

Modern Prediction Methods: Bagging and Boosting

Greg Ridgeway

Department of Statistics
University of Washington,
<http://www.stat.washington.edu/greg>

Outline

- Reducing modeling uncertainty through *Bayesian Model Averaging*
- Stabilizing predictors through *bagging*
- Improving performance through *boosting*
- Emerging theory illuminates empirical success
- Latest algorithms

Reasons to combine predictions

- Decreases variability in the predictions.
- Accounts for uncertainty in the model class.
- Improved accuracy on new data.

What is model uncertainty?

- Suppose we wish to predict y from predictors x .
- Given a dataset of observations, D , for a new observation with predictors \mathbf{x}^* we want to derive the predictive distribution of y^* given \mathbf{x}^* and D .

$$b(\lambda_* | \mathbf{x}_*, D)$$

In practice...

- Although we want to use all the information in D to make the best estimate of y^* for an individual with covariates \mathbf{x}^* ...

$$b(\lambda_* | \mathbf{x}_* \cdot D)$$

- In practice, however, we always use

$$b(\lambda_* | \mathbf{x}_* \cdot M)$$

where M is a model constructed from D .

Selecting M

- The process of selecting a model usually involves
 - Model class selection
 - Linear regression, tree regression, neural network
 - Variable selection
 - variable exclusion, transformation, smoothing
 - Parameter estimation
- We tend to choose the one model that fits the data or performs best as *the* model.

What's wrong with that?

- Two models may equally fit a dataset (with respect to some loss) but have different predictions.
- Competing interpretable models with equivalent performance offer ambiguous conclusions.
- Model search dilutes the evidence. “Part of the evidence is spent specifying the model.”

Bayesian Model Averaging

Goal: Account for model uncertainty

Method: Use Bayes' Theorem and average the models by their posterior probabilities

Properties:

- Improves predictive performance
- Theoretically elegant
- Computationally costly

Averaging the models

Consider a set containing the K candidate models — M_1, \dots, M_K .

With a few probability manipulations we can make predictions using all of them.

$$P(y^* | \mathbf{x}^*, D) = \sum_k P(y^* | \mathbf{x}^*, M_k) P(M_k | D)$$

The probability mass for a particular prediction value of y is a weighted average of the probability mass that each model places on that value of y . The weight is based on the posterior probability of that model given the data.

Bayes' Theorem

$$P(M_k | D) = \frac{P(D | M_k)P(M_k)}{\sum_{l=1}^K P(D | M_l)P(M_l)}$$

- M_k - model
- D - data
- $P(D|M_k)$ - integrated likelihood of M_k
- $P(M_k)$ - prior model probability

Challenges

- The size of the model set may cause exhaustive summation to be impossible.
- The integrated likelihood of each model is usually complex.
- Specifying a prior distribution (even a non-informative one) across the space of models is non-trivial.
- Proposed solutions to these challenges often involve MCMC, BIC approximation, MLE approximation, Occam's window, Occam's razor.

Performance

- Survival model: Primary biliary cirrhosis
 - BMA vs. Stepwise regression — 2% improvement
 - BMA vs. expert selected model — 10% improvement
- Linear regression: Body fat prediction
 - BMA provides best 90% predictive coverage.
- Graphical models
 - BMA yields an improvement

BMA References

- Chris Volinsky's BMA homepage
www.research.att.com/~volinsky/bma.html
- J. Hoeting, D. Madigan, A. Raftery, C. Volinsky (1999). “Bayesian Model Averaging: A Practical Tutorial” (to appear in *Statistical Science*),
www.stat.colostate.edu/~jah/documents/bma2.ps

Unstable predictors

We can always assume

$$\lambda = \chi(\mathbf{x}) + \varepsilon \text{ where } E(\varepsilon | \mathbf{x}) = 0$$

Assume that we have a way of constructing a predictor, $\hat{f}_D(\mathbf{x})$, from a dataset D .

We want to choose the estimator of f that minimizes J , squared loss for example.

$$\chi(\hat{f}_D) = E_{\lambda, \mathbf{x}} (\lambda - \hat{f}_D(\mathbf{x}))^2$$

Bias-variance decomposition

If we could average over all possible datasets,
let the average prediction be

$$\hat{y}(\mathbf{x}) = E^D \hat{y}^D(\mathbf{x})$$

The average prediction error over all datasets
that we might see is decomposable

Bias-variance decomposition

The squared-error averaged over all datasets...

$$E^{\mathbf{x}^D}(\hat{E}^D(\mathbf{x}) - \underline{E}(\mathbf{x}))_S \quad \text{variance}$$

$$E^{\mathbf{x}}(E(\mathbf{x}) - \underline{E}(\mathbf{x}))_S + \quad \text{bias}$$

$$E^D \gamma(\hat{E}^D) = E \varepsilon_S + \quad \text{noise}$$

where $\underline{E}(\mathbf{x}) = E^D \hat{E}^D(\mathbf{x})$

Combining Multiple Models

- Boosting
- Bagging
- Adaptive Bagging
- Bumping
- Bundling
- Stacking
- Leveraging
- Ensemble learning
- Pasting
- Crumpling
- Arcing
- Bayesian Model Averaging
- Group Method of Data Handling

Words of Wisdom

- “[With proportional representation]… there would be a fair comparison of intellectual strength.”

John Stuart Mill - *Representative Government* (1861)

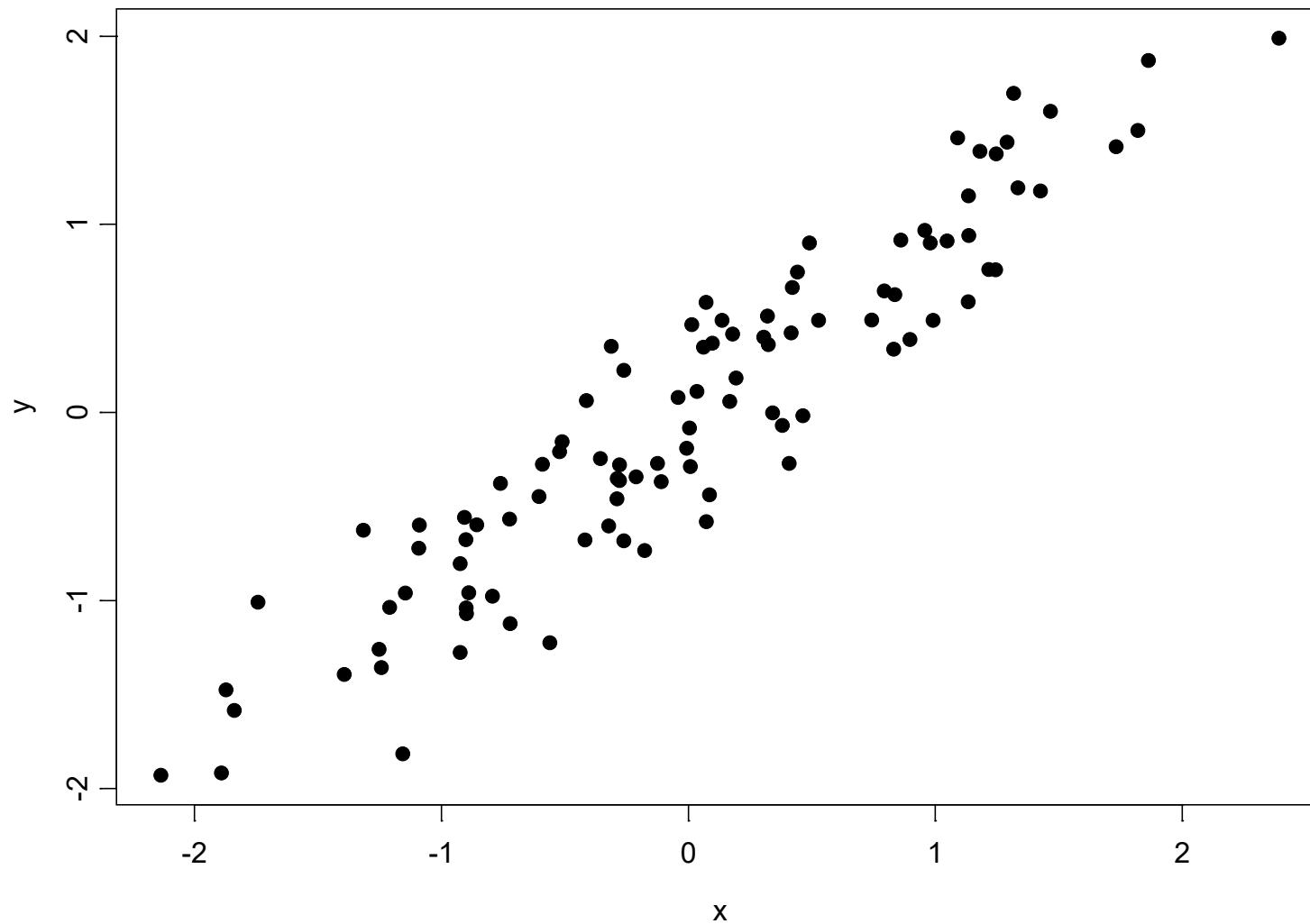
- “Don’t put all your eggs in one basket.”

