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1 Introduction

The Bayesian approach to data analysis computes conditional probability distribu-
tions of quantities of interest (such as future observables) given the observed data.
Bayesian analyses usually begin with a full probability model - a joint probability dis-
tribution for all the observable and unobservable quantities under study - and then
use Bayes’ theorem (Bayes, 1763) to compute the requisite conditional probability
distributions (called posterior distributions). The theorem itself is innocuous enough.
In its simplest form, if () denotes a quantity of interest and D denotes data, the

theorem states:

p(QID) = p(D|Q) x p(Q)/p(D).
This theorem prescribes the basis for statistical learning in the probabilistic frame-
work. With p(Q)) regarded as a probabilistic statement of prior knowledge about Q)
before obtaining the data D, p(Q|D) becomes a revised probabilistic statement of our
knowledge about ) in the light of the data (Bernardo and Smith, 1994, p.2). The

marginal likelihood of the data, p(D), serves as normalizing constant.

Computing is the big issue confronting a data miner working in the Bayesian frame-

work. The computations required by Bayes’ theorem can be demanding, especially
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with large datasets. In fact, widespread application of Bayesian data analysis meth-
ods has only occurred in the last decade or so, having had to wait for computing
power as well as breakthroughs in simulation technology. Barriers still exist for truly

large-scale applications.

The primary advantages of the Bayesian approach are its conceptual simplicity and
the commonsense interpretation of Bayesian outputs. The ability to incorporate prior
knowledge can also be a boon. Many data mining applications provide copious data,
but for models with thousands if not millions of dimensions or parameters, a limited
amount of prior knowledge, often in the form of prior exchangeability information, can
sharpen inferences considerably. Perhaps more commonly though, the available data
simply swamps whatever prior knowledge is available, and the precise specification of

the prior becomes irrelevant.

Section 2 of this chapter uses a series of examples to introduce the basic elements of the
Bayesian approach. Sections 4 and 5 describe strategies for Bayesian computation and
model building respectively. The remaining Sections discuss some specific applications

and describe currently available software.

2 Fundamentals of Bayesian Inference

2.1 A Simple Example

Consider estimating the “sex ratio,” that is, the proportion of births that are fe-
male, in a specific population of human births. Demographers have studied sex ratios
for centuries and variations across sub-populations continue to attract research at-
tention. In 1781 the illustrious French scientist Pierre Simon Laplace presented a
Bayesian analysis of the sex ratio (Stigler, 1990). He used data concerning 493,472
Parisian births between 1745 and 1770. Let n = 493,472 and ¥4, ..., ¥y, denote the
sex associated with each of the births, y; = 1 if the ¢th birth is female y; = 0 is the
tth birth is male. For the Parisian data > vy, = 241,945 and we denote this by y.
Denote by # the probability that a given birth is female. Assuming that the births



represent independent and identically distributed Bernoulli trials, we can compute

the posterior distribution as:
POy, - - yn) x 6Y(1 —0)" ¥p(0),0 € [0,1].

Ultimately we will want to use this posterior distribution to compute probabilities
such Pr(0 > 1) or Pr(0.49 < 6 < 0.50). However, to do this we will need to compute

the normalizing constant on the right hand side, that is,

[0 =0y p(o)ae,

and we are getting a first glimpse as to why computation looms large in Bayesian
analysis. Since the integral here is one-dimensional, it yields a straighforward numer-
ical approximation irrespective of the precise choice of p() (see Section 4). Laplace
circumvented the integration by using a uniform prior distribution for 6 (i.e., p(0) =

1,0 € 10,1]) leading to:
POy, ..., yn) o< PH2(1 — )54 9 € [0,1].

This is the density of the so-called beta distribution and, in this case, the requisite
normalizing constant is available in closed form:

['(493474)
['(241946)['(251528)

p(0|y17 o 7yn) _ 0241945(1 _ 0)2515277 0 c [07 1]

The posterior mean and standard deviation are 0.490291 and 0.000712 respectively.
Could the true probability be as big as a half? That was the scientific question that
Laplace addressed and the posterior density above yields:

1
Pr(0 > §) A~ 1.521 x 10 %2,

Laplace concluded that it is “morally certain” that the true probability is indeed
less than a half. Note that this analysis, unlike a classical p-value, provides a direct

probabilistic answer to the primary question of interest.

What about prediction? Denote by v, the sex associated with the next birth. We

compute the predictive density as follows:

PYns1lyi, -y n) = /p(yn+1|9)p(9|y1, ey Yn)dl.

3



Note that we have used here the fact the 0 renders y,.; independent of yy,...,y,.
Again, since we are dealing with a one-dimensional parameter, this integral is man-
ageable. With Laplace’s particular choice of prior, the predictive distribution takes

an especially simple form:

+1
Pr(ynis = 1yi, s yn) = f{b—% — 0.490291.

Laplace’s choice of the uniform prior led to closed-form expressions for the posterior
and the predictive distributions. He could more generally have chosen any beta
distribution as the prior distribution for # and still have closed-form outputs. The

general form of the beta density for a 0 is:

I+ B)
I'(a)I'(B)

We refer to this as a beta(a, ) distribution where o and 3 are hyperparameters. This

p(0) = 0“1 -0t 0¢c]0,1].

leads to a beta(a + vy, 5+ n — y) posterior distribution. For Bernoulli/binomial data
the beta distribution is said to be the conjugate prior distribution. Conjugate priors
stay in the same distributional family as they go from prior to posterior. Convenient
conjugate priors are available for many standard distributions and, so long as they
are flexible enough to accurately represent whatever prior knowledge is available, it
often makes sense to use a conjugate prior. The BUGS manual (Spiegelhalter et al.,
1999) provides a list of distributions and their associated conjugate priors. Gelman
et al. (1995) also analyze the example just described and provide a comprehensive

introduction to Bayesian methods in general.

2.2 A More Complicated Example

The use of graphs to represent statistical models has a rich history dating back at
least to the 1920’s. Recently, graphical Markov models have emerged as a important
class of models and have impacted fields such as data mining, causal analysis, and
statistical learning. A graphical Markov model is a multivariate probabilistic model
that uses a graph to represent a set of conditional independences. The vertices of

the graph represent the random variables of the model and the edges encode the
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Figure 1: Down’s Syndrome: An Acyclic Directed Graphical Markov Model

conditional independences. In general, each missing edge corresponds to a conditional
independence. Graphs with different types of edges—directed, undirected, or both—
lead to different classes of probabilistic models. In what follows we will only consider
acyclic directed models, also known as Bayesian Networks ! (see, for example, Pearl,

1988).

Spiegelhalter and Lauritzen (1990) presented a Bayesian analysis of acyclic directed
graphical Markov models and this topic continues to attract research attention. Here
we sketch the basic framework with a stylized version of a real epidemiological appli-

cation.

In Norway, the Medical Birth Registry (MBR) gathers data nationwide on congenital
malformations such as Down’s syndrome. The primary purpose of the MBR is to
track prevalences over time and identify abnormal trends. The data, however, are
subject to a variety of errors, and epidemiologists have built statistical models to
make inference about true prevalences. For Down’s syndrome, such a model includes
three dichotomous random variables: the reported Down’s syndrome status, R, the
true Down’s syndrome status, S, and the maternal age, A, where age is dichotomized

at 40, say.

