
Looking for lumps:
boosting and bagging for density estimation

Greg Ridgeway
RAND Statistics Group

Santa Monica, CA 90407-2138

gregr@rand.org

Abstract

The solution to data mining problems often involves discovering non-linear re-
lationships in large, noisy datasets. Bagging, boosting, and their variations have
produced an interesting new class of techniques for finding these relationships in
prediction problems. In this paper I extend these methods to the design of algo-
rithms for density estimation for large, noisy, high dimensional datasets. Analogous
to the boosting framework, the algorithms iteratively mix the current density estima-
tor with an additional density chosen in a greedy fashion to optimize a fit criterion.
A bagging step helps to control overfitting by providing better estimates of the fit
criterion. I derive optimization algorithms for the boosting steps, discuss strategies
for massive datasets, and show results from real and simulated problems.

Keywords: Density estimation, boosting, bagging, data mining

1 Introduction

This paper introduces a new algorithm for density estimation. Although that is
the end product, I intend for this paper to show much more. Classification problems
consume much of the focus from the researchers primarily associated with boosting
and bagging methods. I will show that boosting and bagging are extremely flexible
and that these methods provide a natural solution to the density estimation problem.
Furthermore, they provide a transparent way to decrease bias and control variance.

In the remainder of this section I will briefly discuss heuristics of boosting and
bagging. I will also discuss the density estimation problem. Section 2 will develop
a boosting algorithm for density estimation that uses the EM algorithm and normal
distributions as the base component of the estimator. I will also discuss a simple
way to accelerate EM in this situation. Section 3 will demonstrate the algorithm on
some test datasets.

1.1 Boosting and bagging

Computational learning theorists first started studying boosting methods in the
context of classification problems. The AdaBoost algorithm (Freund and Schapire
1997) in particular brought boosting to the forefront of modern prediction meth-
ods. Early on this algorithm seemed to have an uncanny ability to produce some
of the lowest misclassification rates on standard test datasets of any off-the-shelf
classifier. Recent explanations of its performance characteristics have focused on
boosting as a gradient descent algorithm that searches for the classifier that mini-
mizes some loss function (Breiman 1999a, Friedman et al. 2000, Mason et al. 2000).
Once understood as a familiar optimization problem, the idea behind boosting be-
comes applicable to a variety of other prediction problems including non-linear and
robust non-linear regression (Friedman 1999) and non-linear exponential family and
survival regression models (Ridgeway 1999). Boosting has a rigorous definition in
computational learning theory. However, in this paper, although it might be a mis-
use of the term, I use “boosting” to describe gradient-based functional optimization
algorithms that fit non-linear functions to data.

Functional gradient methods, like boosting, begin with a vague guess for the
classifier, regressor, or density estimate. Subsequent iterations add or mix a new
component that offers the largest local decrease in error (misclassification, squared-
error loss, or entropy depending on the application). Generally these algorithms
will overfit the training data if allowed to proceed unchecked. Each iteration pro-
gressively decreases prediction bias without monitoring prediction variance. The
strategy has been to run the optimizer for a fixed number of iterations, selected
via cross-validation, and stop before the increase in variance offsets the decrease in
bias. A key ingredient for boosting to be successful is to use low-variance predictors
on each iteration. Bagging (Breiman 1996a) reduces variance by combining several
models, each fit to bootstrap samples of the dataset. Breiman (1999b) proposed
combining boosting and bagging ideas together with the expectation that boosting’s
bias reduction together with bagging’s variance reduction could produce excellent
predictive models. He introduces a clever automatic procedure using out-of-bag ob-
servations for choosing when to halt the optimizer. In this paper I will adapt these
ideas for use in density estimation.

1.2 Density estimation

Assume that we observe a dataset of � independent and identically distributed�
-dimensional observations, ���������	�	�
��� drawn from an unknown density
������ . The

problem is to produce an estimate, �
������ , of
������ from the dataset alone. We can
assess the quality of the estimate using the expected log-likelihood� ���
���������� �"!#�
������ (1)

where the expectation is taken with respect to the true density
������ . The �
������ that
maximizes

� ���
�� is indeed the true density. Since we do not know
������ we can

approximate
� ���
�� as �� �$�
��%� &� �'(*) � � �+!,�
-��� (� (2)

The density that optimizes �� ���
�� is one that puts point masses on the observed � (.
Although this maximizes �� ���
�� , the approximation breaks down as �
-����� approaches
such a point mass distribution since the variance of the empirical estimate of

� ���
��
becomes large. To prevent this we usually impose smoothness constraints. Much
research in density estimation focuses on how to best smooth �
������ .