Miguel de Cervantes - *Don Quixote* (1605)

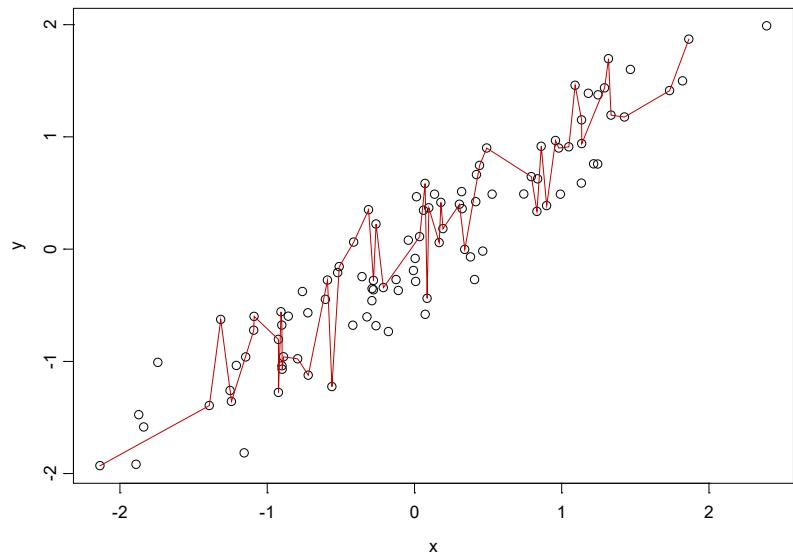
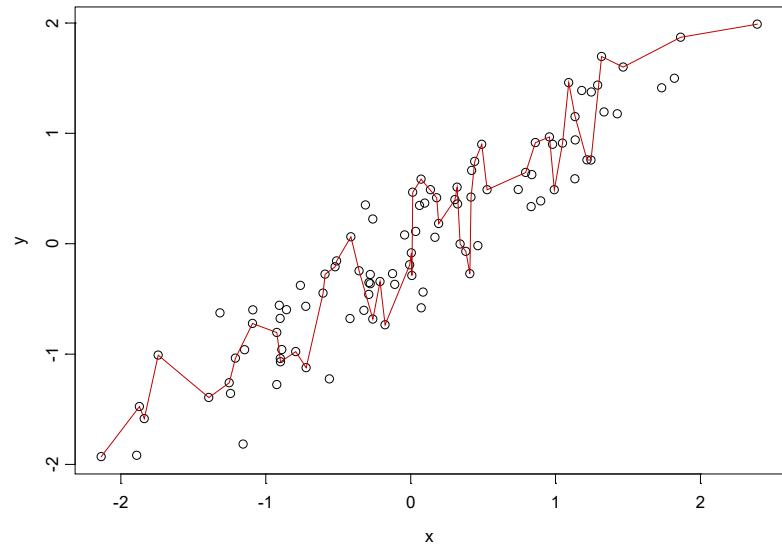
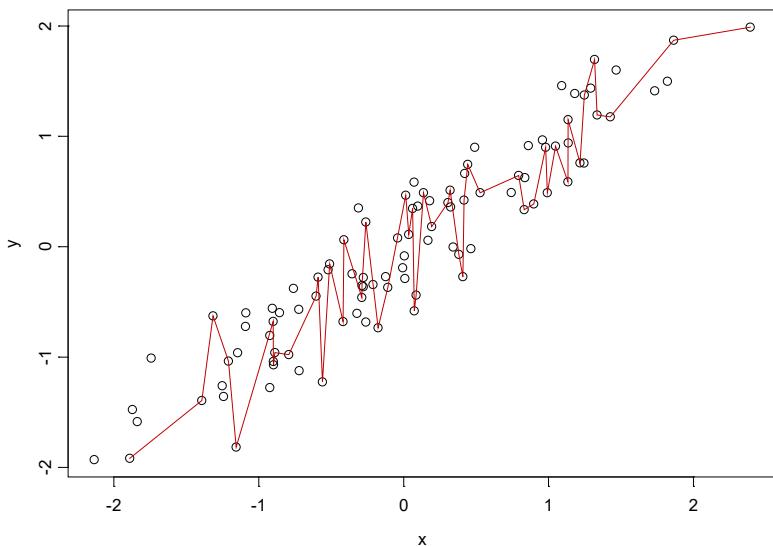
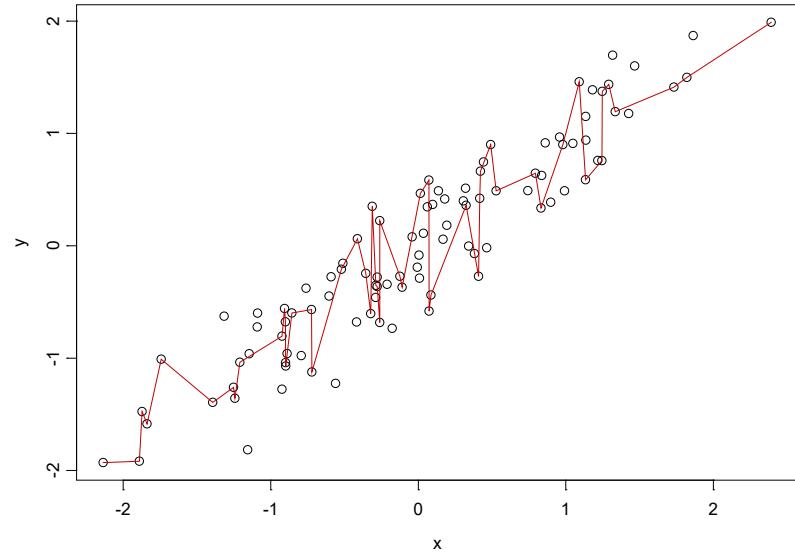
- “For by wise guidance you will wage war, And in abundance of counselors there is victory.”

King Solomon - Proverbs 24:6 (930 BC?)

