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Outline

• Reducing modeling uncertainty through 
Bayesian Model Averaging

• Stabilizing predictors through bagging
• Improving performance through boosting
• Emerging theory illuminates empirical 

success
• Latest algorithms



Reasons to combine predictions

• Decreases variability in the predictions.
• Accounts for uncertainty in the model class.
 Improved accuracy on new data.



What is model uncertainty?
• Suppose we wish to predict y from 

predictors x.
• Given a dataset of observations, D, for a 

new observation with predictors x* we want 
to derive the predictive distribution of y*

given x* and D.
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In practice…

• Although we want to use all the information 
in D to make the best estimate of y* for an 
individual with covariates x*…

• In practice, however, we always use

where M is a model constructed from D.
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Selecting M
• The process of selecting a model usually 

involves
– Model class selection

• Linear regression, tree regression, neural network
– Variable selection

• variable exclusion, transformation, smoothing
– Parameter estimation

• We tend to choose the one model that fits 
the data or performs best as the model.



What’s wrong with that?
• Two models may equally fit a dataset (with 

repect to some loss) but have different 
predictions.

• Competing interpretable models with 
equivalent performance offer ambiguious 
conclusions.

• Model search dilutes the evidence.  “Part of 
the evidence is spent specifying the model.”



Bayesian Model Averaging
Goal: Account for model uncertainty
Method: Use Bayes’ Theorem and average the 

models by their posterior probabilities
Properties:
• Improves predictive performance
• Theoretically elegant
• Computationally costly



Averaging the models
Consider a set containing the K candidate 

models — M1,…, MK.
With a few probability manipulations we can 

make predictions using all of them.

The probability mass for a particular prediction value of y is a weighted average of the 
probability mass that each model places on that value of y.  The weight is based on the 
posterior probability of that model given the data.
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Bayes’ Theorem

• Mk - model
• D - data
• P(D|Mk) - integrated likelihood of Mk

• P(Mk) - prior model probability
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Challenges
• The size of the model set may cause 

exhaustive summation to be impossible.
• The integrated likelihood of each model is 

usually complex.
• Specifying a prior distribution (even a non-

informative one) across the space of models 
is non-trivial.

• Proposed solutions to these challenges often involve MCMC, BIC 
approximation, MLE approximation, Occam’s window, Occam’s razor.



Performance

• Survival model: Primary biliary cirrhosis
– BMA vs. Stepwise regression — 2% improvement
– BMA vs. expert selected model — 10% improvement

• Linear regression: Body fat prediction
– BMA provides best 90% predictive coverage.

• Graphical models
– BMA yields an improvement



BMA References

• Chris Volinsky’s BMA homepage 
www.research.att.com/~volinsky/bma.html

• J. Hoeting, D. Madigan, A. Raftery, C. Volinsky 
(1999). “Bayesian Model Averaging: A Practical 
Tutorial” (to appear in Statistical Science), 
www.stat.colostate.edu/~jah/documents/bma2.ps



We can always assume

Assume that we have a way of constructing a 
predictor, f , from a dataset D.

We want to choose the estimator of f that 
minimizes J, squared loss for example.

Unstable predictors
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Bias-variance decomposition
If we could average over all possible datasets, 

let the average prediction be

The average prediction error over all datasets 
that we might see is decomposable
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Bias-variance decomposition
The squared-error averaged over all 

datasets…
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Combining Multiple Models
• Boosting
• Bagging
• Adaptive Bagging
• Bumping
• Bundling
• Stacking
• Leveraging
• Ensemble learning

• Pasting
• Crumpling
• Arcing
• Bayesian Model 

Averaging
• Group Method 

of Data Handling



Words of Wisdom
• “[With proportional representation]… there would 

be a fair comparison of intellectual strength.”
 John Stuart Mill - Representative Government (1861)

• “Don’t put all your eggs in one basket.” 
 Miguel de Cervantes - Don Quixote (1605)

• “For by wise guidance you will wage war, And in 
abundance of counselors there is victory.” 
 King Solomon - Proverbs 24:6 (930 BC?)



A very important model
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On half-samples…
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Average over half-samples

x

y

-2 -1 0 1 2

-2
-1

0
1

2



Average over quarter-samples
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Bias vs. Variance
Variance reduction
• Limit to depend on a small number of 

parameters
• Enforce smoothness constraints
• Additive models

Bias reduction
• Allow to be more flexible (more parameters)
• Model complex interactions
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Bagging (Bootstrap Aggregating)

Goal:  Variance reduction
Method: Create bootstrap replicates of the 

dataset and fit a model to each. Average the 
predictions of each model.

Properties:
• Stabilizes “unstable” methods
• Easy to implement, parallelizable
• Theory is not fully explained



Bagging algorithm

1. Create K bootstrap replicates of the dataset.
2. Fit a model to each of the replicates.
3. Average (or vote) the predictions of the K

models.