Although we are dealing with density estimation, the problem is akin to previous
applications of boosting. They share these common features.. There is a functional measuring generalization error or model fit,

�
.. We want to find a function that maximizes (or minimizes) the objective func-

tion,
�

.. We cannot compute
�

explicitly but can only approximate it with our sample.

In fact, a large class of statistical problems matches this description. Boosting, or
gradient style functional optimization, seems to offer a competitive solution in this
scenario. In classification problems boosting sequentially mixes classifiers together,
each additional classifier reducing misclassification error. In the next section I pre-
sent a boosting algorithm for density estimation that sequentially mixes distribu-
tions together to maximize the expected log-likelihood.

2 A boosted density estimator using mixtures

In this section I present an algorithm for density estimation that approaches the
problem as a functional optimization problem. That is, the algorithm involves gra-
dient ascent style adjustments to a current guess for the density in order to optimize
a likelihood.

As previously mentioned, a good density estimator has large expected likeli-
hood. If we let �
������ be an initial guess for the density then we can increase

� ���
��
by mixing �
������ with some other density, /������ , chosen from some class of distribu-
tions so that

� �0� &%132 � �
54 2 /6� is larger than
� � �
�� . Two potentially ideal candidates

for /7����� are the multivariate uniform and normal densities. For a
�
-dimensional � ,

the uniform is compact since it requires 8 �
parameters. However, finding those pa-

rameters seems computationally challenging and I did not pursue that further. The
normal density, 9:����;
<��>=?� , requires more parameters, 8 � 4 � � � 1@& �
A"8 , but estimat-
ing them is linear in the number of observations. Other candidates are possible but
I will not consider these here.

Focusing now on the normal case, we can try to select < , = , and a mixing pro-
portion parameter,

2
, so that� �
� &B1#2 ���
C4 2 9��%���%���D�"!FE�� &B1,2 ���
�������4 2 9G����;H<��I=F�KJ (3)

is larger than
� ���
�� . Once those parameters have been found, we can update our

density estimate as �
�������L � &B1,2 � �
������$4 2 9:����;H<��>=?��� (4)

By repeatedly finding �M<��I=N� 2 � and updating �
������ so that
� �-�
�� increases, we move

through the space of density functions on a path of densities approaching the true
density.

The main difficulty, of course, is that in practice we cannot compute the expec-
tation in (3). We can estimate (3) using our sample since� �
� &B1#2 ���
C4 2 9��PO &Q R'(*) � � �"!FE�� &B1,2 ���
���� (�$4 2 9G��� (;
<��>=?�SJ� �� �
� &B1,2 � �
F4 2 9��I� (5)

We end up with an ill-posed optimization problem since we can only approximate
the objective function. Furthermore, the �M<��I=F� that maximizes (5) is a point mass
on any one of the � (. With such values for the parameters, the approximation in (5)
is poor.

Nevertheless, with our sample we can carefully estimate a sequence of ��<��>=T� 2 �
constructing our path toward a good density estimate. Each step on this path will
need to be cautious about the variance of �� � �
�� . We can then try to halt progress
on this path when we can no longer be certain that a move that increases �� � �
7� also
increases

� � �
7� .
2.1 Likelihood optimization using EM

The EM algorithm (Dempster et al. 1977) is one way to propose an update to
the current guess, �
������ , for the density estimate (Wasserman 2000). At a particular
stage we can assume that each observation came from either �
������ with probability&U1V2

or some normal distribution, 9:����;H<��>=?� , with probability
2

. This is only a
slight departure from the usual EM style of estimation for mixture models in that we
fix �
������ and only need to estimate ��<��>=T� 2 � . I will briefly derive the EM algorithm
for this case.

Let W (be the class indicator, 0 if � (�X �
������ and 1 if � (�X 9:����;
<��>=?� . The E-step
computes the expected value of the complete data log-likelihood.Y ��<��>=T� 2 �P� �VZ7R'(*) � � &B1 W (�6�D�"! �
���� (�$4[W (� �+!G9G��� (;
<��>=?�
4� &B1 W (�6�D�"!\� &]1,2 �$4[W (�D�"! 2_^^^ ` �H<��I=N� 2 J� R' (*) � � &B1ba (�6� �"! �
���� (�$4 a (� �"!c9:��� (;H<��>=?��4� &B1ba (�6� �"!d� &B1,2 �$4 a (� �+! 2

(6)

where a (� eT�fW (� &hg � (�
<��>=T� 2 ��� 2 9:��� (;H<��>=?�� &B1,2 ���
���� (�$4 2 9:��� (;H<��>=?�
The M-step finds < , = , and

2
that maximize (6).