Figure 1 displays a possibly reasonable model for these variables. This acyclic directed
graph represents the assumption that the reported status and the maternal age are
conditionally independent given the true status. The joint distribution of the three

variables factors accordingly:
Pr(A, S, R) = Pr(A)Pr(S | A)Pr(R | S). (1)

This factorization features a term for every vertex, the term being the conditional

density of the vertex given its parents. In general, this factorization implies that

IThis is somewhat of a misnomer since there is nothing Bayesian per se about Bayesian networks.



Figure 2: Down’s Syndrome: An Acyclic Directed Bayesian Graphical Markov Model

vertices (more correctly, the random variables corresponding to vertices) are condi-

tionally independent of their non-descendants given their parents (Lauritzen et al.,

1990).

The specification of the joint distribution of A,.5, and R, in (1), requires five param-
eters:

Pr(R|S),Pr(R|S),Pr(S | A),Pr(S|A) and Pr(A) (2)

where S, for example, denotes the absence of Down’s syndrome. Once these probabili-
ties are specified, the calculation of specific conditional probabilities such as Pr(R | A)

can proceed via a series of local calculations without storing the full joint distribution

(Dawid, 1992).

To facilitate Bayesian learning for the five parameters, Spiegelhalter and Lauritzen
(1990) and Cooper and Herkovits (1992) make two key assumptions that greatly

simplify subsequent, analysis.

First, they assume that the parameters are independent a priori. Figure 2 embodies
this assumption. For instance, pr(S | A) in Figure 2 has no parents. Therefore, it

is marginally independent of, for instance, pr(A), since this is not a descendant of

pr(5 | A).

Second, they assume that each of the probabilities has a beta distribution (or Dirichlet

distribution for categorical variables with more than 2 levels).



Calculation of the posterior distributions is straightforward. Suppose we have the
following prior distributions for three of the parameters: pr(A) ~ beta(1,1), pr(S |
A) ~ beta(5,1), and pr(R | S) ~ beta(1,9), and we observe a single case, d =
(A, S, R), that is, maternal age over 40 and incorrectly recorded by the MBR as
Down’s syndrome. Then, it is easy to show that pr(d) = ﬁ X ﬁ X ﬁ. Conditional
on d, the posterior distributions of these parameters become: : pr(A) ~ beta(2,1),
pr(S | A) ~ beta(5,2), and pr(R | S) ~ beta(2,9). The posterior distributions of the
remaining two parameters, pr(S | A) and pr(R | 9), are unchanged. In this manner,

we can sequentially calculate the likelihood for a collection of cases, D, conditional

on the model of Figure 2. Heckerman et al. (1994) provide a closed-form expression

for this likelihood.

We now discuss the actual Norwegian Down’s syndrome example in more detail.
Because of growing concerns about incomplete ascertainment, an additional notifica-
tion system entitled “Melding om Fosterindiserte Aborter og Medfgdte Misdannelser”
(MIA) was introduced in 1985 in the county of Hordaland covering about 15% of all
births in Norway. The MIA registration is based on prenatal diagnostics and pedi-
atric follow-up including results from cytogenetic tests. While it was expected that
the MIA registration would be more accurate than the MBR, the MIA registration
s subject to error. Table 1 presents data concerning Down’s syndrome collected
between 1985 and 1988 (Lie et al., 1991,1994). The variables A and S continue to
represent maternal age and true Down’s syndrome status, respectively. R; represents
case ascertainment through the national MBR registry and Ry through the regional
MIA registry.

Denoting by (), the prevalence of Down’s syndrome, and by Y, the observed data,
the goal is to compute pr(@ | Y). York et al. (1995) presented a Bayesian graphical
Markov model analysis that addressed three substantive issues. First, there does exist
prior knowledge about Down’s syndrome rates, and the analysis sought to incorporate
this . Second, different models exist for these data that provide a reasonable fit to
the data, but lead to Down’s syndrome prevalence estimates that are quite different.
Third, the data are partially missing since Ry is present for only a subset of the

examples. Table 2 shows the results of analyses using various Bayesian graphical



Doubly Sampled Data
A1 Ag Ag A4 A5 AG Total

R, Ry 1 2 0 3 2 0 8
R, Ry 5 2 3 0 2 1 13
Ri, Ry 1 4 2 1 1 0 9

Ry, Ry | 7478 | 10247 | 7058 | 2532 | 504 | 28| 27847
Total 7485 | 10255 | 7063 | 2536 | 509 | 29| 27877

Singly Sampled Data
Ay Ag Az Ay As | Ag || Total
Ry 32 55 58 62 23 3 233
R 48957 | 70371 | 49115 | 16834 | 3348 | 165 || 188790
Total | 48989 | 70426 | 49173 | 16896 | 3371 | 168 || 189023

Table 1: Down’s syndrome data for 1985-1988 : R; represents case ascertainment
through the national MBR registry and R, through the regional MIA registry. A
represents the maternal age in six categories: < 24, 25-—29, 30—34, 35—39, 40—44,
and > 45.

Markov models.

Each model used an informative prior distributions, based on historical data and ex-
pert knowledge for the various probabilities. Specifically, the parameters for the
prior on pr(S), the prevalence of Down’s syndrome, were based upon raw data
from the MBR registry for 1979-1984 without any adjustment for misclassification.
During that period, there were 0.97 observed cases per 1,000 births; we chose the
beta(0.0097,9.9903) prior to have that rate as its expected value and so that our
prior knowledge is equivalent to having observed 10 hypothetical births. The priors
for the probability of a case being identified by the registries reflect our belief that
the registries are more likely to find cases of the syndrome than not. For the na-
tional MBR registry, we placed beta(4,2) priors on pr(R; | §) and pr(Rs | S). For
the 6 parameters, pr(S | A;), we chose prior variances so that Var(p(5)) is the same



for all models, and prior expectations given by historical data for 1979-1984, which
are 0.59,0.59,0.97,3.04,6.88, and 18.50 cases per 1000 for age groups Ai,..., As,
as presented in Lie et al. (1991). York et al. (1995) describe the remaining prior

distributions.

The analysis assumed that there are no false positives, which is reasonable in this
context. Models with a “*” on the Ry, R, link impose a special kind of dependence
where it is assumed that the MIA registry, Ro, will find all cases missed by the national
registry, Ry. York et al. (1995) used a Markov chain Monte Carlo procedure to deal

with the missing data (see Section 4).

Posterior 103 x Pr(S)
Model Probability | Mode | Mean | Std Dev

0.282 1.81 | 1.92 0.292

@—SC ¥ | 0385 | 149 | 151 | 0120

@5 0269 | 1.60 | 1.70 | 0252

0.030 1.71 | 1.78 0.226

A=~ ¥ | 0016 150 | 152 | 0.129

Table 2: Features of the posterior distribution for Down’s syndrome prevalence. Prevalence is
given as the rate per thousand. The “Posterior Probability” is a normalized marginal likelihood.

Only models with posterior probability larger than 0.01 are listed.

