_d = x_d | Y = 1)}{P(X_d = x_d | Y = 0)} \\ &= w_0 + w_1(x_1) + \dots + w_d(x_d) \end{aligned}$$

- All of the probabilities can be calculated in a single scan of the dataset
- They also propose shrinking the estimates with a logistic regression $\beta_0 + \beta_1 w_1(x_1) + \dots + \beta_d w_d(x_d)$

Evidence balance sheet

Introduction

Calibration

Modern prediction
methods

Weight of evidence
scorecard

❖ Spiegelhalter &
Knill-Jones (1984)

❖ Weights of
evidence

❖ Evidence balance
sheet

Conclusion

Evidence in favor of chronic		Evidence in favor of acute	
Tingle	+22	Prior	-199
Depressed	+16	No leg pain	-2
Attention problem	+61	No hearing loss	-7
Insurance company = DMAB	+128	Marital status: Widow	-25
Lawyer	+174	French speaking	-28
Total positive evidence	+401	Total negative evidence	-261
Total evidence	+140		
Probability of chronic whiplash	80%		

Conclusions

Introduction

Calibration

Modern prediction
methods

Weight of evidence
scorecard

Conclusion

❖ Conclusions

- Partnering prediction models with experts and the public offers opportunities to improve care, reduce costs, and avoid errors
- Significant barriers remain. We need to make them capture complexity, widely applicable, and understandable
- What better validation of progress is there than the CBS Early Show?