� �<�� �=i�jL k+l0!nmTkpoqsr t R' (*) � a (� �"!n9:��� (;H<��I=F� (7)

�2 L k+l0!nmTkpou R' (*) � � &B1ba (�6� �"!d� &B1,2 �$4 a (� �+! 2
(8)

Computation of the M-step produces �< as the weighted mean of � (and �= as the
weighted covariance of � (with weights

a (. The update for
2

is the average of thea (’s. Iterating between the E-step and the M-step yields a sequence of ��<��>=T� 2 � for
which the log-likelihood does not decrease. Note, however, that early iterations of
the EM algorithm might make for a poor modification to �
������ . Subsequent iterations
will make improvements with respect to the starting value so that at convergence the
parameter values should offer a reasonable normal density to mix in with our current
density estimate.

So given a current guess for the density, the EM algorithm proposes a move in
the space of densities along a line segment connecting �
������ to some normal density
that offers an increase in the log-likelihood. Figure 1 summarizes the boosting al-
gorithm for density estimation. The EM algorithm moves quickly toward a region
that increases the log-likelihood but can be painfully slow to actually reach a max-
imum.1 With a little additional effort we can accelerate the EM algorithm in the
neighborhood of the maximum.

2.2 Accelerating EM using Newton-Raphson

Each iteration of the EM algorithm described in figure 1 is fairly fast. It requires
a single scan of the dataset to compute the updates for the model parameters. This
algorithm, however, moves quickly to the rough location of the maximum but could
spend many more, sometimes hundreds more, iterations moving to the maximum.
While Newton-Raphson algorithms tend to be faster, they also require computing
the gradient and Hessian of the observed data log likelihood function. Louis (1982)
showed that the gradient is computable as the derivative of the expected complete
data log-likelihood (6).

1Note that the true maximum puts a point mass on one of the vxw . The EM algorithm fortunately
gets stuck in a more desirable mode. As the boosting algorithm progresses, the density estimate
improves, and the likelihood surface tends to have only modes at y{z,v|w and } for which ~ }�~ is
small. At this point, the boosting algorithm simply needs to reject those proposals for which ~ }�~ is
too small.

Initialize �
������i��9:����; �<-�����=��0� where �<-� and �=�� are the mean and covariance
of the sample. I found that inflating the covariance on the first round by a factor of
four or so improved the algorithm.

While stopping criterion is not satisfied� 2 � �� �H<�� randomly selected � (�>=�� sample covariance of the � (’s
Iterate the EM algorithm� a (� us�+� ����� qsr t��� �S� us�D�	� ��� ���dus�"� ����� qpr t��<b� weighted mean of the � (’s with weights

a (=�� weighted covariance of the � (’s with weights
a (2 � mean of the

a (’s�
Update the density estimate as �
�������L � &B1,2 � �
-������4 2 9:��� (;H<��>=?� .�

Figure 1: Boosting algorithm for density estimation

To ensure that the Newton updates always propose valid parameters I repara-
metrize

2
and = as 2 � && 4[� �x� and =����M���N�M� ���

where � is a lower triangular matrix, the Cholesky decomposition of the precision
matrix. Letting

2
be the logistic transform of � forces

2
to be in ���h� &	�

and defining= in terms of � forces = to be positive definite. The gradient, � , of the observed
data log-likelihood is�� < Y �M<����b�
�7�P� R'(�) � a (���T�	��� (1 <��%��= ��� R' (*) � a (��� (1 <�� (9)��x Y �M<����b�
�7�P� R'(�) � a (E diag �f�¡� ��� 1

LT ¢£��� (1 <��>��� (1 <�� � �¥¤¦J (10)�� � Y �M<����b�
�7�P� R'(�) � a (1 && 4[� �x� � Q �	§aN1¨2 � (11)

where LT(©) indicates the lower triangle of © . The gradient calculation occurs
just after computing the

a (’s, the E-step.
Meilijson (1989) proposed using the empirical Fisher information to estimate

the Hessian, ª . That is, since the score function, ««­¬ Y
, is a sum of

Q
independent

terms we can simply estimate the variance of the score function using the empirical
covariance of the

Q
observed values of the score functions. In high dimensions the

Hessian can become large growing quadratically with
�
. It requires only a single

scan of the dataset and if we can manage to compute it to perform a few Newton-
Raphson steps we can avoid the last slow stages of the EM algorithm. With the
gradient computed and the Hessian approximated we can update our parameters as® L ® 1 ª ��� � . This replaces the parameter updates in figure 1.