Each model has an associated model score (“Posterior Probability” in Table 2) that
reflects a tradeoff between how well the model fits the data and the complexity of the
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model. It is clear that different plausible models can lead to quite different inferences.

Section 3 discusses this issue in some detail.

2.3 Hierarchical Models and Exchangeability

For a data miner, the notion of “exchangeability” and the consequent models represent

a powerful and underutilized tool. Here we introduce the basic idea by example.

Table 3 presents data concerning mortality rates in k = 12 hospitals performing car-
diac surgery in babies. The analytic goal here is to rank order the hospitals according
to their true mortality rates. Hospital A has the lowest observed mortality rate (0),
but has performed the fewest surgeries (27). Should the analysis rank Hospital A as

number one?

Hospital
A B C D E F G H I J K L

No. of Ops (n) |27 148 119 810 211 196 148 215 207 97 256 360
No. of Deaths () | 0 18 8 46 5 3 9 31 14 8 29 24

Table 3: Hospital mortality data

Denote by r; the true mortality rate for Hospital 7. A Bayesian analysis must specify
prior distributions for each of the r;’s. In the absence of any further information
about the hospitals, these prior distributions must treat the r;’s symmetrically. In
particular, in this situation, the Bayesian analysis would specify identical marginal

prior distributions for each of the rates:

p(ri) = p(r;)Vi, j
as well as identical marginal joint prior distributions for all pairs of rates:
p(riv Ti’) = p(rjv Tj’)Viv i/v j7 j/v
all triples, etc. Probabilistically we can represent this symmetry through exchangeabil-

ity: the parameters r1, ..., 7, are exchangeable if their joint distribution p(ry, ..., )

is invariant to permutations of the indices (1,...,k).
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Figure 3: Bayesian models from exchangeability.

i=1,...k

A remarkable result due to deFinetti says that in the limit as & — oo any exchangeble

sequence 11,...,T, can be written as:

plrseeor = [ | Tt st

for some p(¢). So, exchangeability suggests that we assume that the parameters
r1,...,7 comprise independent and identically distributed draws from some “mother-
distribution,” denoted here by p(¢). In the cardiac surgery example, we could proceed
as follows. Assume that within hospital 7, the number of deaths z; has a binomial
distribution with parameters n; (this is known) and r; (this is unknown). Next we
assume that the r;’s are independent and identically distributed where log(li—’ﬁm) is
normally distributed with mean g and precision 7. Finally we put fairly flat prior
distributions on g and 7. The Bayesian literature refers to such models hierarchical

models. Figure 3 shows a graphical Markov model representation.

Figure 3 uses some established graphical conventions. The box around n; indicates
that this is a known quantity. The box around n;, r;, and x; is called a plate indexed
by < =1,...,k and is a shorthand for repeating each n,r and x, k times. Every arrow
entering the plate would also be repeated - for instance, there is an arrow from a to

each of 1, ..., 1.

A Markov chain Monte Carlo algorithm (see Section 4) computes posterior distribu-

tions for r;’s. Table 4 shows the results.
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Hospital
A B C D E F G H I J K L

No. of Ops (n) | 27 148 119 810 211 196 148 215 207 97 256 360
Raw Rate (z/n) | 0.00 12.16 6.72 5.68 237 6.63 6.08 14.42 6.76 825 11.33 6.67
Post. Mean 5.77 1050 7.01 588 415 6.86 6.58 1258 694 785 10.34 6.81
Post. S.D. 23 23 1.8 08 13 15 16 22 1.5 21 1.8 1.2

Raw Rank 1 11 7 3 2 5 4 12 8 9 10
Post. Rank 2 11 8 3 1 6 4 12 7 9 10 5

Table 4: Hospital mortality rate results (rates x 100)

The effect of the exchangeability assumption is to shrink the observed rates towards
the overall average mortality rate (here 7.3%). For any given hospital, the amount of
shrinkage depends on the number of surgeries performed. For example, Hospital D
performed 810 surgeries. The mean of the posterior distribution for Hospital D’s rate
(5.76%) is close to the raw rate (5.68%). Hospital A on the other hand, performed
only 27 surgeries. The posterior mean for Hospital A is 3.76% in contrast with raw
rate of 0%. Indeed, ranking the hospitals according to their posterior means leads
to the conclusion that Hospital E is the best hospital despite the fact that no deaths
took place at Hospital Al

The phenomenon we are observing here is a sort of “borrowing strength.” The hos-
pitals with a paucity of data borrow inferential strength from the hospitals with
abundance of data. The notion of exchangeability generalizes to partial exchange-
ability where observations form exchangeable subgroups (see, for example, Consonni
and Veronese, 1995). Draper et al. (1993) provide an interesting discussion of the

central role of exchangeability in data analysis (equally, in data mining).

2.4 Prior Distributions in Practice

We have already seen two examples involving the use of informative prior distribu-

tions. In practice, and especially in the context of large datasets, Bayesian analyses
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often instead use prior distributions that reflect some degree of prior indifference or
ignorance. The basic requirement for such a prior distribution is that it be flat in
the region of the parameter space favored by the likelihood. Certainly it is always
advisable to make sure that the conclusions are robust to the particular choice of
prior. Carlin and Louis (2000, Section 6.1) provide a detailed discussion of different

robustness analyses.

In an attempt to represent prior ignorance, some Bayesian analyses utilize so-called
improper priors. These are priors that do not integrate to one but are uniform over,
for instance, the real numbers. Hence these improper priors are not probability dis-
tributions at all. In fact, improper priors can actually lead to “improper posteriors,”
that is, posterior densities that do not integrate to one, an undesirable state of affairs.

We recommend that data miners stick to proper prior distributions.

Concerning informative prior distributions, Chaloner (1996) surveys methodology for
eliciting priors from human experts. Spiegelhalter et al. (1994) provide an exquisite
example of pragmatic prior construction in the context of high-stakes decision mak-
ing. Madigan et al. (1995) describe an example where informative priors improved

predictive performance.

The empirical Bayes approach learns the prior distribution from the data. Carlin and
Louis (2000) provide a thorough introduction. DuMouchel (1999) and DuMouchel
and Pregibon (2001) describe applications of empirical Bayes to frequent itemset

identification, both with methodology suitable for massive datasets.

3 Bayesian Model Selection and Model Averaging

The example of Section 2.2 raised a challenging and ubiquituous issue: often there are
many competing “full probability models” that may all seem reasonable in the light of

the prior knowledge and of the data, but lead to different predictions®?. The Bayesian

2here we use the term “prediction” to mean inference for any unknown in the model, be it a

future observable or not.
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literature provides two general strategies to deal with this issue. Model selection
chooses the single “best” model and bases subsequent predictions on that model.
Model averaging combines the models and computes predictions as weighted averages.
Both approaches have strengths and weaknesses. Model selection is computationally
more straightforward and provides a single model to examine and critique. However,
predictions that condition on a single model ignore model uncertainty and can be
badly calibrated. Model averaging can be computationally demanding and inscrutable

but usually provides better predictions.

