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Boosting algorithms for
classification

1. Learn a classifier from the data

2. Upweight observations poorly predicted,
downweight observations well predicted

3. Refit the model using the new weighting

4. After 7 iterations, have each model vote
on the final prediction.




Recent developments

Friedman, Hastie, Tibshirani demonstrated
that AdaBoost is a greedy, stepwise
procedure to fit an additive logistic
regression model.

J(F)= E(eyF(x))
J(F +cf )= E[e? P+ )



A regression analogy

With a current regressor, F(x), modify it in
order to minimize

JF+f)=E(y—(F(x)+ f(x))y
= f(x)=E(y—F(x)| x)



Casting regression as

classification
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Prediction

If h(X,S) has the form P(Y"=1|X,S), we will predict Y as
¥ =infls: P(Y" =1| X,5 =) > 1|

The inf always exists by the construction of S and if the
probability function is continuous in s, then

L=P(Y' =1|X,5=Y)=P(Y>Y|X,S=7)

So the predicted Y 1s the median of the predictive density of Y.



Why cast as classification?

A classifier merely needs to “pitch” itself
on the correct side of V2 to be accurate

Exposes regression problems to models
proposed for classification

We can directly apply boosting (AdaBoost)



Naive Bayes model

The naive Bayes assumption

P(Y'=1]X,8=Y)x P(Y" =1)P,,, 1(Y|Y"‘=1)1_[P(Xj|Y"‘=1)

The prediction rule is an additive model 1_‘or a
transformation of Y

PY =1|X,S=Y)=

L
2

log

Y Y =0 . d Y
Py o (Y| ) P(Y _1)+Zlog P(XJ|Y* )
FY|Y =) PY =0) ~ T P(X,|Y =0)

S\Y =1

:l<?>=fo+ZfJ<Xj>



Estimation with infinite datasets

For finite datasets, naive Bayes estimation is
simple

For example, if Ye [0,1] estimation turns into
simple limits

13(Y*=1)=1im ZZ Y (S,)=1)

=1-y

Not so simple when Y€



Weight functions

When Y€ & we assign weight functions
such that

N o0
w.(s) = 0and Zj_ w.(s)ds =1
i=1

Initially we set
f w,(s)ds =+



Empirical weight functions

We constructed an

applied AdaBoost,

observed Laplace-

approximation to O° |
for some datasets, J

like weight functions ' |

peaked around y;
w;(s) cexp(=|s—y; |/0)
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Weighting observations
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Estimating a classifier

If we assume that the rows of D" are independent
then

N 0
LO) =T JT P, (s),s,x, | )"

And further make the naive Bayes assumption to
factor the likelihood then

o0

N . Nw. (s)ds
= Hﬂ' [P(yf ()| O)P(s | y; (s),H)H P(x; | y; (S),H))

i=] -—o©



The BNB.R algorithm

Initialize: w,(y) as a Laplace density function with mean y; and scale o.

Fort=1,2,...,T

1. Using w(s), estimate the components of the naive Bayes regression model, /,(x).

N

2. &=,

i=1

3. W-H_l(S) W (S) ﬁl P(Y e Sgyi
l W (S) ﬁP(Y =1|X,,s) S>yl

and B, =

I " (5)ds

and normalize

POy =D SRR =0 S5

t Y t *
f:inf{y:iatlogp s =0) ZT: P(Y _1)+Zd:ZT:atlog
Y 1=1

where a, = (log ﬂr)/zlog B,
t=1

P'(X,|Y =)

P'(X,|Y =0)

|



Initialize: wi(y) as a Laplace density function with mean yi and scale (.


For t = 1, 2, …, T 


1. Using wi(s), estimate the components of the naïve Bayes regression model, ht(x).


2. 
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3. 
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Example

BNB.R on a linear threshold/saturation model
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Performance results
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Conclusions

Presents a “"thought exercise” on using
boosting for regression problems.

Proposes a method for applying classifiers
to regression problems.

Derives estimators for the naive Bayes
regression model.

Shows that BNB.R does surprisingly well
given its unconventional derivation.
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