Bootstrapping simulates the stream of infinite 
datasets in the bias-variance decomposition.



Bagging Example

x1

x2

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0



CART decision boundary
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100 bagged trees
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Bagged tree decision boundary
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Regression results
Squared error loss
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Classification results
Misclassification rates
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Bagging References

• Leo Breiman’s homepage  
www.stat.berkeley.edu/users/breiman/

• Breiman, L. (1996) “Bagging Predictors,” 
Machine Learning, 26:2, 123-140.

• Friedman, J. and P. Hall (1999) “On 
Bagging and Nonlinear Estimation” 
www.stat.stanford.edu/~jhf



Boosting
Goal: Improve misclassification rates
Method: Sequentially fit models, each more 

heavily weighting those observations 
poorly predicted by the previous model

Properties:
• Bias and variance reduction
• Easy to implement
• Theory is not fully (but almost) explained



Origin of Boosting
Classification problems

{y, x}i , i = 1,…,n

y ∈ {0, 1}

The task - construct a function, 

F(x) : x → {0, 1}

so that F minimizes misclassification error.



Generic boosting algorithm

Equally weight the observations (y,x)i 

For t in 1,…,T
 Using the weights, fit a classifier ft(x) → y
 Upweight the poorly predicted observations
 Downweight the well-predicted observations

Merge f1,…,fT to form the boosted classifier



Real AdaBoost
Schapire & Singer 1998

yi ∈ {-1,1}, wi = 1/N
For t in 1,…,T do
 1. Estimate Pw(y = 1|x).

 2. Set  f

 3. w                                     and renormalize

Output the classifier F
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AdaBoost’s Performance
Freund & Schapire [1996]

• Leo Breiman - AdaBoost with trees is the “best 
off-the-shelf classifier in the world.”

• Performs well with many base classifiers and in a 
variety of problem domains.

• AdaBoost is generally slow to overfit.
• Boosted naïve Bayes tied for first place in the 

1997 KDD Cup. (Elkan [1997])
• Boosted naïve Bayes is a scalable, interpretable 

classifier (Ridgeway, et al [1998]).



Misclassification rates
Friedman, Hastie, Tibshirani [1998]
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Boosting Example
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After one iteration
CART splits, larger points have great weight
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After 3 iterations
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After 20 iterations
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Decision boundary after 100 iterations
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Boosting as optimization

• Friedman, Hastie, Tibshirani [1998] -
AdaBoost is an optimization method for 
finding a classifier. 

• Let  y∈{-1,1},  F(x)∈(-∞,∞)
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Criterion
• E(e–yF(x)) bounds the misclassification rate.

• The minimizer of E(e–yF(x)) coincides with 
the maximizer of the expected Bernoulli 
likelihood.
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Boosting References
• Rob Schapire’s homepage 

www.research.att.com/~schapire
• Freund, Y. and R. Schapire (1996). “Experiments with a new boosting 

algorithm,” Machine Learning: Proceedings of the 13th International 
Conference, 148-156.

• Jerry Friedman’s homepage 
www.stat.stanford.edu/~jhf

• Friedman, J., T. Hastie, R. Tibshirani (1998). “Additive Logistic 
Regression: a statistical view of boosting,” Technical report, Statistics 
Department, Stanford University.



In general, combining (“bundling”) 
predictions consists of two steps:

• Case Weights
• Data Values
• Guiding Parameters
• Variable Subsets

1)  Constructing varied models, and
2)  Combining their predictions

Generate component models by varying:

Combine estimates using:
• Estimator Weights
• Voting
• Advisor Perceptrons
• Partitions of Design Space, X



Advanced techniques

• Stochastic gradient boosting
• Adaptive bagging
• Example regression and classification results



Stochastic Gradient Boosting
Goal: Non-parametric function estimation
Method: Cast the problem as optimization and 

use gradient ascent to obtain predictor
Properties:
• Bias and variance reduction
• Widely applicable
• Can make use of existing algorithms
• Many tuning parameters



Improving boosting

• Boosting usually has the form

Improve by...
• Using a bagged estimate of the expectation.
• “Robustifying” the expectation.
• Trimming observations with small weights.
• BMA to compute the expectation
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Regression results
Squared error loss
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Classification results
Misclassification rates
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Stochastic gradient boosting offers...
• Application to likelihood based models 

(GLM, Cox models)
• Bias reduction - non-linear fitting
• Massive datasets - bagging, trimming
• Variance reduction - bagging
• Interpretability - additive models
• High-dimensional regression - trees
• Robust regression



SGB References

• Friedman, J. (1999). “Greedy function approximation: a 
gradient boosting machine,” Technical report, Dept. of 
Statistics, Stanford University.

• Friedman, J. (1999). “Stochastic gradient boosting,” 
Technical report, Dept. of Statistics, Stanford University.
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