3.1 Model Selection

Suppose a particular analysis leads to set of candidate models {M;,7i € [} and
denote by D = {zy,...,z,} the observed data. The posterior model probabilities,
{p(M;|D),i € I} play a central role in Bayesian model selection. If we believe that
one of the models {M;,i € I} actually generated the data, then, if our goal is to
choose the true model, the optimal decision is to choose the model with the highest

posterior probability (Bernardo and Smith, 1994, p.389).

In practice, rather than trying to choose the “true” model, our goal is usually to make
the best predictions possible. Furthermore, we don’t usually believe that any of the
models under consideration actually generated the data. Nonetheless, the posterior
model probability is sometimes a reasonable choice as a model selection criterion
(although not usually predictively optimal - see Barbieri and Berger, 2002). Note
that:

p(M;| D) o< p(D|M;) > p(M;)

so computing a posterior model probability involves two terms, the marginal likeli-
hood and the prior model probability, as well as a normalization over the competing
models. There exists a vast literature on marginal likelihood computation - we refer
the interested reader to Section 6.3 of Carlin and Louis (2000) and to Han and Carlin

(2001). Suffice it to say that the computation can sometimes prove challenging.

Bernardo and Smith (1984, Section 6.1.6) argue for selecting the model that maxi-
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mizes a cross-validated predictive score. For the case of the logarithmic score, this
selects the model that maximizes:
1& .
A Z; log p(x| Mi, x, 1))
]:
where x,_1(j) represents the data with observation x; removed, {xy,...,zx} repre-

sents a random sample from D, and the maximization is over i € I.

For some applications, computational complexity may rule out cross-validatory pre-
dictive model selection procedures. Carlin and Louis (2000, Section 6.5.1) discuss
alternatives. Spiegelhalter et al. (2002) propose a model selection criterion espe-

cially well suited to Bayesian hierarchical models and present a decision-theoretic

justification. See also Geisser (1993) and Shibata (1983).

3.2 Model Averaging

If we believe that one of the models {M;,i € I} actually generated the data, then, if
our goal is to minimize the squared loss for future predictions, the optimal strategy
is to average over all models (Bernardo and Smith, 1994, p.398). Specifically, if ) is
the quantity of interest we wish to compute, Bayesian model averaging computes:

Zp Q|D, M;)p(M;|D).

el

Bayesian model averaging is also optimal with regard to a logarithmic predictive
score (Madigan and Raftery, 1994). As with model selection, we don’t usually believe
that one of the candidate models actually generated the data, but empirical evidence
suggests that Bayesian model averaging usually provides better predictions than any
single model (see, for example, Hoeting et al., 1999), sometimes substantially better.
Predictive distributions from Bayesian model averaging usually have bigger variances,
more faithfully reflecting the real predictive uncertainty. Draper (1995) provides

examples where failing to account for model uncertainty proved unfortunate.

Hoeting et al. (1999) discuss computing for Bayesian model averaging. Other ref-
erences include Madigan and York (1995), Carlin and Chib (1995), and Carlin and
Louis (2000, Section 6.4).
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3.3 Model Assessment

Both model selectors and model averagers need tools to assess model fit. Bayesian

residuals provide a useful starting point:
ri=vy — FEw|D),i=1,...,m

where {y1,...,Ym} is a validation sample independent of the training data D, and
E denotes expectation. Examination of these residuals can reveal failure in a dis-
tributional assumption or failure of some independence assumption, or whatever.
Carlin and Louis (2000, Section 2.4) discuss a cross-validatory approach, wherein

the fitted value for y; is computed conditional on all the data except y;, namely,

Y = Y1y ooy Yi1y Yitts- -+ YUn), yielding:
i =y — Eyily)-
The conditional predictive ordinate (CPO), p(y;|y (), is also quite useful. Individual

data values having low CPO are poorly fit by the model. Gelfand and Dey (1984)
point out the interesting fact that:

1 / 1
= p(0ly)do.
PWily ) P(Wily ), 0)

Hence a Monte Carlo estimate of the harmonic mean of p(y;|y),0) estimates the
CPO. This is usually straightforward to compute using, for example, BUGS (see 5.1

below). Harmonic means, however, can be numerically unstable.

Gelman et al. (1995, Chapter 6) favor a technique that involves drawing simulated
values from the posterior predictive distribution of replicated data and comparing
these samples to the observed data using some discrepancy measure. Different choices
of discrepancy measure can shed light on different aspects of model fit. We refer the

reader to Gelman et al. for further details.
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4 Bayesian Computation

Outputs of Bayesian data analyses often come in the form of expectations such as the
marginal means, variances, and covariances of the quantity of interest. We compute

the expected value of the quantity of interest, h(6), using

E(h(0)|z1,... o5) = /h(e)f(9|g;1, L an)dO (3)

where f(0]x), is the posterior distribution of the parameters given the observed data.
Computation of these expectations requires calculating integrals that, for all but the
simplest examples, are difficult to compute in closed form. Monte Carlo integration
methods sample from the posterior, f(0|x), and appeal to the law of large numbers

to estimate the integrals,

) 1 ¥
Jim 57 (0 [ OOl )0 (4)

where the 0; compose a sample from f(0|x).

The ability to compute these expectations efficiently is equivalent to being able to
sample efficiently from f(f|x). Sampling schemes are often difficult enough without
the burden of large datasets. The additional complexity of massive datasets usually
causes each iteration of the Monte Carlo sampler to be slower. When the number
of iterations already needs to be large, efficient procedures within each iteration are
essential to timely delivery of results. So-called “variational approximations” can be
useful for massive datasets beyond the reach of Monte Carlo methods and we discuss

those briefly at the end of this Section.

4.1 Importance sampling

Importance sampling is a general Monte Carlo method for computing integrals. As
previously mentioned, Monte Carlo methods approximate integrals of the form (3).
The approximation in (4) depends on the ability to sample from f(0|x). When a

sampling mechanism is not readily available for the “target distribution,” f(0|x), but
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one is available for another “sampling distribution,” g(f), we can use importance

sampling. Note that for (3) we can write

/h FOlar, . an)d0 — /h(e)f(ﬁx

= lim Zwl i) (6)

M—o0 “

) (010 5)

where 0; is a draw from g¢(0) and w; = f(6;|x)/g(0;). Note that the expected value
of w; under ¢g(0) is 1. Therefore, if we are able to compute the importance sampling
weights, w;, only up to a constant of proportionality, we can normalize the weights

to compute the integral.

M wih(0;
/h [0, a0 —  lim ==L i) (7)

M—oo sz\il wW;

Naturally, in order for the sampling distribution to be useful, drawing from g(6) must
be easy. We also want our sampling distribution to be such that the limit converges
quickly to the value of the integral. If the tails of g(0) decay faster than f(0|x) the
weights will be numerically unstable. If the tails of g(6) decay much more slowly than
f(0|x) we will frequently sample from regions where the weight will be close to zero,
wasting computation time. Second to sampling directly from f(0|x), we would like a

sampling distribution slightly fatter than f(0]x).

In Ridgeway and Madigan (2002) we show that when we set the sampling density to
be f(0|zy,...,x,), where n < N so that we condition on a manageable subset of the
entire dataset, the importance weights for each sampled 6; require only one sequential
scan of the remaining observations. Before beginning that discussion, the next section
introduces the most popular computational method for Bayesian analysis of complex

models.

