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Outline

• The motivation: server side 
learning of web navigation

• The clustered discrete Markov 
model

• Parameter estimation via 
MCMC

• Results and computational 
issues

• Are we really predictable?



Learning Web Navigation

• Learn common paths
• Classify user groups
• Discover inefficiencies in 

complex web site designs
• Collaborative filtering
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The Data

• “Cookies” uniquely identify the 
site users

• Web servers record all requests 
in log files
– cookie id
– date/time stamp
– resource requested
– URL of requesting page

• Each observation is a finite 
sequence of discrete states



Complexities

• Browsers cache some resources, 
hiding some requests from the 
server - the “Back” button

• Users are capable of violating 
the intended graph structure by 
moving to an arbitrary node

• Dynamic Web sites

Therefore... 
Defining and extracting 

sequences may not be trivial



Constrained EM
Hartigan’s K-means algorithm



Approaches

• Shahabi, et al propose using the 
“path-mining” algorithm for 
client side learning
– define a distance between paths 

based on node and link similarity
– use K-means algorithm to 

“discover” clusters of paths
• Markov probability transition 

models



• Observe sequence of transitions
• Initial state distribution

• Probability transition matrix

Assumes all users are the same

Discrete Markov Process
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Mixture modeling

• Can identify “true” clusters
• Increases flexibility in 

parametric models
• Accounts for heterogeneity in 

the population



Clustered Markov 
Process Model

• A model of a mixture of Markov 
transition matrices

• Assumes that one of m Markov 
transition matrices generated a 
process

• Unknown: 
– the initial state distributions
– the transition probability matrices
– the mixture proportions
– which process came from which 

cluster.  If this is known then 
estimation is trivial



Likelihood function

• 1st product is across processes
• 2nd product is across clusters
• In parentheses… likelihood 

associated with process k 
generated from cluster 

• Exponent indicates whether 
cluster  generated process k
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Bayesian Estimation

Hierarchical prior for δ(k)
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Uniform prior on the simplex for
Each cluster’s initial state distribution
Each row in each probability transition 

matrix



Sampling via MCMC
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Example results
4829 processes from P1

171 processes from P2



















=



















=

42.014.017.027.0
30.032.003.035.0
65.008.015.012.0
57.019.017.007.0

10.020.038.032.0
05.004.005.086.0
38.019.037.006.0
18.013.043.026.0

21 PP



















=



















=

)02.0(41.0)01.0(14.0)02.0(18.0)02.0(27.0
)03.0(24.0)03.0(34.0)01.0(04.0)04.0(38.0
)03.0(66.0)02.0(10.0)03.0(14.0)02.0(10.0
)04.0(56.0)02.0(20.0)03.0(17.0)02.0(08.0

)003.0(10.0)004.0(20.0)004.0(38.0)004.0(32.0
)002.0(05.0)002.0(05.0)002.0(05.0)004.0(86.0
)004.0(38.0)003.0(19.0)003.0(37.0)002.0(06.0
)003.0(18.0)003.0(13.0)004.0(43.0)003.0(26.0

2

1

P

P

10,000 Gibbs sampling iterations



• Misclassification
P1 P2

P1 4814
(99.7%)

15
(0.3%)

4829

P2 60
(35.1%)

111
(64.9%)

171

• Mixture proportion is 97%, 3%
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Scaling

• Algorithm is rectangular in 
– number of processes
– number of clusters
– number of iterations
– average process length
– the square of the number of nodes

• Further study with 10 clusters, 
100 node graph
– 8-20 hours
– possible label switching if clusters 

are “close”



Constrained EM offers 
computational advantages

• Makes hard cluster assignments
• Iterates until no processes are 

reassigned
• Good MCMC starting values
• K-means is constrained EM for 

normal data

 No label switching
 Convergence in minutes
 May converge to local maxima



Modeling Web 
Navigation

• Offers a reasonable and 
coherent model for graph 
traversal

• Offers parameters that are easily 
interpretable for web designers

• Offers a predictive model for 
the most likely to be next 
requested resource
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