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Outline

 Boosting algorithms

 Recent developments

 Regression as a classification problem

 The boosted naïve Bayes regression model

 Performance results



1. Learn a classifier from the data
2. Upweight observations poorly predicted, 

downweight observations well predicted
3. Refit the model using the new weighting
4. After T iterations, have each model vote 

on the final prediction.

Boosting algorithms for 
classification



Recent developments

 Friedman, Hastie, Tibshirani demonstrated 
that AdaBoost is a greedy, stepwise 
procedure to fit an additive logistic 
regression model.
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A regression analogy

With a current regressor, F(x), modify it in 
order to minimize
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Casting regression as 
classification
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Regression
h(X) → Y

Classification
h(X, S) → Y*


		X1

		X2

		Y



		0.6

		0.4

		0.3



		0.8

		0.5

		0.9






		

		X1

		X2

		Y

		S

		Y* = I(S ( Y)



		Obs. 1

		0.6

		0.4

		0.3

		0.00

		0



		

		0.6

		0.4

		0.3

		0.01

		0



		

		0.6

		0.4

		0.3

		(

		0



		

		0.6

		0.4

		0.3

		0.29

		0



		

		0.6

		0.4

		0.3

		0.30

		1



		

		0.6

		0.4

		0.3

		0.31

		1



		

		0.6

		0.4

		0.3

		(

		1



		

		0.6

		0.4

		0.3

		0.99

		1



		

		0.6

		0.4

		0.3

		1.00

		1



		Obs. 2

		0.8

		0.5

		0.9

		0.00

		0



		

		0.8

		0.5

		0.9

		0.01

		0



		

		0.8

		0.5

		0.9

		0.02

		0



		

		0.8

		0.5

		0.9

		(

		0



		

		0.8

		0.5

		0.9

		0.89

		0



		

		0.8

		0.5

		0.9

		0.90

		1



		

		0.8

		0.5

		0.9

		0.91

		1



		

		0.8

		0.5

		0.9

		(

		1



		

		0.8

		0.5

		0.9

		0.99

		1



		

		0.8

		0.5

		0.9

		1.00

		1







Prediction

If h(X,S) has the form P(Y*=1|X,S), we will predict Y as
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probability function is continuous in s, then 
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So the predicted Y is the median of the predictive density of Y. 



Why cast as classification?

 A classifier merely needs to “pitch” itself 
on the correct side of ½ to be accurate

 Exposes regression problems to models 
proposed for classification

We can directly apply boosting (AdaBoost)



Naïve Bayes model
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The naïve Bayes assumption

The prediction rule is an additive model for a 
transformation of Y



 For finite datasets, naïve Bayes estimation is 
simple

 For example, if Y є [0,1] estimation turns into 
simple limits

 Not so simple when Y є 

Estimation with infinite datasets
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Weight functions

When Y є  we assign weight functions 
such that

 Initially we set

∑∫
=

∞

∞−
=≥

N

i
ii dsswsw

1
1)( and 0)(

∫
∞

∞−
= Ni dssw 1)(



Empirical weight functions

We constructed an 
approximation to D* 
for some datasets,

 applied AdaBoost,
 observed Laplace-

like weight functions 
peaked around yi
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Weighting observations
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Weight 
functions 

wi(s)
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Estimating a classifier
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If we assume that the rows of D* are independent 
then

And further make the naïve Bayes assumption to 
factor the likelihood then



The BNB.R algorithm
Initialize: wi(y) as a Laplace density function with mean yi and scale σ.

For t = 1, 2, …, T

1. Using wi(s), estimate the components of the naïve Bayes regression model, ht(x).
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Initialize: wi(y) as a Laplace density function with mean yi and scale (.


For t = 1, 2, …, T 


1. Using wi(s), estimate the components of the naïve Bayes regression model, ht(x).


2. 

[image: image1.wmf]å


ò


=


=


N


i


x


h


y


i


t


i


t


i


ds


s


w


1


)


(


)


(


e


 and 

[image: image2.wmf]t


t


t


e


e


b


-


=


1




3. 
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Example
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BNB.R on a linear threshold/saturation model
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Performance results
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Conclusions

 Presents a “thought exercise” on using 
boosting for regression problems.

 Proposes a method for applying classifiers 
to regression problems.

Derives estimators for the naïve Bayes 
regression model.

 Shows that BNB.R does surprisingly well 
given its unconventional derivation.
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