4.2 Markov chain Monte Carlo (MCMC)

Importance sampling is a useful tool, but for complex models, crafting a reasonable

sampling distribution can be extremely difficult. Gilks et al. (1996) provides a more
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detailed introduction to MCMC along with a variety of interesting examples and

applications.

As with importance sampling, the goal is to generate a set of draws from the posterior
distribution f(f|x). Rather than create independent draws and reweight, MCMC
methods build a Markov chain, a sample of dependent draws, 64, ...,60,, that have
stationary distribution f(f|x). It turns out that it is often easy to create such a
Markov chain with a few basic strategies. However, there is still a bit of art involved

in creating an efficient chain and assessing the chain’s convergence.

Figure 4 shows the Metropolis-Hastings algorithm (Hastings, 1970), a very general
MCMC algorithm. Assume that we have a single draw 6; from f(0|x) and a proposal
density for a new draw, ¢(0|0;). If we follow step 2 of the MCMC algorithm then
the distribution of fy will also be f(#|x). This is one of the key properties of the
algorithm. Iterating this algorithm we will obtain a sequence 64, ...,60, that has

f(0|x) as its stationary distribution.

MCMC methods have two main advantage that make them so useful for Bayesian
analysis. First, we can choose ¢’s from which it is easy to simulate. Special choices
for g, which can depend on the data, simplify the algorithm. If ¢ is symmetric, for
example a Gaussian centered on #;_;, then the entire proposal distributions cancel
out in (8). If we choose a ¢ that proposes values that are very close to ;1 then it
will almost always accept the proposal but the chain will move very slowly and take a
long time to converge to the stationary distribution. If ¢ proposes new draws that are
far from 6;_; and outside the region with most of the posterior mass, the proposals
will almost always be rejected and again the chain will converge slowly. With a little
tuning the proposal distribution can usually be adjusted so that proposals are not
rejected or accepted too frequently. Essentially the only constraint on the choice of ¢
is that it results in an irreducible and aperiodic chain. The second advantage is that
there is no need to compute the normalization constant of f(f|x) since it cancels out

in (8).

The Gibbs sampler (Geman and Geman, 1984) is a special case of the Metropolis-

Hastings algorithm and is especially popular. If 8 is a multidimensional parameter,
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the Gibbs sampler sequentially updates each of the components of § from the full
conditional distribution of that component given fixed values of all the other compo-
nents and the data. For many models used in common practice, even the ones that
yield a complex posterior distribution, sampling from the posterior’s full conditionals
is often a relatively simple task. Conveniently, the acceptance probability (8) always

equals one.

4.3 An example

Consider again the hospital mortality example of Section 2.3. Recall that the un-
knowns of are the hospital mortality rates, r;,2 = 1,...,12, For simplicity here we
will assume that the r;’s come from a beta distribution with parameters a and b and
the analyst has endowed a and b with some prior distribution, say p(a,b). Gibbs
sampling here requires that we sample from the conditional distribution of each pa-
rameter, given all the other parameters and given the observed data. The trick here

is to first write down the joint density of all the random quantities in the model:

p(r1,. .., 2, T1, ..., T12,a,b) = ﬁ{p(xim, n;)p(ri|a, b)}p(a,b).
i
Since:
P(rilre, oo T, Tty ey T12, T, e o, T12, 4, D) X P(T1, . ., 712, T1, . ., T12, a4 D),
we have that:
p(ralre, o T 1 T, T, T, -, T1n, @, ) o Py, 1) p(ri]a, B)

(that is, just pick off the terms in the joint density that involve r;). Since z; is a

binomial random variable and r; has a beta prior distribution, we have:
p(?"i|7"1, R T Y B N DT A T ,ZL‘lg) ~ Beta(a + ZL‘i,b + n; — ZL‘l)

Thus the Gibbs sampler here simply cycles through the twelve rates in any order,
sampling each time from a beta distribution. The Gibbs sampler will also sample

from a and b, the specific distributions depending on the choice of p(a, b).
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Missing data fits into this scheme in a straightforward fashion. Suppose x5 is missing.
Then the Gibbs sampler expands to include a draw from the conditional distribution
of x5 given everything else. The veracity of this approach does depend on somewhat
subtle assumptions about the missing data mechanism. See Gelman et al. (1995,

Chapter 17) for a detailed discussion.

4.4 Application to Massive Data

MCMC as specified, however, is computationally infeasible for massive datasets. Ex-
cept for the most trivial examples, computing the acceptance probability (8) requires
a complete scan of the dataset. Although the Gibbs sampler avoids the acceptance
probability calculation, precalculations for simulating from the full conditionals of
f(0|x) require a full scan of the dataset, sometimes a full scan for each component!
Since MCMC algorithms produce dependent draws from the posterior, M usually
has to be very large to reduce the amount of Monte Carlo variation in the posterior
estimates. While MCMC makes fully Bayesian analysis practical it seems dead on

arrival for massive dataset applications.

Although this section has not given great detail about the MCMC methods, the
important ideas for the purpose of this Chapter are that

1. MCMC methods make Bayesian analysis practical,

2. MCMC often requires an enormous number of laps through the dataset, and

3. given a 0 drawn from f(0|x) we can use MCMC to draw another value, ', from

the same distribution.

4.5 Importance sampling for analysis of massive datasets

So far we have two tools, importance sampling and MCMC, to draw samples from

an arbitrary posterior distribution. Ridgeway and Madigan (2002) present a partic-
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1. Initialize the parameter 6

2. Foriin 2,..., M do
Step (a) and/or (b) requires a scan of the dataset

(a) Draw a proposal 8’ from ¢(0|6; 1),

(b) Compute the acceptance probability

J(0i1|x)q(0'|0; 1)

(¢) With probability a/(¢',60; 1) set 0; = ¢'.
Otherwise set 8, — 6,_;

a(0',0;_y) — min <1 F(0'1%)9(0:119') )

Figure 4: The Metropolis-Hastings algorithm

ular form of importance sampling that helps perform Bayesian analysis for massive

datasets.

Ideally we would like to sample efficiently and take advantage of all the information
available in the dataset. A factorization of the integrand shows that this is possible
when the observations, x;, are exchangeable. Let D; and Dy be a partition of the

dataset so that every observation is in either Dy or Ds.

As noted for (3) we would like to sample from the posterior conditioned on all of the
data, f(0|Dq, Ds). Since sampling from f(0| Dy, Dy) is difficult due to the size of the
dataset, we consider setting g(6) = f(0|D;) for use as our sampling distribution and
using importance sampling to adjust the draws. If 6;, ¢ = 1,..., M, are draws from

f(0| D) then we can estimate the posterior expectation (3) as

B(h(O)| Dy, Dy) — ix ill0:) )

M
Zizl W;
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where the w;’s are the importance sampling weights
o, — 10D, Ds)
t f(0ilDy)
Although these weights still involve f(6;|D1, D5), they greatly simplify.

v J(D1, D2|0;) f(0:)  f(D1) (11)
' J(D1, Do) f(D1]0:)f(0:)

J(D[0:) ] (D|0) ] (D1)

(10)

F(D1 100 £ (Ds, Ds) (12
J(D2]0;)
J(Dz|Dy)

o< f(Dali) = TI flxs160) (13)

x]'EDQ

Line (11) follows from applying Bayes’ theorem to the numerator and denominator.
Equation (12) follows from (11) since the observations are assumed to be exchange-
able, the observations in the dataset partition D, are independent from those in Dy
given 0. Conveniently, (13) is just the likelihood of the observations in Dy evaluated
at the sampled value of 0. Figure 5 summarizes this result as an algorithm. The

algorithm maintains the weights on the log scale for numerical stability.