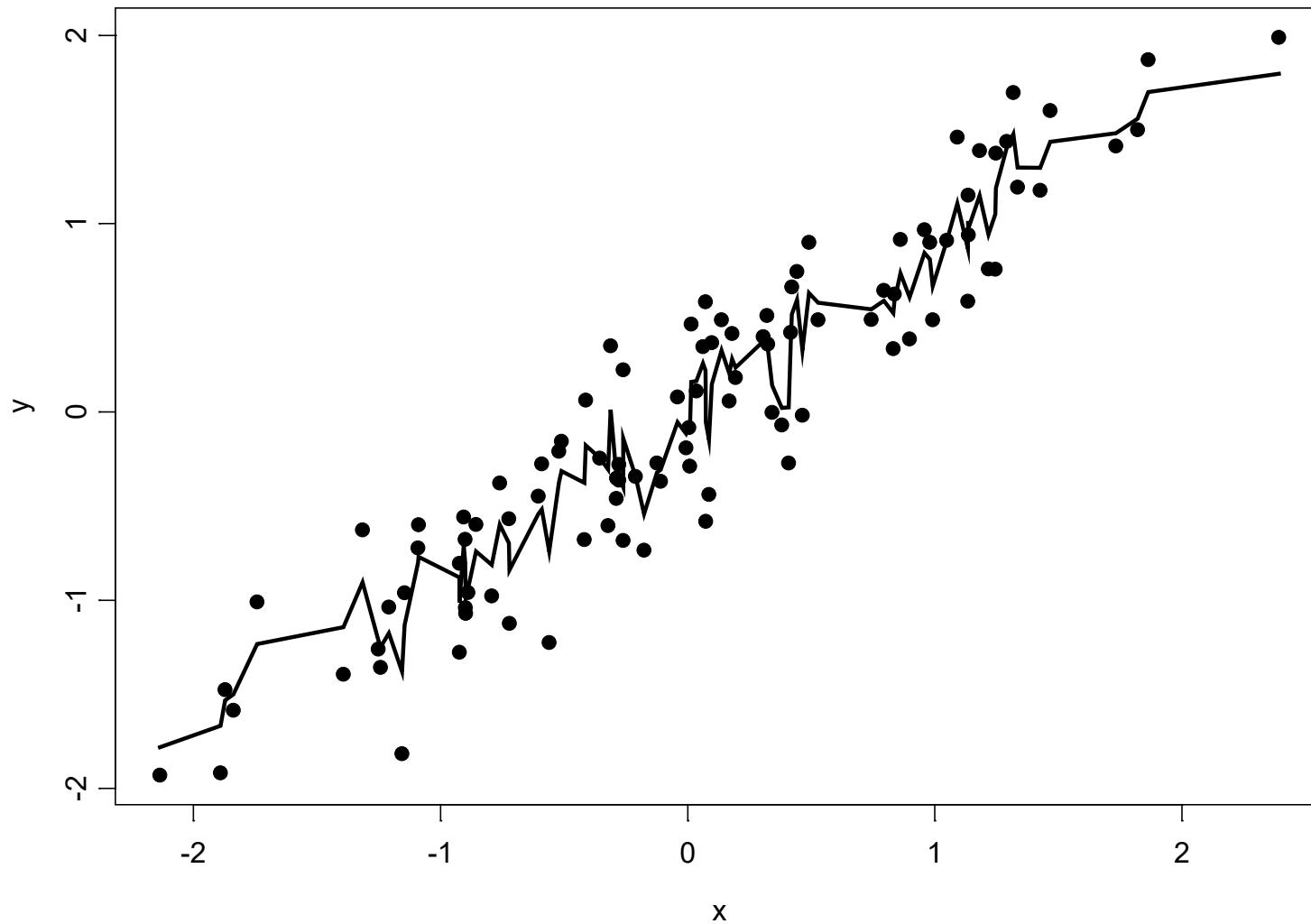
A very important model



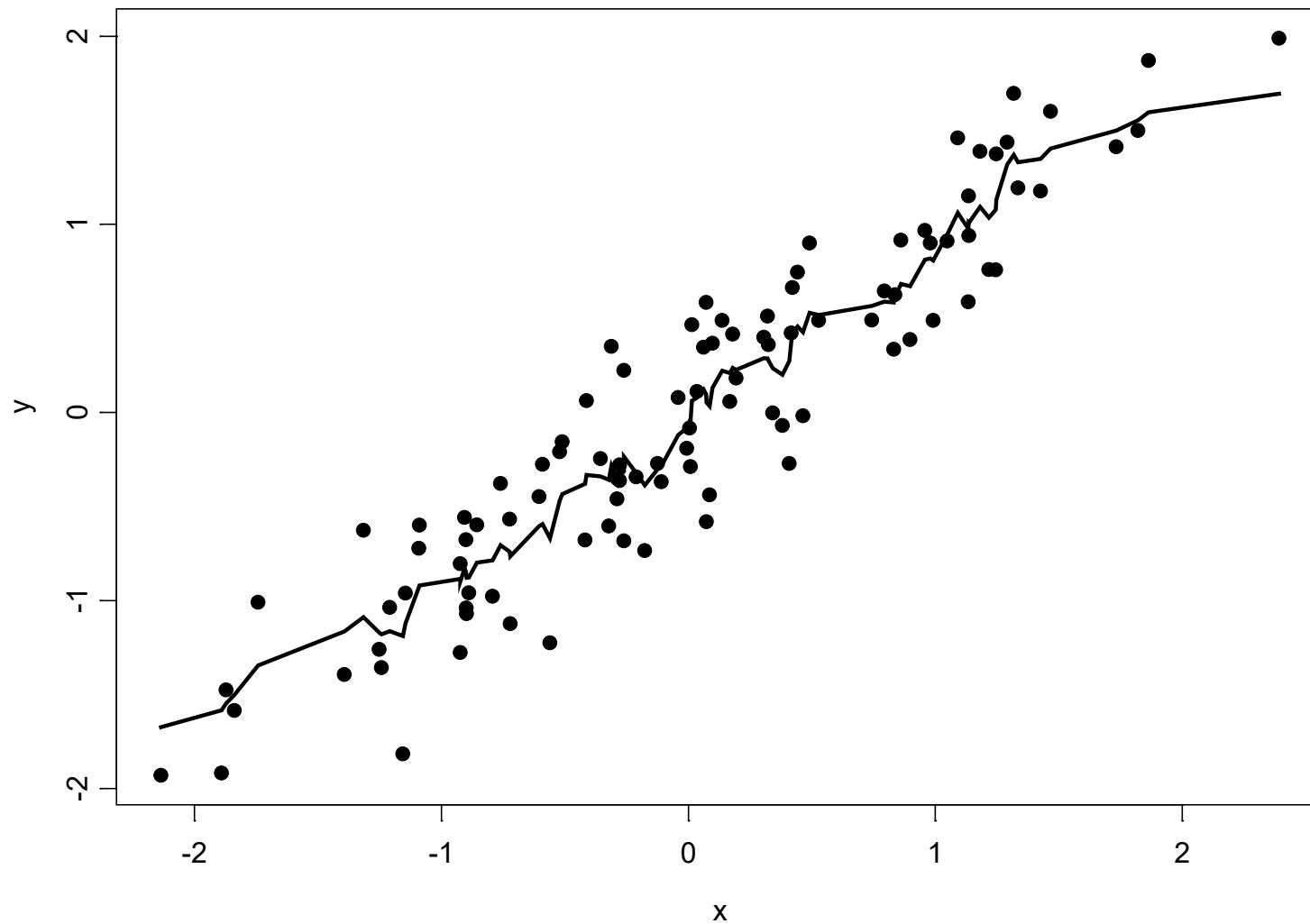
On half-samples...



Average over half-samples



Average over quarter-samples



Bias vs. Variance

Variance reduction

- Limit $\hat{F}(\mathbf{x})$ to depend on a small number of parameters
- Enforce smoothness constraints
- Additive models

Bias reduction

- Allow $\hat{F}(\mathbf{x})$ to be more flexible (more parameters)
- Model complex interactions

Bagging (*Bootstrap Aggregating*)

Goal: Variance reduction

Method: Create bootstrap replicates of the dataset and fit a model to each. Average the predictions of each model.

Properties:

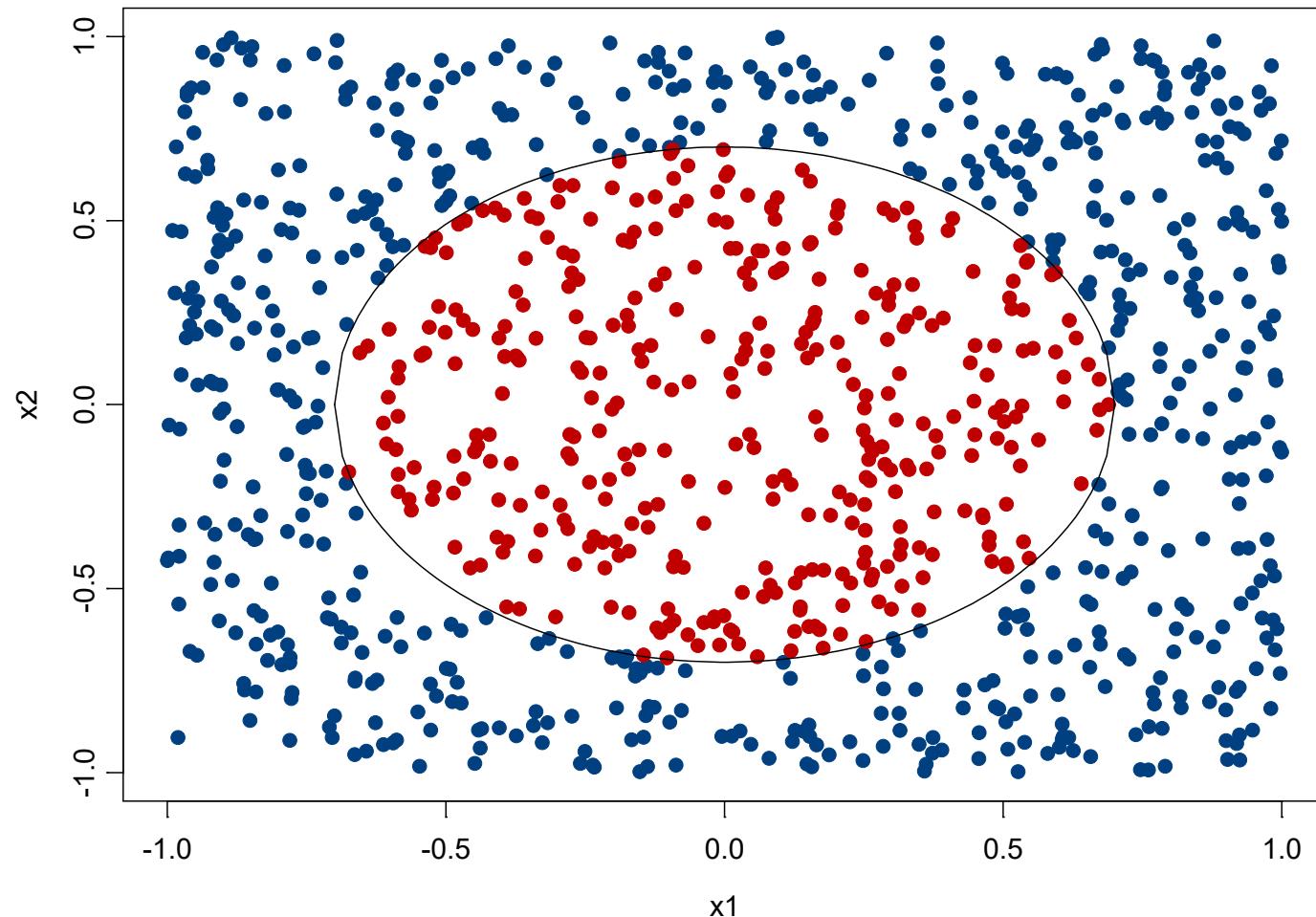
- Stabilizes “unstable” methods
- Easy to implement, parallelizable
- Theory is not fully explained

Bagging algorithm

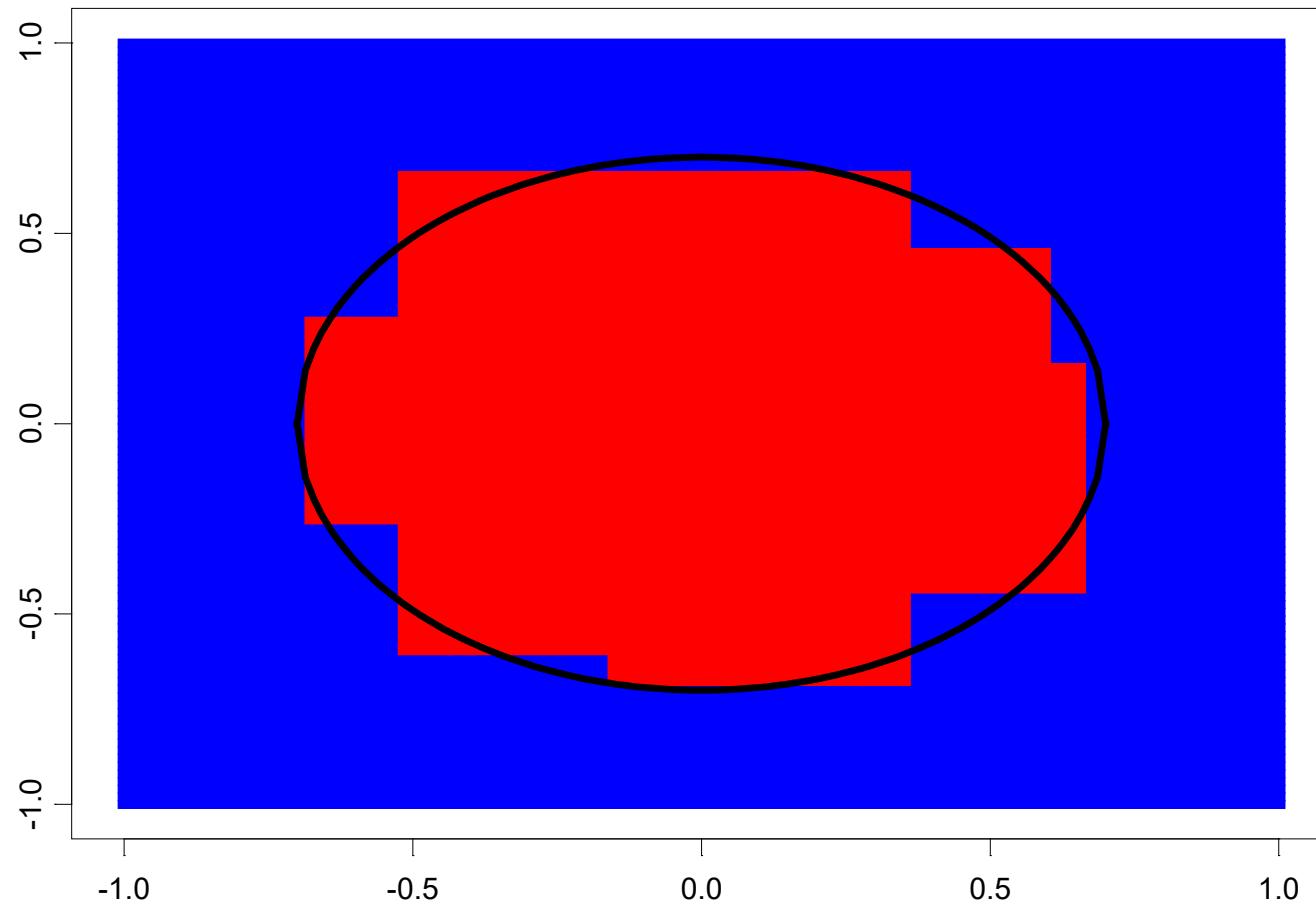
1. Create K bootstrap replicates of the dataset.
2. Fit a model to each of the replicates.
3. Average (or vote) the predictions of the K models.