Jamshidian and Jennrich (1997) propose an EM style conjugate gradient ascent
algorithm that also could show promise here. Conveniently, it avoids the Hessian
calculation but replaces it with an extra line search.

2.3 Using bagging to automate the stopping decision

So far I have presented a method for iteratively adding mixture components to
the current density estimate. As mentioned in the introduction, boosting methods, if
allowed to proceed unchecked, will eventually overfit the data. In the density esti-
mation case this would lead to a mixture of normals tightly peaked around each data
point. The number of iterations (equivalently the number of mixture components)
needs to be fixed so that the variance of the estimator does not overcome the gains
in bias reduction. I propose a variant of bagging that reduces variance while also
offering an automatic criterion for stopping the algorithm.

The original implementation of bagging proposed by Breiman (1996a) creates
bootstrap replicates of the dataset, fits a model to each, and then averages across the
models. A slightly simpler implementation fits models to half-samples rather than
bootstrap datasets (Friedman and Hall 1999). The result is a “bagged” model that
tends to have equal bias but lower variance than a single model.

Incorporating this strategy into the present problem, on each iteration of the
boosting algorithm I will take one simple random sample of

Q A"8 observations from
the dataset. The EM algorithm will search for the best normal distribution to add to
the mixture based only upon this half of the dataset. In practice this improves the
model fit with the added benefit of reducing the number of observations sent to the
EM algorithm.

Using only half of the observations for proposing the new adjustments leaves
the other half for providing a nearly unbiased estimate of the likelihood gain. We
can use these “out-of-bag” observations (Breiman 1996b) to compute an nearly un-
biased estimate of

� �0� &]1#2 � �
F4 2 9�� 1 � � �
�� , the expected improvement in the log
likelihood of the density estimate. After running the EM algorithm to convergence
we compute ¯ �

as¯ � � '(° out-of-bag
� �"! ¢ � &_1,2 � �
-��� (�$4 2 9:��� (;H<��I=F� ¤ 1 � �"! ¢c�
-��� (� ¤

� '(° out-of-bag
� �"!T±\� &]1,2 �$4 2 9G��� (;
<��>=?��
-��� (� ² (12)

Note that in (12) if the proposed normal puts a lot of mass in a small neighbor-
hood then ¯ �

will be negative, unless there are out-of-bag observations to support
it. When ¯ �

is negative I do not mix the proposed normal into the density es-
timate. This prevents “spiked” density estimates unless the data truly warrant it.
Generally, as components accumulate in the mixture ¯ �

becomes smaller and at
times becomes negative. The quality of the estimate is not very sensitive to mod-
erate changes in the number of iterations. I stop the boosting process when ¯ �

is
negative for several iterations in a row (e.g. 3 or 4). A few additional iterations are
unlikely to affect the density estimator but I also do not wish to waste computation
time.

Note that parts of this algorithm are stochastic. In particular I have elected to
randomly choose an � (as the starting value for < in the EM iterations. The bagging
steps further randomize the algorithm. The implication is that repeat runs of the
algorithm will produce different density estimates.

The components are in place to put together a density estimator that sequentially
reduces bias while controlling variance with an automatic stopping criterion. The
next section demonstrates the algorithm on some simulated and real datasets.

3 Examples

In this section I apply the boosted density estimator to some real and simulated
datasets. For high-dimensional problems there is no readily available density es-
timator. Therefore, for the simulated datasets, I compare the boosted estimator to
density estimates based on knowing the structure of the true density.