So rather than sample from the posterior conditioned on all of the data, [D; and
Dy, which slows the sampling procedure, we need only sample from the posterior
conditioned on ;. The remaining data, D, simply adjusts the sampled parameter
values by reweighting. The for loops in step 5 of figure 5 are interchangeable. The
trick here is to have the inner loop scan through the draws so that the outer loop
only needs to scan Dy once to update the weights. Although the same computations
take place, in practice physically scanning a massive dataset is far more expensive
than scanning a parameter list. However, massive models as well as massive datasets
exist so that in these cases scanning the dataset may be cheaper than scanning the
sampled parameter vectors. We will continue to assume that scanning the dataset is

the main impediment to the data analysis.

We certainly can sample from f(0]|D;) more efliciently than from f(0|Dy, D) since
simulating from f(0|D;) will require a scan of a much smaller portion of the dataset.

For reasons discussed later, the algorithm works best when D, is as large as possible.
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1. Load as much data into memory as possible to form Dy, taking into account

space requirements for the Monte Carlo algorithm
2. Draw M times from f(6|D;) via Monte Carlo or Markov chain Monte Carlo
3. Purge the memory of D,
4. Create a vector of length M to store the logarithm of the weights and initialize

them to 0

5. Iterate through the remaining observations. For each observation, x;, update

the log-weights on all of the draws from f(6|D)

for z; in the partition Dy do

{

fortin1,..., M do

{

log w; < logw; + log f(x;|6;)

6. Rescale to compute the weights

w; «— exp (log w; — max(log w;)) (14)

Figure 5: Importance sampling for massive datasets

We also assume that, for a given value of @, the likelihood is readily computable
up to a constant, which is almost always the case. When some data are missing, the
processing of an observation in Dy will require integrating out the missing information.
Since the algorithm handles each observation case by case, computing the observed
likelihood as an importance weight will be much more efficient than if it was embedded
and repeatedly computed in a Metropolis-Hastings rejection probability computation.
Placing observations with missing values in Dy greatly reduces the number of times

this integration step needs to occur, easing likelihood computations.
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Ridgeway and Madigan (2002) describe some of the limitations of the algorithm shown
in Figure 5 and describe a more elaborate algorithm based in recent work on sequential
Monte Carlo algorithms. We refer the interested reader to Ridgeway and Madigan
(2002) and to Chopin (2002) for details.

4.6 Variational Methods

Variational approximations for Bayesian calculations have emerged in recent years as
a viable alternative to MCMC. The variational approach scales well and can tackle
problems beyond the reach of MCMC (see, for example, Blei et al., 2003). Here,
following Jaakola and Jordan (2000), we sketch the basic idea in the specific context

of logistic regression. Recall that a logistic regression takes the form:
p(Y = 1|X,0) = g(0"X)

where g(07X) = (1 + ¢ ®)"!. Given training data indexed by i = 1,...,n, the
posterior distributution of 6 is:

POYL X3 o p(0) TL (Y % g(07X0) + (1= ¥)) x (1 = g(07X)))

i=1

where p(0) is some prior distribution for 6.
The first step is to symmetrize the logistic function:
logg(z) = —log(l +e %) = % — log(e™/? + e7%/?)

and note that f(z) = —log(e*/? +e7%/?) is a convex function in the variable z2. Thus

it is possible to bound f below by a function that is linear in #2. Specifically:

of (&)
0(&?)

— —¢/2+logg(€) + 3z tanh(§/2)(a* — €) (16)

(2* = &%) (15)

fl@) = O+

This bound is exact when £? = 22, The essential idea of the variational approxima-

tion is to use this lower bound in place of log g() in the calculation of the posterior
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distribution of . Jaakola and Jordan (2000) use an EM algorithm to find the value
for £ that makes the bound as tight as possible across all the training data. Since
the bound is quadratic in x, choosing, for instance, a Gaussian prior for ¢ will yield
a closed form expression for the approximate posterior distribution. In a sense, the
variational approach here replaces an integration problem by a simpler optimization

problem.

5 Bayesian modeling

We begin with a discussion of BUGS, a singular general purpose software tool for
Bayesian data analysis. Then we briefly discuss specific Bayesian models and provide

pointers to the literature.

5.1 BUGS and Models of realistic complexity via MCMC

BUGS is a terrific tool for Bayesian data mining. The UK Medical Research Council
at Cambridge developed BUGS over the last decade. The program is available free-

of-charge from:
http://www.mrc-bsu.cam.ac.uk/bugs/.

There are versions for Unix, DOS, and Windows (WinBUGS). The BUGS manual
(Spiegelhalter et al., 1999) describes BUGS:

“BUGS is a computer program that carries out Bayesian inference on
statistical problems using Gibbs sampling.

BUGS assumes a Bayesian or full probability model, in which all quan-
tities are treated as random variables. The model consists of a defined
joint distribution over all unobserved (parameters and missing data) and

observed quantities (the data); we then need to condition on the data
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in order to obtain a posterior distribution over the parameters and un-
observed data. Marginalising over this posterior distribution in order to
obtain inferences on the main quantities of interest is carried out using a
Monte Carlo approach to numerical integration (Gibbs sampling).

There is a small set of BUGS commands to control a session in which
a (possibly very complex) statistical model expressed using the BUGS
language is analysed. A compiler processes the model and available data
into an internal data structure suitable for efficient computation, and a
sampler operates on this structure to generate appropriate values of the
unknown quantities.

BUGS is intended for complex models in which there may be many
unknown quantities but for which substantial conditional independence
assumptions are appropriate. Particular structures include generalised
linear models with hierarchical or crossed random effects, latent variable
or frailty models, measurement errors in responses and covariates, infor-

mative censoring, constrained estimation, and missing data.”

For example, Figure 6 shows the BUGS code for the cardiac surgery example of Sec-
tion 2.3. Alternatively and equivalently, WinBUGS can represent the model graphi-
cally. Figure 7 shows a screendump. Here we selected the node r[i] and the two lines
at the top of the figure show the node’s specification. We see that it is a stochastic
node (represented by an oval) with a binomial distribution conditional on its parents
in the graph which are the binomial parameters p[i| and n|i]. The two other node
types are constant nodes (represented by rectangles) like a, b, and n|i], or logical nodes
(represented by ovals with dashed incoming edges — see Figure 9) which are functions

of other nodes.