Bootstrapping simulates the stream of infinite datasets in the bias-variance decomposition.

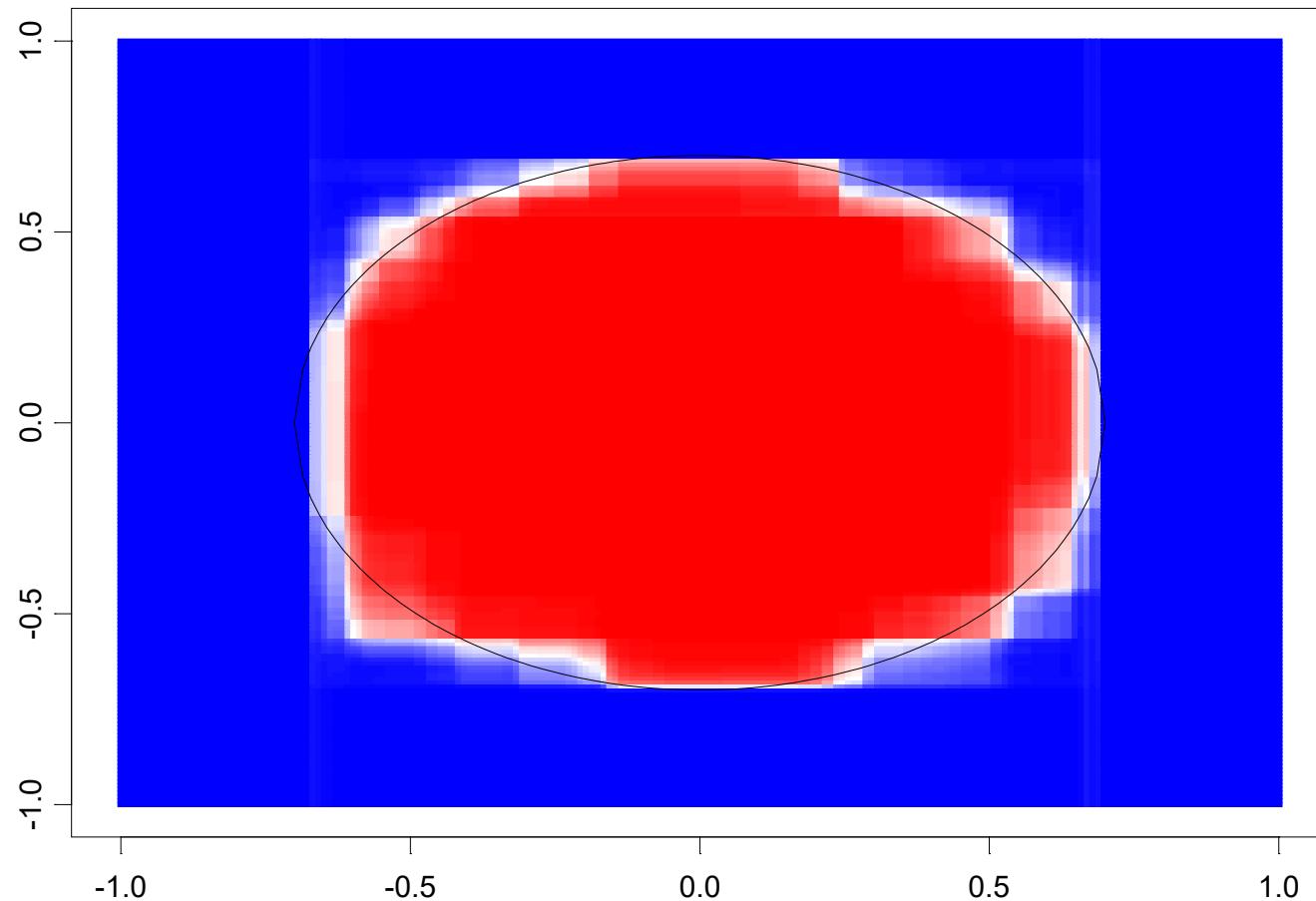
Bagging Example



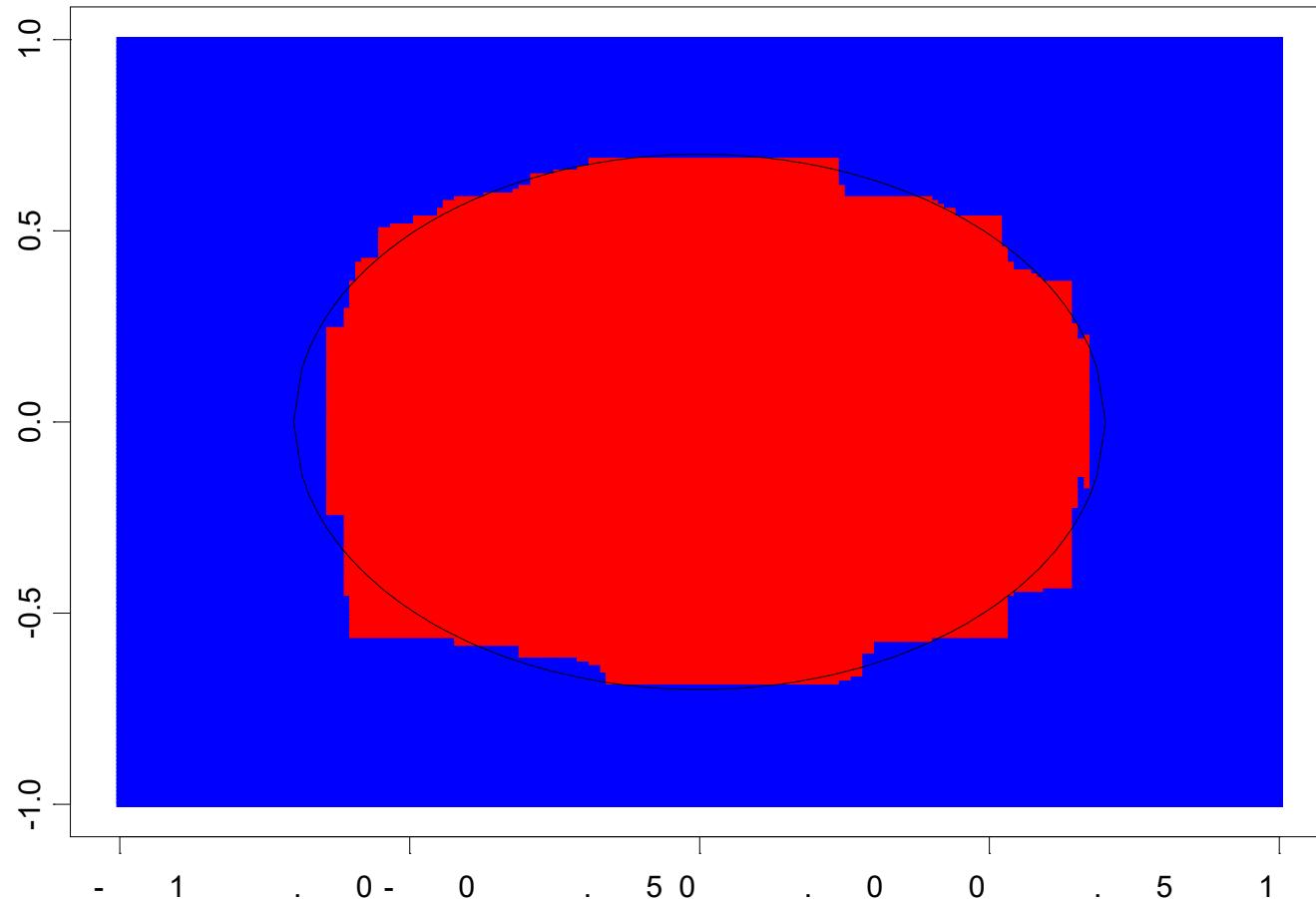
CART decision boundary



100 bagged trees

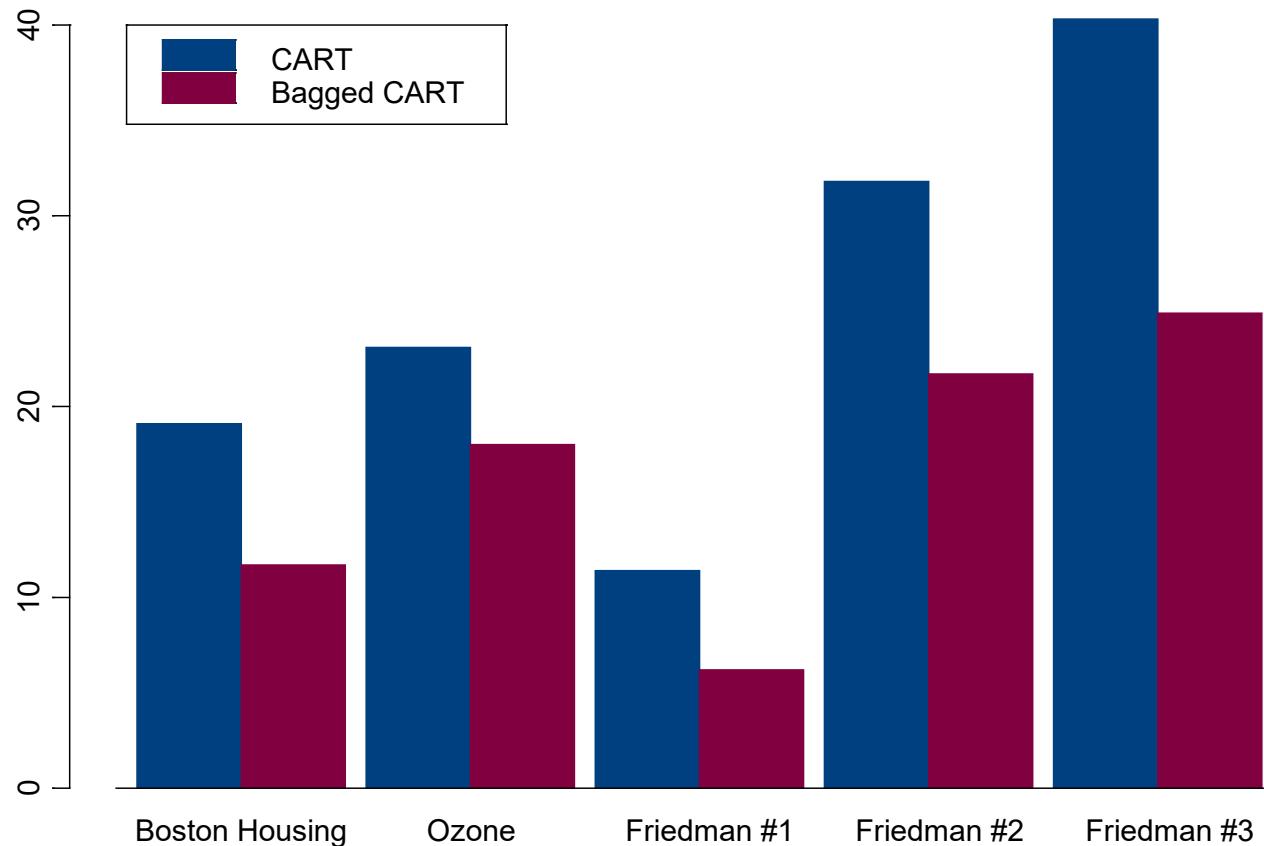


Bagged tree decision boundary



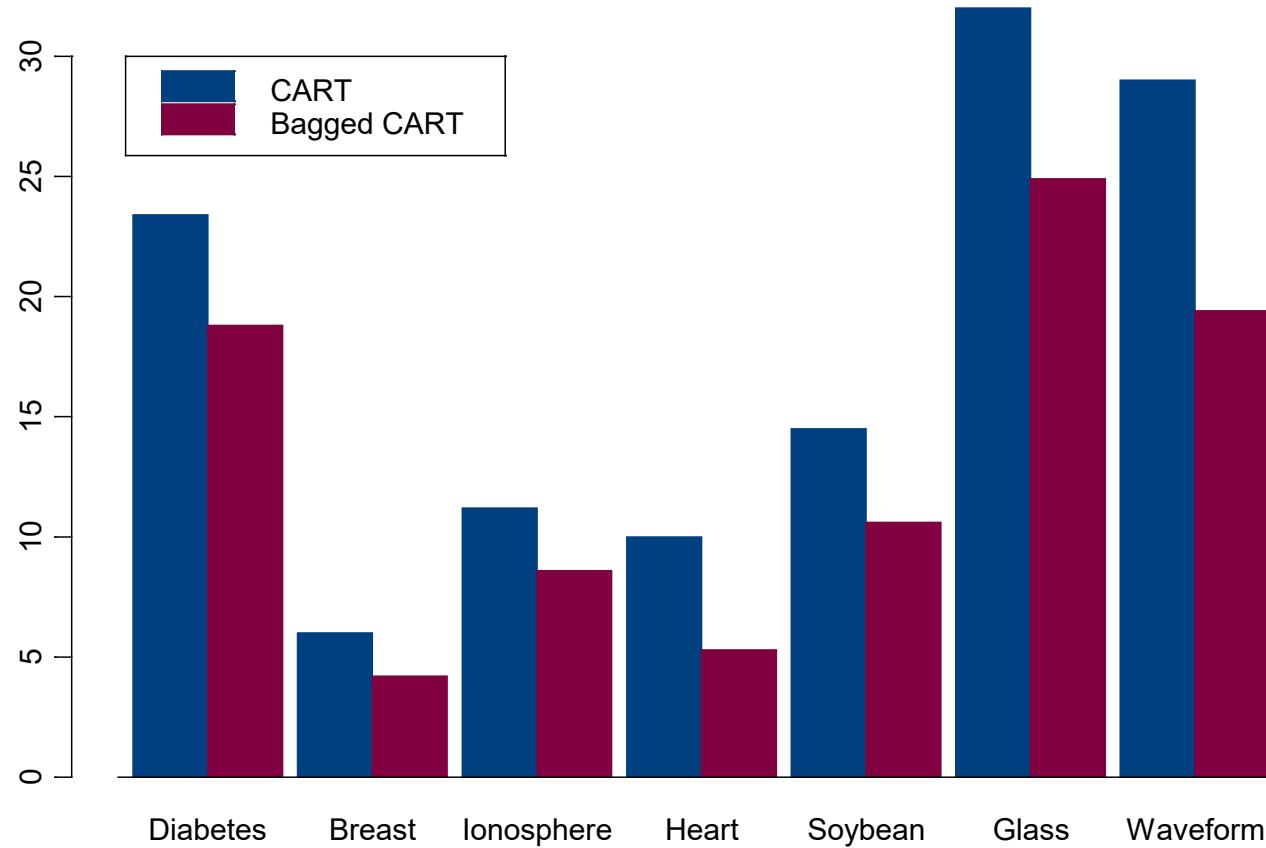
Regression results

Squared error loss



Classification results

Misclassification rates



Bagging References

- Leo Breiman’s homepage
www.stat.berkeley.edu/users/breiman/
- Breiman, L. (1996) “Bagging Predictors,”
Machine Learning, 26:2, 123-140.
- Friedman, J. and P. Hall (1999) “On
Bagging and Nonlinear Estimation”
www.stat.stanford.edu/~jhf

Boosting

Goal: Improve misclassification rates

Method: Sequentially fit models, each more heavily weighting those observations poorly predicted by the previous model

Properties:

- Bias and variance reduction
- Easy to implement
- Theory is not fully (but almost) explained

Origin of Boosting

Classification problems