3.1 Old faithful data

Scott (1992) presents data on the duration of 107 eruptions of the Old Faithful
geyser. This dataset has become an often used example for density estimation. It
is a small dataset and the algorithm presented in this paper is overkill for such a
problem. However, for visual comparison and to stay in line with tradition I will
assess the boosted density estimate for the Old Faithful dataset. I estimated the
expected log-likelihood (using leave-one-out cross validation) when using a kernel
method and when using the boosted density estimator. A kernel density estimator
with the width selected using unbiased cross-validation (as implemented in S-plus)
yielded an expected log-likelihood of -1.01. For the boosted density estimator, using
all the defaults discussed in the previous section, the estimate of the expected log-
likelihood was -1.07. Figure 2 shows a graphical comparison of the two density
estimates.

2 3 4 5

0.
0

0.
2

0.
4

0.
6

UCV
Boosted

³�´Kµ·¶D¸º¹ »K¼|½K¾�¸ ¿|¾À¾K¼Á¾ÀµÂ´KÃ�¸º¹ »K¼ÀÄ
Figure 2: Old faithful data. The density estimate labeled “UCV” is a kernel density
estimate with a bandwidth selected using unbiased cross-validation. The boosted
density estimate is a mixture of five normals.

3.2 20 dimensional mixture distributions

I simulated 10 datasets each with 100,000 observations from a different 20
dimensional mixture distribution with five equally weighted normal components.
Each component had roughly the same location but with varying shape. For each
dataset I obtained a boosted density estimate. I will report all results on independent
test datasets with 100,000 observations. I evaluated the average log-likelihood for
the boosted density estimate and a density estimate based on knowing that the true
density was a mixture of five normals. We cannot expect the boosted estimator to
compete with more complete knowledge but we should hope that the performance
is close.

When we assume that we know that the true density is a mixture of five 20
dimensional multivariate normal densities we can use the standard EM algorithm
to estimate the components. Since the models are non-nested we cannot compare it
to the boosted density estimator using simple procedures (the log likelihood ratio
does not have a Å �

distribution). At this point I can only present figures that seem to
indicate that the model fit is adequate. The average log-likelihood when knowing the
structure of the true density is -88.40 compared with -89.01 for the boosted density
estimate. This says that for the average observation the boosted density estimate
will be about 0.7% worse in terms of log-likelihood than if we had known the true
structure.

Iteration

ÆÇÈÈ ÉÊÉËÌÉÇ ËÉÍÎ
ÉÌÏ ÉÐÑ ÒÓ Ô
ÑÇÕ ÉÑÇÖ ÒÒÐ

2 4 6 8

5
10

15
20

25

Figure 3: 20 dimensional uniform mixture example. The plot shows the decrease
in the difference between the expected log-likelihood with the true density and the
density estimate as the algorithm iterates. The 10 curves represent the 10 replicates
of the experiment.

The mixture of normals is somewhat well suited to this implementation of the
boosted density estimate (one composed of normals). I repeated the above experi-
ment on a 20 dimensional mixture of five uniforms. I randomly chose the bounds
on each axis constrained to be between 0 and 1. The expected log likelihood under
the true density was approximately 28.5 while the expected log-likelihood under
the density estimate was, on average, about 4.6 lower. Figure 3 shows the difference
between the expected log-likelihood under the true density and under the density
estimate as the algorithm progressively added components to the mixture. On the
10 trials the algorithm added between six and eight components to the mixture.
Figure 4 shows a two dimensional slice of one of the datasets and the associated
density estimate. Upon termination the density estimate has captured the majority
of the mass. However, it seems difficult to capture the corners when using a normal
basis.

3.3 Classification problems

Density estimation can also play a role in constructing classifiers. Assume that×
is a discrete valued random variable taking on Ø possible states. The probability

that
×

takes on a particular state may depend on a feature vector Ù . Straightforward

222

3
4

5

6

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 4: 20 dimensional uniform mixture example. A two dimensional slice of the
data and the density estimate (95% contours). Each contour is labeled by the order
it entered into the mixture. The first component’s contour is outside the graphic.

probability manipulations show thateT� × �VÚ g Ù@�%ÛÜeN��Ù g × �VÚd�ÝeN� × ��Ú6�I� (13)

We can estimate eT� × ��Ú6� by the prevalence of class Ú in the training dataset buteN��Ù g × �ÜÚd� requires some form of density estimate. Other classification methods
based on boosting and bagging generally produce some of the best misclassification
rates. These methods focus directly on estimating eT� × g ÙÞ� or the decision boundary
and almost certainly outperform those that require an intermediate density estima-
tion step. Friedman (1997) notes that “good probability estimates are not necessary
for good classification” nor do low classification rates indicate accurate probabil-
ity estimates. However, I include this section to argue that if boosted estimates ofeN��Ù g × ��Ú6� produce decent classifiers then there is some additional evidence that
the boosted density estimator might be producing reasonable density estimates.