The primary BUGS output comprises summary statistics and density estimates for
all the unknowns. BUGS can also provide the MCMC iterates for input to MCMC
diagnostic programs like CODA (CODA is distributed with BUGS). Figure 8 shows

the density estimates for the first four hospitals in the cardiac surgery example.
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model;

const
N =12, # number of hospitals
a=2,b =24 # hyperparameters

var
r[N], # number of deaths
n|NJ, # total number of operations
p[NJ; # true probability of death

data r,n in ’surgical.dat’;

for(iin1: N){
r[i] ~ dbin(pli],nli)
pli] ~ dbeta(a,b)

Figure 6: BUGS code for the cardiac surgery example

The combination of the graphical Markov model framework, the Bayesian approach,
and MCMC means that BUGS can build models of considerable complexity, when
such complexity is warranted. To demonstrate this, we present here an application
of moderate complexity that would challenge the capabilities of any commercial data

analysis or data mining software. This example is from Draper and Madigan (1997).

In the US, the anti-abortion campaign of the late 1980s and early 1990s generated
much publicity and occasionally became violent. Sociologists, epidemiologists, and
medical researchers have begun to study the effect that this campaign has had on
access to reproductive services and on pregnancy terminations. Interest mainly lies

in modeling the incidence rates of pregnancy terminations and their changes over time
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Figure 7: BUGS Graphical Markov Model for the cardiac surgery model.

at the county level, with particular attention focusing on possible changes in response
to the anti-abortion campaign. Available data include the observed number y;;, of
reported terminations in age group i, county j, and year k (across 5 age groups,
38 US counties, and the years 1983-94), together with the appropriate population
denominators n;;;, and a selection of county-level predictor variables z; including,
e.g., the estimated number of clinics providing reproductive services in 1983 and in
1993. A natural model for count data like the y;;, involves regarding the counts as

realizations of Poisson random variables,
Yigr ~ Poisson(pije), (17)

where the mean structure p;;; is related to age group, district, and year. Prelimi-
nary exploratory data analysis and examination of several simple models suggests the
structure

log puije = log nyge + of + o + (G + B5)tk + (3 + ;) 2, (18)

where 2, is an indicator variable for after—1990 versus before and, e.g., of, 57, and ~/
are the age effect on the intercept, the change per year, and the gradient after 1990.
However, in the light of the data, several deficiencies in this model present themselves

and prompt the following elaborations:
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Figure 8: BUGS output for Hospitals A-D in the cardiac surgery model.

Over-dispersion: The theoretical mean and variance of the Poisson distribution
are equal, but with data such as these, sample variances often greatly exceed
sample means. Thus the model typically needs to be generalized to allow for this
extra variability, which can be thought of as arising from the omission of addi-
tional unobserved predictor variables. This generalization may be accomplished

by adding a Gaussian error term to equation (18).

Hierarchical modeling: The standard Bayesian modeling of the county-level co-
efficients af, %, and ¢ would involve specifying prior information—in the form
of probability distributions—for each of them (i.e., 114 separate distributions).
However, considering the counties as exchangeable pools the knowledge across
them. This is accomplished mathematically by regarding, e.g., the 38 a}’s as
having arisen from a single (e.g., Gaussian) distribution. That single distribu-
tion also may have a set of unknown hyperparameters that we could choose or

estimate.

Relationships among the coefficients: Prior experience suggests that it is unre-
alistic to consider the county-level coeflicients of, 57, and 74 as independent, so
the three distributions just described (one for each of a, 3, and ) need to be

treated as correlated.

Underreporting: Much is known about abortion underreporting rates, which is
a form of missing data. It is necessary to incorporate this information into the

model in a way that fully fleshes out the resulting uncertainty.
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Figure 9: Bayestan model for the reproductive services example.

Figure 9 presents a summary of the resulting model. MCMC computation makes
calculations for this Bayesian model straightforward. Moreover, complicated func-
tions of the unknowns, such as the true relative rankings in abortion rates among
the counties, are available trivially, together with measures of uncertainty (difficult
to achieve correctly with non-Bayesian analyses) that fully reflect what is known and

what is not.
See Spiegelhalter (1988) for another example along these lines.

The text by Congdon (2001) discusses Bayesian data analysis with BUGS and Win-
BUGS and provides sample code. The BUGS documentation itself features two vol-

umes of examples covering a broad range of applications.
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Note that BUGS does not provide any facilities for learning model structure. That
is, the user specifies the graphical Markov model and then BUGS carries out the
corresponding MCMC calculations. A BUGS module for learning model structure

would be a useful addition.

5.2 Bayesian Predictive modeling

Thus far, we have dealt mostly with full probability modeling. Many applications,
however, single out one quantity, y, and characterize y as a function of another
quantity or vector of quantities z. As such, these applications want the conditional
distribution of y given x, parameterized as p(y|, z) say, under a model in which the
n observations (x,y); are exchangeable (Gelman et al., 1995, p.233). The quantity y
calls itself the response or outcome variable. The variables z = {z1,...,z;} are the

explanatory variables or predictors.

Gelman et al. (1995, p.235) note that a full probability model would also specify
a distribution for z, say p(z|i) for some parameter vector v, leading to the full
probability model p(x,y|0,1). However, if § and ¢ are independent in their prior
distribution, that is, p(0,1) = p(0)p(y), then the posterior distribution factors as:

p(0, ¢z, y) = p(¥]x)p(0]x, y)
and we can analyze the second factor by itself with no loss of information:
p(0lz,y) o< p(0)p(ylx, 0).

The practical advantage of this is that it is often much easier to devise a good condi-
tional probability model for a single quantity than to come up with a full probability

model for all quantities.

Many predictive applications use the normal linear model in which the distribution

of y given x is a normal whose mean is a linear function of z:

E(y;|8,x) = Broxin + ... + Brik,
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for i = 1,...,n. Gelman et al. (1995, Chapter 8) discuss the Bayesian analysis of

the normal linear model with a variety of variance structures. See also, Raftery et al.

(1997).

Gelman et al. (1995) also discuss Bayesian analysis of hierarchical linear models
and generalized linear models. Carlin and Louis (2000) include spatial and spatio-
temporal models, nonlinear models, and longitudinal data models. West and Harrison
(1997) is the classical reference on the Bayesian analysis of time series data. The

companion text Pole et al. (1994) covers applications and software.

Survival analysis concerns the situation where y is a lifetime and, invariably, subject
to various forms of censoring. Ibrahim et al. (2001) provide a thorough introduction

to survival analysis from the Bayesian perspective. See also, Raftery et al. (1996)

and Volinsky et al. (1997).

Neal (1996) provides an excellent description of the Bayesian analysis of neural net-

works. See also the extensive material on David MacKay’s web site:

http://www.inference.phy.cam.ac.uk/mackay/.

Tree-based predictive models partition the predictor space into a set of rectangles, and
then fit a simple model (like a constant) in each one. Tree models are conceptually
simple, handle both discrete and continuous responses and predictors, and elegantly
deal with missing values. However, tree models suffer from an instability problem,
namely that a small change in the data can result in the tree-learning algorithm
selecting a very different tree. Averaging procedures such as bagging or boosting
effectively address the instability issue and can yield outstanding predictive accuracy.
Hastie et al. (2001, Section 9.2) provide an introduction and references. Breiman
and Friedman (1984) providing a fascinating early account of scaling tree-learning

algorithms to massive data.