$$\{y, \mathbf{x}\}_i, i = 1, \dots, n$$

$$y \in \{0, 1\}$$

The task - construct a function,

$$F(\mathbf{x}) : \mathbf{x} \rightarrow \{0, 1\}$$

so that F minimizes misclassification error.

Generic boosting algorithm

Equally weight the observations $(y, \mathbf{x})_i$

For t in $1, \dots, T$

Using the weights, fit a classifier $f_t(\mathbf{x}) \rightarrow y$

Upweight the poorly predicted observations

Downweight the well-predicted observations

Merge f_1, \dots, f_T to form the boosted classifier

Real AdaBoost

Schapire & Singer 1998

$$y_i \in \{-1, 1\}, w_i = 1/N$$

For t in $1, \dots, T$ do

1. Estimate $P_w(y = 1 | \mathbf{x})$.

2. Set $f_t(\mathbf{x}) = \frac{1}{2} \log \frac{\hat{P}_w(y = 1 | \mathbf{x})}{\hat{P}_w(y = -1 | \mathbf{x})}$

3. $w_i \leftarrow w_i \exp(-y_i f_t(\mathbf{x}_i))$ and renormalize

Output the classifier $F(\mathbf{x}) = \text{sign}\left(\sum f_t(\mathbf{x})\right)$

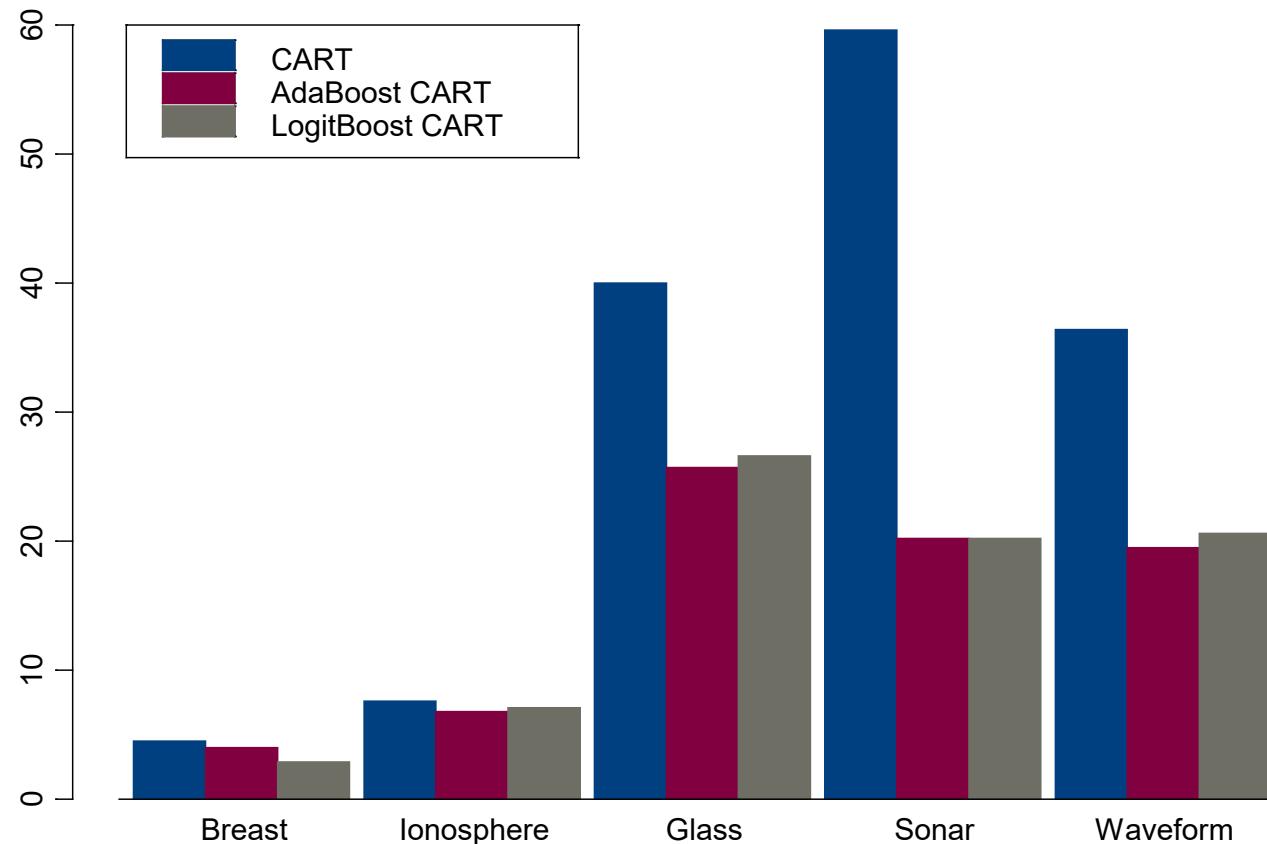
AdaBoost's Performance

Freund & Schapire [1996]