Blackard and Dean (2000) discuss predicting the main forest cover type in a
region from cartographic variables. The dataset, which is available from the UCI
KDD archive (Bay 1999), contains 581,012 observations. Each observation has 10
continuous features describing its location, shade, and distance to water and recent
fire points. In addition we know the region (one of four undisturbed wilderness
reserves) in which it resides and the soil type (one of 40 soil types). The goal is to
predict the forest cover type (seven classes) from this information.

Algorithm Misclassification
Neural net 30%
LDA 42%
Boosted density estimate 34%
CART 33%
Bagged CART 26%

Table 1: Comparison of misclassification rates on the forest cover type dataset

Let
×

be the forest cover type class, Ù the vector of continuous features, and
and ß refer to the area and the soil type respectively. I assume the following

decomposition of the conditional class probabilities.eN� × ��Ú g Ùb� ��ß���ÛÜeT��Ù g × �VÚ6�0eT� ��ß g × ��Ú6�0eT� × ��Úd� (14)

This assumes that, given the forest cover type, the area and soil type are indepen-
dent of the cartographic measures. This is a mildly naı̈ve assumption particularly
since measures such as elevation and wilderness area are not entirely independent
given that the forest cover type is, say, aspen. However, in classification problems
these kinds of naı̈ve assumptions are robust to violations and often perform well
nonetheless.

Blackard and Dean (2000) used only a small portion of the dataset for training,
15,120 observations, since they were building a neural network classifier. They used
the remainder as a validation dataset. Their neural network classifier achieved 30%
misclassification compared with a 42% misclassification rate for linear discrimi-
nant analysis (LDA). It is unclear how they handled the discrete area and soil type
features.

I used half of the dataset for training and the other half for validation. Density
estimation in 10 dimensions does require a lot of observations. Table 1 summa-
rizes the misclassification rates on this dataset for various procedures. The classifier
based on the boosted density estimate performs reasonably well misclassifying 34%
of the observations. It performs worse than other methods such as CART and bagged
CART but its performance is still in the neighborhood.

4 Discussion

The algorithm decomposes into several stages, each of which is adaptable to
massive dataset applications. I suggested sending half-samples to the EM algorithm
to propose the direction in which to move the density estimate preserving the re-
maining half for an out-of-bag estimate of fit. For large datasets sending less than
half to the EM algorithm should not degrade the performance. Research on “data
squashing” (DuMouchel et al. 1999, Madigan et al. 2000) has shown that datasets
can often be stratified into smaller, pseudo-datasets with observations weighted in

such a way that the likelihood for the pseudo-dataset approximates the likelihood
for the massive dataset. Since the normal move that the EM algorithm proposes only
needs to be approximate, an upfront data compression step could reduce the scale
of the problem without degrading performance. Lastly, there is not really a need
to iterate EM to convergence since we really only need a move that increases the
expected log-likelihood.

I am aware of few implementations of high-dimensional density estimators. As
far as other methods that are similar to the one presented here, Kloppenburg and Ta-
van (1997) take an annealing approach for finding a mixture of normals that max-
imizes the log-likelihood. Li and Barron (2000) provide a theoretical analysis of
an “iterative likelihood maximization” density estimation method. As in this paper,
they propose constructing density estimates by greedily mixing in additional model
components and provide an assortment of interesting risk bounds for their estima-
tors. Also Nichol et al. (2000) describe fitting mixtures of normals to astronomical
datasets. They include a search for the optimal number of mixture components and
utilize KD-trees for fast computation of the EM algorithm. They apply their method
to simulated two-dimensional datasets with 100,000 observations and a real dataset
with 11,000 galaxies. Polonik (1995) connects empirical process theory with a po-
tential method for high-dimensional density estimation but stops short of proposing
an algorithm.

This paper presented an easily implemented algorithm for boosted density esti-
mation. By sequentially mixing normal densities, the algorithm can construct high
dimensional density estimates. Utilizing the out-of-bag estimate of the increase in
the expected likelihood, the algorithm has a completely automated stopping rule.
Therefore, the algorithm involves no tuning parameters. Future work will speed up
the EM proposal step and will consider methods for composing even more flexible
density estimators by allowing more normal components into the mixture.

Simple but slow S code for density.boost() is available from the author.