Chipman et al. (1998) and Denison et al. (1998) describe Bayesian tree models and
associated MCMC learning algorithms. Chipman et al. (2001) report impressive

predictive performance for their Bayesian tree algorithm. Bayesian model averaging
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may address the instability problem associated with tree models, but this has yet to
be fully explored. Denison et al. (2002) describe a related class of Bayesian partition
models. The “partitions” in their case refer to partitions of continuous predictors.
The method seems to scale reasonably well and provided good predictive performance

on a banking application.

Readers may be interested in the (non-Bayesian) Microsoft Research “WinMine Toolkit.”
This software learns graphical models from data, using a decision tree to model the

conditional distribution at each node. See:

http://research.microsoft.com/~dmax/WinMine/Tooldoc.htm.

We note that Bayesian predictive modelers can short-circuit some of the compu-
tational complexity of the fully Bayesian approach by making so-called “Bayesian
plug-in” predictions. The essential idea to make predictions at a single parameter
value, typically the posterior mode, instead of integrating over the posterior distri-
bution. In practice, predictive accuracy is usually robust to this approximation and

even outperforms the fully-Bayesian approach on occasion.

5.3 Bayesian Descriptive modeling

Earlier Sections presented several examples of Bayesian graphical Markov models and
many commercial and non-commercial tools (such as BUGS) exist for learning such

models from data. Kevin Murphy maintains a list at:

http://www.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html.

Of course, graphical Markov models can be used predictively simply by considering
conditional distributions. Naive Bayes models represent an important sub-class of
graphical models that scale well and often yield surprisingly good predictive perfor-
mance (see Hand and Yu, 2001, or Lewis, 1998). The classical Naive Bayes model

(for example, Duda and Hart, 1973) imposes a conditional independence constraint,
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namely that the predictor variables, say, x,..., 7., are conditionally independent

given the response variable y. Figure 10 shows a graphical Markov model represen-

@/é;

Figure 10: The naive Bayes model.

tation of the naive Bayes model.

)

Outlier detection is an important data mining task and many authors have presented
Bayesian approaches. A key advantage of the Bayesian approach is that it directly
computes the probability that an observation is an outlier. See Hoeting et al. (1996),
Justel and Pena (1999), Bayarri and Morales (2000), and the references therein.

Cluster analysis has developed mainly as a set of ad hoc methods. More recently,
many data analysts have found that basing cluster analysis on a full probability model
yields significant advantages. In particular, the probabilistic approach enables clus-
tering of non-standard objects (such as web-page visits over time or gene expression
data), can detect clusters within clusters or overlapping clusters, and can make formal
inference about the number of clusters. Reversible jump MCMC (Green, 1995), an
MCMC algorithm than incorporates jumps between spaces of varying dimension, pro-
vides a flexible framework for Bayesian analysis of model-based clustering. Richard-
son and Green (1997) is key a reference. See also Fraley and Raftery (1998) and the
MCLUST software available from Raftery’s website:

http://www.stat.washington.edu/raftery/Research/Mclust/mclust.html,

the AutoClass system (Cheeseman and Stutz, 1996), and the SNOB system (Wallace
and Dowe, 2000). Cadez and Smyth (1999) and Cadez et al. (2000) present an EM

algorithm for model-based clustering and describe several applications.
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6 Available Software

Section 5.1 described the BUGS software. Carlin and Louis (2000, Appendix C)
present a comprehensive guide to Bayesian software. Berger (2000) includes a list
of Bayesian software websites as well as an overview of Bayesian philosophy and

approaches:

http://www.stat.duke.edu/~berger/papers/99-30.ps

7 Discussion and Future Directions

Markov chain Monte Carlo has opened the floodgates to serious Bayesian data anal-
yses. For example, the Sizth Workshop on Case Studies of Bayesian Statistics took

place in 2001 and presented a broad array of real-world applications:

http://lib.stat.cmu.edu/bayesworkshop/2001/Bayes01.html.

While data mining applications often feature massive datasets, predictive modelers
often deal with a paucity of labeled data. Bayesian analyses, however, can read-
ily absorb external information sources and usefully bootstrap the learning process.
For example, much of the empirical work in text categorization research uses mas-
sive, publicly-available test collections of labeled documents. The Reuters Corpus of
news articles, for instance, contains over 800,000 labeled documents. Incorporation
of prior information in such a context yields modest returns. Yet, real-world appli-
cations rarely feature large collections of labeled documents (Lewis, 2002) and prior
knowledge can play a critical role. We suspect the the same is true of many real-world

prediction problems.

Breiman (2001) argues that attempting to model mother nature’s data generating
mechanism is largely a futile exercise. He makes a distinction between the “data

modeling culture” (this includes the full probability modelers and the Bayesians) and
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the “algorithmic modeling culture.” The algorithmic culture regards the data gen-
erating mechanism as complex and unknown, and focuses on algorithms, often very
complicated algorithms, that yield good predictive performance. Breiman’s distinc-
tion is perhaps not as sharp as he contends. For one thing, many of the algorithmic
methods such as neural networks and support vector machines yield natural Bayesian
analogues. See, for example, the Gaussian Process models of Williams (1998); or the
Bayes Point Machines of Herbrich et al., 2001). In fact, Herbrich et al. present Bayes
point machines as an algorithmic approximation to Bayesian inference for kernel-based

predictive models.

Combining multiple complex hierarchical models such as that in Figure 9, with model
structures and priors tuned to optimize predictive performance or some other utility
function, combines aspects of the data modeling culture and the algorithmic culture.
For multilevel data such combinations seem especially expedient. For example, in
a medical context, we may have information about individual patients, information
about the hospitals in which they stayed, and information about the geographic lo-
cales of the hospitals. Assuming exchangeability or partial exchangeability within
each level can sharpen inference and provide better predictions. Between the levels,
the Bayesian literature usually features linear or mildly non-linear parametric mod-
els. Yet, many of the popular algorithmic or kernel-based methods could play a role

instead.

8 Summary

The Bayesian approach to data analysis emphasizes full probability models and ap-
propriate accounting for uncertainty. The approach can harness prior knowledge when
it is available and provides outputs that are simple to interpret. The core related no-
tions of “exchangeability” and “hierarchical modeling” represent powerful concepts

for data mining, especially for models with huge numbers of parameters.

Prior to the emergence of Markov Chain Monte Carlo methods, computational com-

plexity limited Bayesian data analysis to small-scale problems. Nowadays, analysts
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are conducting Bayesian data analyses of considerable complexity. Nonetheless, signif-
icant barriers remain for very large scale applications and further research is required.

Variational approximations are especially promising.

Religious adherence to a Bayesian or non-Bayesian perspective, often a feature of past
debates in the statistical community, has become an absurdity. Bayes is not a panacea,
and is certainly not always the optimal approach. In particular, for applications where
accounting for uncertainty is not so important, the fully Bayesian approach may be
more trouble than it is worth. Nonetheless, it is a tool of considerable flexibility and

elegance, and offers many advantages for data miners.
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