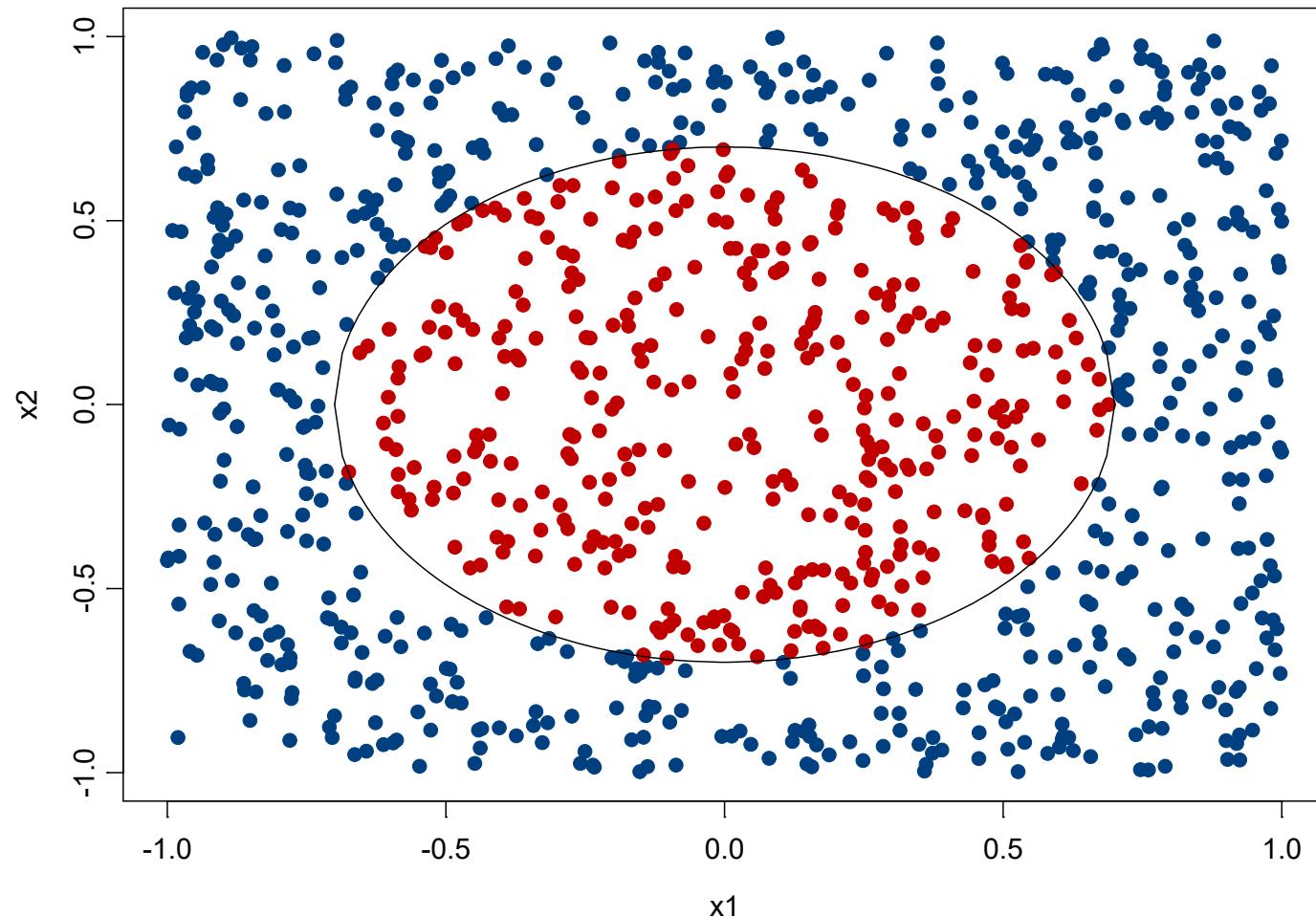
- Leo Breiman - AdaBoost with trees is the “best off-the-shelf classifier in the world.”
- Performs well with many base classifiers and in a variety of problem domains.
- AdaBoost is generally slow to overfit.
- Boosted naïve Bayes tied for first place in the 1997 KDD Cup. (Elkan [1997])
- Boosted naïve Bayes is a scalable, interpretable classifier (Ridgeway, *et al* [1998]).

Misclassification rates

Friedman, Hastie, Tibshirani [1998]