Acknowledgements

Funding for this work came from a grant from the National Science Founda-
tion (DMS 9704573) and from the RAND Corporation. The author is grateful to
Werner Stuetzle for discussions on boosting with respect to density estimation,
Larry Wasserman for his suggestion to use EM to make the modification proposals,
and Dan McCaffrey for reviewing a draft of this paper.

References

Bay, S. (1999). The UCI KDD archive. http://kdd.ics.uci.edu. Irvine, CA: Uni-
versity of California, Department of Information and Computer Science.

Blackard, J. and D. Dean (2000). Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from carto-

graphic variables. Computers and Electronics in Agriculture 24(3), 131–151.

Breiman, L. (1996a). Bagging predictors. Machine Learning 26, 123–140.

Breiman, L. (1996b, November). Out-of-bag estimation. Technical report, Uni-
versity of California, Berkeley, Statistics Department.

Breiman, L. (1999a, October). Prediction games and arcing algorithms. Neural
computation 11(7), 1493–1517.

Breiman, L. (1999b, February). Using adaptive bagging to debias regressions.
Technical Report 547, University of California, Berkeley, Statistics Depart-
ment.

Dempster, A., N. Laird, and D. Rubin (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B 39(1), 1–38.

DuMouchel, W., C. Volinsky, T. Johnson, C. Cortes, and D. Pregibon (1999).
Squashing flat files flatter. In S. Chaudhuri and D. Madigan (Eds.), Proceed-
ings of the Fifth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 6–15.

Freund, Y. and R. Schapire (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences 55(1), 119–139.

Friedman, J. (1997). Bias, variance, 0/1 loss, and the curse of dimensionality.
Data Mining and Knowledge Discovery 1(1), 55–77.

Friedman, J. (1999, February). Greedy function approximation: A gradient
boosting machine. Technical report, Stanford University, Statistics Depart-
ment. Available from http://www-stat.stanford.edu/ X jhf.

Friedman, J. and P. Hall (1999, May). On bagging and nonlinear estimation.
Technical report, Department of Statistics, Stanford University.

Friedman, J., T. Hastie, and R. Tibshirani (2000). Additive logistic regression:
a statistical view of boosting (with discussion). Annals of Statistics 28(2),
337–374.

Jamshidian, M. and R. I. Jennrich (1997). Acceleration of the EM algorithm by
using quasi-Newton methods. Journal of the Royal Statistical Society, Series
B, Methodological 59, 569–587.

Kloppenburg, M. and P. Tavan (1997, March). Deterministic annealing for den-
sity estimation by multivariate normal mixtures. Physical Review E 55(3),
R2089–R2092.

Li, J. and A. Barron (2000). Mixture density estimation. In S. Solla, T. Leen,
and K. Müller (Eds.), Advances in Neural Information Processing Systems,
Volume 12. MIT Press.

Louis, T. A. (1982). Finding the observed information matrix when using the
EM algorithm. Journal of the Royal Statistical Society, Series B, Method-
ological 44, 226–233.

Madigan, D., N. Raghavan, W. DuMouchel, M. Nason, C. Posse, and G. Ridge-
way (2000). Likelihood-based data squashing: A modeling approach to in-
stance construction. In H. Liu and H. Motoda (Eds.), Instance Selection and
Construction - A data mining perspective, Chapter 12. Kluwer Academic
Publishers.

Mason, L., J. Baxter, P. Bartlett, and M. Frean (2000). Boosting algorithms as
gradient descent. In S. Solla, T. Leen, and K. Müller (Eds.), Advances in
Neural Information Processing Systems, Volume 12. MIT Press.

Meilijson, I. (1989). A fast improvement to the EM algorithm on its own terms.
Journal of the Royal Statistical Society, Series B, Methodological 51, 127–
138.

Nichol, R., A. Connolly, A. Moore, J. Schneider, C. Genovese, and L. Wasser-
man (2000). Fast algorithms and efficient statistics: Density estimation in
large astronomical datasets. Technical Report 719, Department of Statistics,
Carnegie-Mellon University.

Polonik, W. (1995). Measuring mass concentrations and estimating density con-
tour clusters – An excess mass approach. The Annals of Statistics 23, 855–
881.

Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics 31,
172–181.

Scott, D. (1992). Multivariate Density Estimation: Theory, Practice and Visual-
ization. Wiley.

Wasserman, L. (2000). Personal communication.

