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Outline

The motivation: server side
learning of web navigation

The clustered discrete Markov
model

Parameter estimation via
MCMC

Results and computational
1Ssues

Are we really predictable?



Learning Web Navigation

Learn common paths
Classify user groups

Discover 1nefficiencies in
complex web site designs

Collaborative filtering



The Data

* “Cookies” uniquely identify the
site users

* Web servers record all requests
in log files
— cookie 1d
— date/time stamp
— resource requested

— URL of requesting page

* Each observation 1s a finite
sequence of discrete states



Complexities

 Browsers cache some resources,
hiding some requests from the
server - the “Back’ button

» Users are capable of violating
the intended graph structure by
moving to an arbitrary node

* Dynamic Web sites

Therefore...
Defining and extracting
sequences may not be trivial



Constrained EM

Hartigan’s K-means algorithm




Approaches

* Shahabi, et al propose using the
“path-mining” algorithm for
client side learning

— define a distance between paths
based on node and link similarity

— use K-means algorithm to
“discover” clusters of paths

* Markov probability transition
models



Discrete Markov Process

* Observe sequence of transitions

e Initial state distribution
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* Probability transition matrix
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Assumes all users are the same



Mixture modeling

* Can 1dentify “true” clusters

* Increases flexibility in
parametric models

* Accounts for heterogeneity in
the population



Clustered Markov
Process Model

A model of a mixture of Markov
transition matrices

* Assumes that one of m Markov
transition matrices generated a
Process

e Unknown:
— the 1in1tial state distributions

— the transition probability matrices

— the mixture proportions

— which process came from which

cluster. Ifthis is known then
estimation is trivial



Likelithood function
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Bayesian Estimation

Hierarchical prior for &%
6" ~ Mult(m, )
a ~ Dirichlet(1 )

Uniform prior on the simplex for
Each cluster’s 1nitial state distribution

Each row in each probability transition
matrix



Sampling via MCMC

Gibbs sampling - Full conditionals
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Example results

4829 processes from P,
171 processes from P,

(026 043 0.13 0.18] (0.07 0.17 0.19 0.57]
b 0.06 037 0.19 0.38 b 0.12 0.15 0.08 0.65
1086 0.05 0.04 0.05| * 035 0.03 032 030

1032 0.38 0.20 0.10 1027 0.17 0.14 0.42]

10,000 Gibbs sampling iterations

[0.26(0.003)  0.43(0.004) 0.13(0.003) 0.18(0.003)"
0.06(0.002) 0.37(0.003) 0.19(0.003) 0.38(0.004)

b= 0.86(0.004) 0.05(0.002) 0.05(0.002) 0.05(0.002)
0.32(0.004) 0.38(0.004) 0.20(0.004) 0.10(0.003)
[0.08(0.02) 0.17(0.03) 0.20(0.02) 0.56(0.04)

b 0.10(0.02) 0.14(0.03) 0.10(0.02) 0.66(0.03)

> 710.38(0.04) 0.04(0.01) 0.34(0.03) 0.24(0.03)
0.27(0.02) 0.18(0.02) 0.14(0.01) 0.41(0.02)




e Misclassification

| P,

P, [4814 15 4829
(99.7%) (0.3%)

P, |60 111 171
(35.1%) (64.9%)

« Mixture proportion is 97%, 3%
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Scaling

* Algorithm 1s rectangular in
— number of processes
— number of clusters
— number of iterations
— average process length

— the square of the number of nodes

* Further study with 10 clusters,
100 node graph

— 8-20 hours

— possible label switching if clusters
are “close”



Constrained EM offers
computational advantages

* Makes hard cluster assignments

* [terates until no processes are
reassigned

* Good MCMC starting values

« K-means is constrained EM for
normal data

© No label switching
© Convergence in minutes

@® May converge to local maxima



Modeling Web
Navigation

o Ofters a reasonable and
coherent model for graph
traversal

» Offers parameters that are easily
interpretable for web designers

» Offers a predictive model for
the most likely to be next
requested resource



	A Clustered Discrete Markov Chain Model for Web Site Traversal
	Outline
	Learning Web Navigation
	The Data
	Complexities
	Constrained EM�Hartigan’s K-means algorithm
	Approaches
	Discrete Markov Process
	Mixture modeling
	Clustered Markov Process Model
	Likelihood function
	Bayesian Estimation
	Sampling via MCMC
	Example results
	Slide Number 15
	Scaling
	Slide Number 17
	Modeling Web Navigation