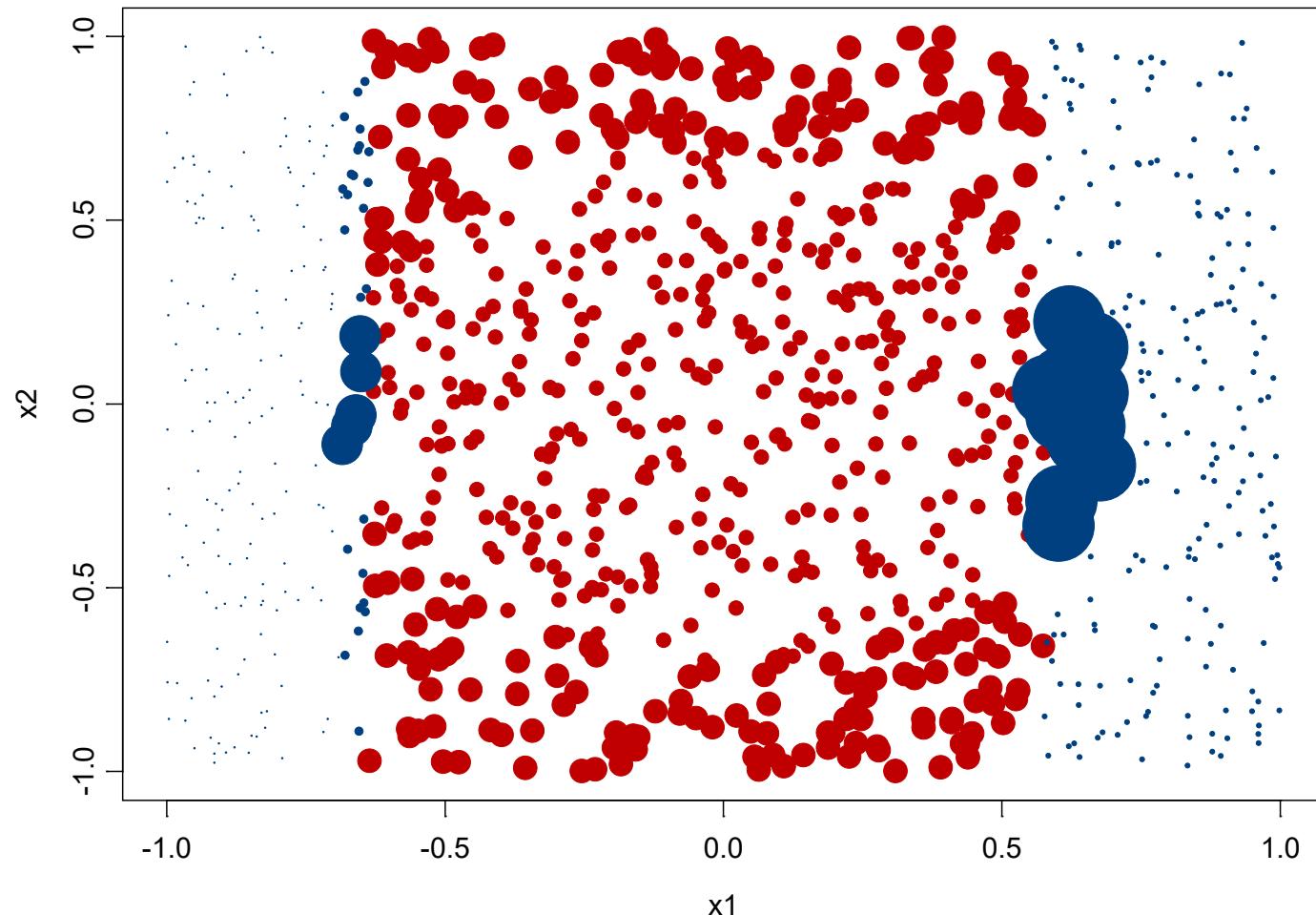


Boosting Example

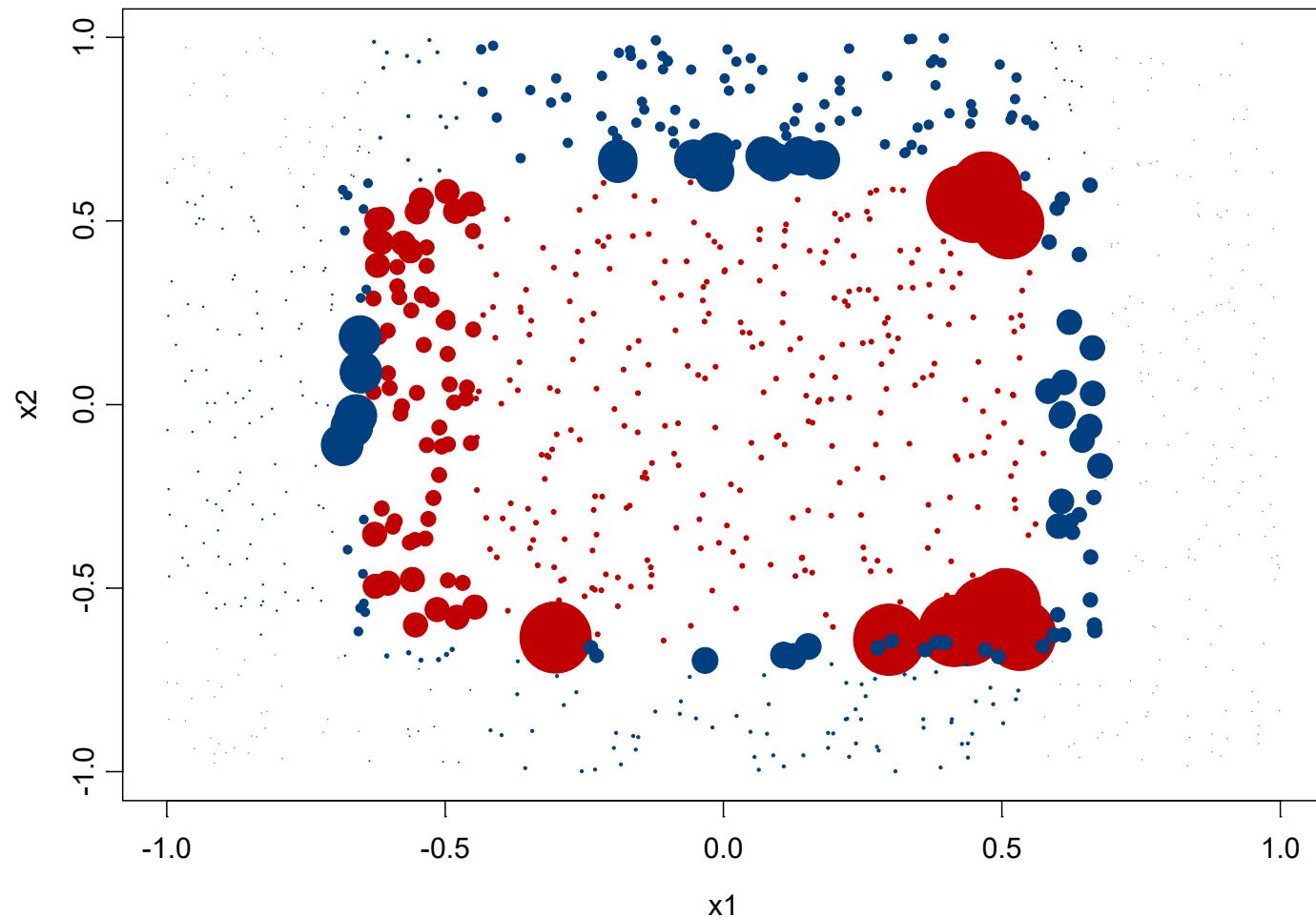


After one iteration

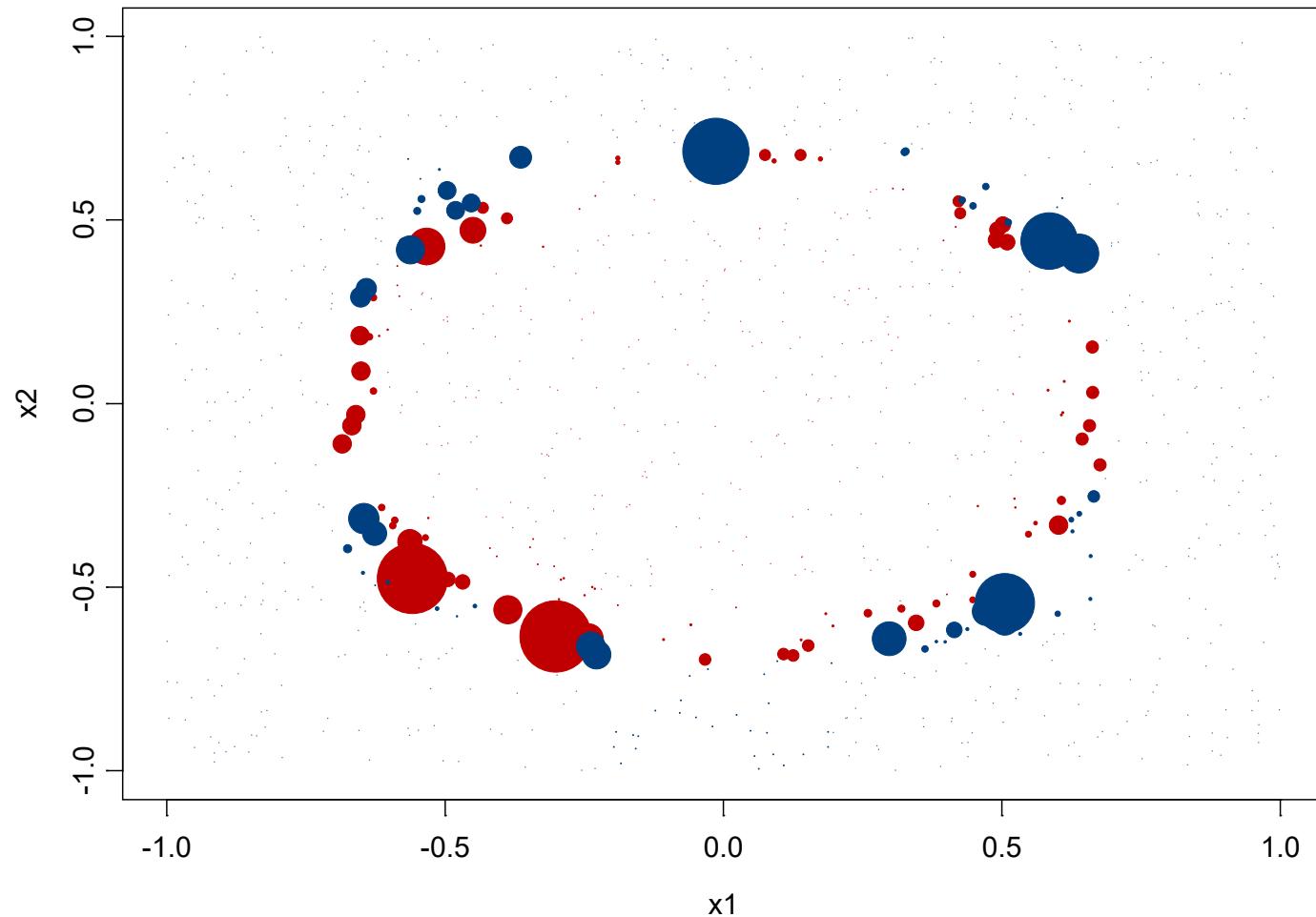
CART splits, larger points have great weight



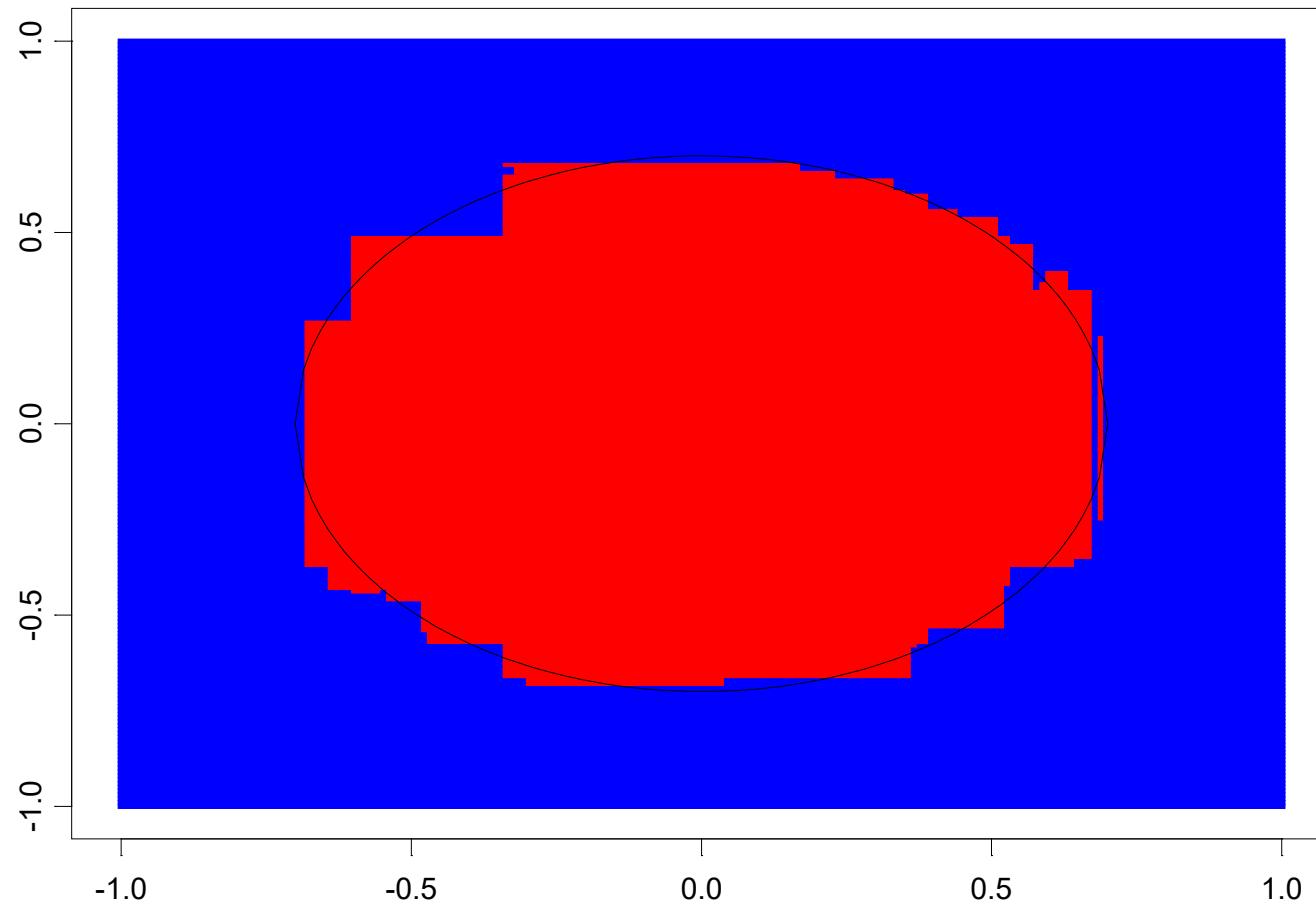
After 3 iterations



After 20 iterations



Decision boundary after 100 iterations



Boosting as optimization

- Friedman, Hastie, Tibshirani [1998] - AdaBoost is an optimization method for finding a classifier.
- Let $y \in \{-1, 1\}$, $F(x) \in (-\infty, \infty)$

$$J(F) = E\left(e^{-yF(x)} \mid x\right)$$

$$J(F + f) = E\left(e^{-y(F(x) + f(x))} \mid x\right)$$

Criterion

- $E(e^{-yF(x)})$ bounds the misclassification rate.

$$I(yF(x) < 0) < e^{-yF(x)}$$

- The minimizer of $E(e^{-yF(x)})$ coincides with the maximizer of the expected Bernoulli likelihood.

$$E(\ell(p(x), y)) = -E \log(1 + e^{-2yF(x)})$$

Boosting References

- Rob Schapire's homepage
www.research.att.com/~schapire
- Freund, Y. and R. Schapire (1996). “Experiments with a new boosting algorithm,” Machine Learning: Proceedings of the 13th International Conference, 148-156.
- Jerry Friedman's homepage
www.stat.stanford.edu/~jhf
- Friedman, J., T. Hastie, R. Tibshirani (1998). “Additive Logistic Regression: a statistical view of boosting,” Technical report, Statistics Department, Stanford University.

In general, combining (“bundling”) predictions consists of two steps:

- 1) Constructing varied models, and
- 2) Combining their predictions

Generate component models by varying:

- Case Weights
- Data Values
- Guiding Parameters
- Variable Subsets

Combine estimates using:

- Estimator Weights
- Voting
- Advisor Perceptrons
- Partitions of Design Space, X

Advanced techniques

- Stochastic gradient boosting
- Adaptive bagging
- Example regression and classification results

Stochastic Gradient Boosting

Goal: Non-parametric function estimation

Method: Cast the problem as optimization and use gradient ascent to obtain predictor

Properties:

- Bias and variance reduction
- Widely applicable
- Can make use of existing algorithms
- Many tuning parameters

Improving boosting

- Boosting usually has the form

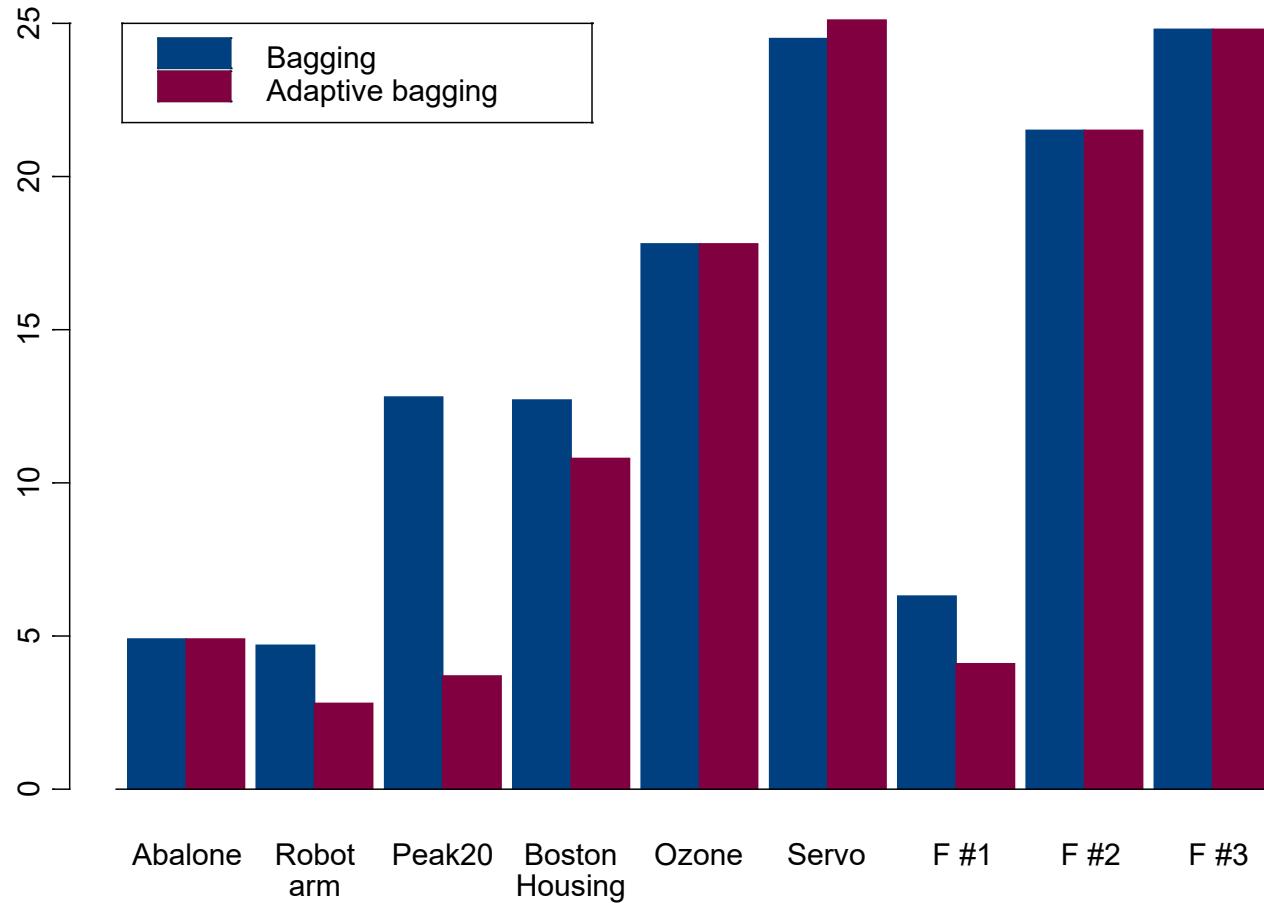
$$F(x) \leftarrow F(x) + E(z \mid x)$$

Improve by...

- Using a bagged estimate of the expectation.
- “Robustifying” the expectation.
- Trimming observations with small weights.
- BMA to compute the expectation

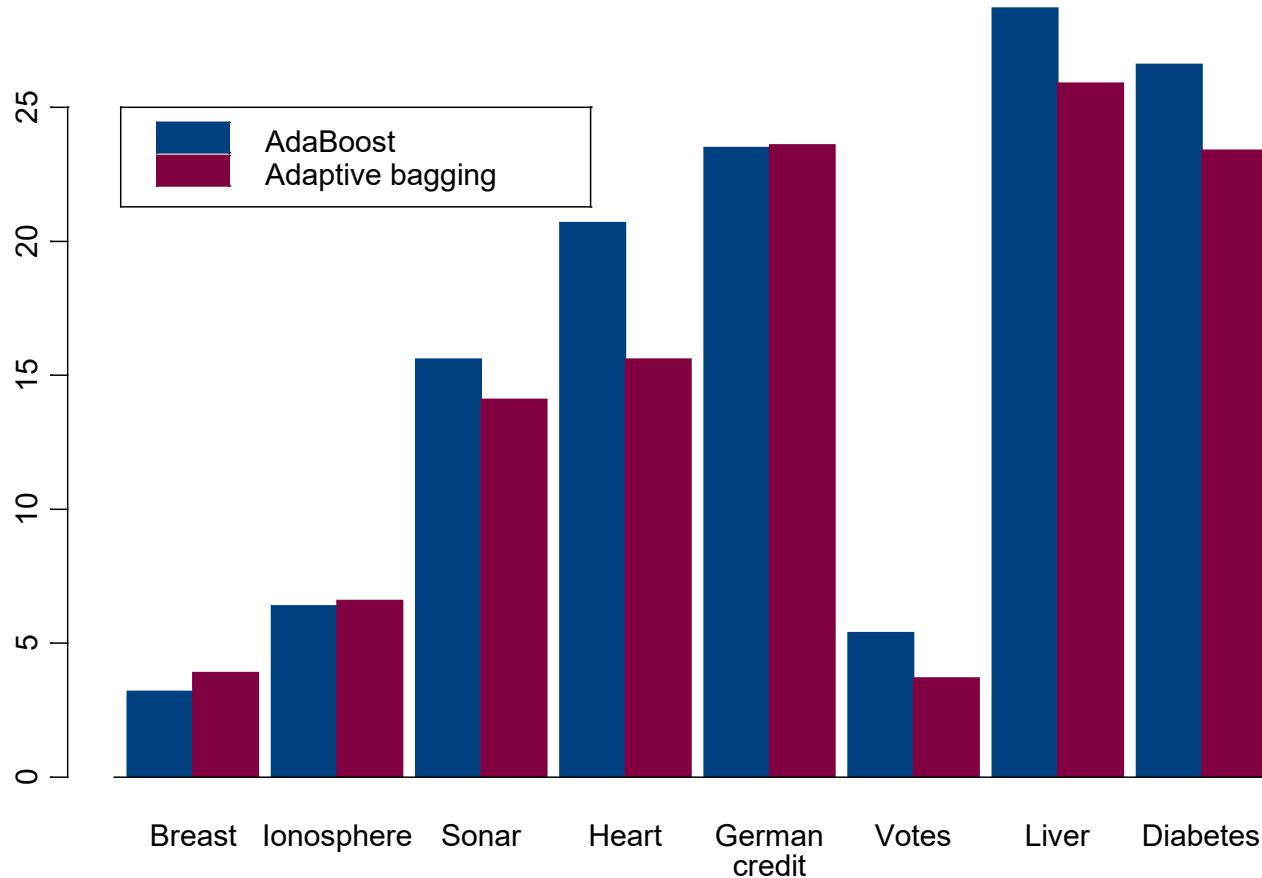
Regression results

Squared error loss



Classification results

Misclassification rates



Stochastic gradient boosting offers...

- Application to likelihood based models (GLM, Cox models)
- Bias reduction - non-linear fitting
- Massive datasets - bagging, trimming
- Variance reduction - bagging
- Interpretability - additive models
- High-dimensional regression - trees
- Robust regression

SGB References

- Friedman, J. (1999). “Greedy function approximation: a gradient boosting machine,” Technical report, Dept. of Statistics, Stanford University.
- Friedman, J. (1999). “Stochastic gradient boosting,” Technical report, Dept. of Statistics, Stanford University.