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Major research areas

 Providing practical 
solutions to complex 
problems

 Improving knowledge
 Informing policy 
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 Educating future policy 

analysts
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Statistics examples

Load balancing of electrical 
power generation under 
deregulation

Design the new Medicare 
payment system for 
rehabilitation hospital care

Use experimental design 
and spatial statistics to 
plan computer runs of 
complex models

Analyze a group randomized 
experiment of a drug prevention 
program for middle school 
students

Conduct an assessment 
of domestic terrorism 
preparedness

Analysis of quality of 
Internet surveys and survey 
methodology



RAND Also Conducts Private Sector
Work That Is in the Public Interest

 Global risk evaluation for overseas 
capital investments

 Load balancing of electrical power 
generation under deregulation

 Supply chain management
 Health care plan criteria in the U.S. 

automobile industry
 Safety options for Amsterdam’s 

Schiphol airport



Outline

 Prediction problems
 model complexity
 data access complexity

 Decision trees
 An algorithm
 Accuracy, efficiency, and interpretation
 Overfitting

 Recent innovations



Prediction problems

 Symptoms → Disease
 Credit application → profit
 Assessment at age 12 →  

 high school graduation
 Transaction record → fraud
 Books purchased →    

 other books to purchase
 Criminal record →    

 time until repeat crime



Data mining is…

 Data analysis
With datasets that are generally
 Massive, cannot fit into a computer’s 

main memory
 Observational
 Retrospective
 Noisy
 High-dimensional
 Unstructured



Data mining is not…

 a replacement for carefully thought 
out data analysis.

 able to magically make amazing 
discoveries.

 a stand-alone process but rather is 
a step in the process involving data 
collection, data management, data 
analysis, and thought.



Goals of prediction

 From a training dataset
 Independent observations with observed 

features and an observed outcome
 learn a function that takes in the 

features and outputs a prediction
 That minimizes the risk on future 

observations
 Misclassification = probability of mislabeling
 Squared-error loss = 
    average of (actual – predicted)2

 Absolute loss = average of |actual – predicted|



Complexity

 Having a massive dataset
 allows us to use more complex models 

and, therefore, make more accurate 
predictions

 causes data access complexity since 
scanning the disk one million times 
slower than scanning memory

model complexity & 
data access complexity



Model complexity example
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Underfitting

x

y

Underfitting occurs when we do 
not use enough of the information 
available in the training dataset.



Underfitting
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Large datasets naturally allow 
us to fit more complex models.



Overfitting
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Overfitting occurs when we fit 
models that are too complex 
for the amount of available 
information.



Overfitting

x

y

The model poorly predicts 
the new observations.



Underfitting and Overfitting

 Underfitting – not absorbing all of 
the information into the model

 Overfitting – learning the training 
dataset so well that the model 
cannot generalize

In between the underfit and overfit 
model lies the model that 
minimizes risk.



Predict age at death
 During aging, L-aspartic acid transforms into its D-form.  

Researchers obtained bone specimens from 15 human 
skulls with known age at death and measured the ratio of 
D-aspartic to L-aspartic acid.
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Decision Trees

 Extract from the data a 
decision tree
1. which predictor variables to use
2. where to split, and
3. what value to output for each 

terminal node.

Ratio < 0.1225

Ratio < 0.0775 Ratio < 0.155

7 19 26.3 37.7

 Algorithms search over tree configurations to 
find one that produces accurate outputs on the 
observed data.
1. Low misclassification error
2. Low average squared bias



Regression trees

 A regression tree is a tree-structured 
prediction model that has, as an 
output, a continuous variable.

 Idea: 
1. Start with all observations in a root node.
2. Split the dataset into two homogenous 

groups.
3. Predict the average output of each group.
4. Repeat this recursively down the tree until 

the number of observations in a terminal 
node is too small.



Choosing the split

Split Prediction left Prediction right squared-error
x ≤ 0.0550 0 22.5 97.2
x ≤ 0.0725 6 24.08 72.8
x ≤ 0.0775 7 26.09 57.4
x ≤ 0.0825 9.2 26.9 59.0
x ≤ 0.0950 10.83 27.78 59.8
x ≤ 0.1075 11.57 29.25 50.9
x ≤ 0.1125 12.75 30.43 50.9
x ≤ 0.1225 13.67 32 48.0
x ≤ 0.1350 14.8 33.4 51.8
x ≤ 0.1450 15.82 35.25 54.8
x ≤ 0.1550 16.83 37.67 59.2
x ≤ 0.1625 18.15 39.5 76.0
x ≤ 0.1675 19.64 40 102.9
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CART after one split
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Recursing…
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Classification trees

Refractive index Na % Window glass
1.51590 13.24 1
1.51613 13.88 0
1.51673 13.30 1
1.51786 12.73 1
1.51811 12.96 1
1.51829 14.46 0
1.52058 12.85 0
1.52152 13.12 1
1.52171 11.56 0
1.52369 13.44 0

A good split

Sorted



Classification trees

Refractive index Na % Window glass
1.52171 11.56 0
1.51786 12.73 1
1.52058 12.85 0
1.51811 12.96 1
1.52152 13.12 1
1.51590 13.24 1
1.51673 13.30 1
1.52369 13.44 0
1.51613 13.88 0
1.51829 14.46 0

A good split

Sorted



Classifying window glass
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Prediction Priorities

1.Accuracy – Obtain the model that 
predicts the best on future 
observations.

2.Efficiency – Find algorithms that 
learn efficiently from massive 
datasets.

3.Interpretability – Try to understand 
why the best model reasons as it 
does.



Trees and data mining

 Accuracy
 Trees fit non-linear models with interactions
 Other methods are more stable and more 

accurate.
 Efficiency

 The partitioning strategy reduces the number 
of observations that we need in memory.

 Trees handle continuous, nominal, ordinal, and 
missing input variables

 Predicting for future observations is efficient.
 Interpretability

 Trees appear interpretable… very deceiving.



NELS 1988
predict high school drop-out

Discipline problem < 0.224

Socio-economic status < -0.8075 Parents’ aspirations for kid < 9.5

School changes < 2.5

26% 5.5%

33% 65%

16%



Estimate generalization error

 Randomly split the dataset in half.
 Use half as a training set.
 Use the other half to assess the 

predictive performance of the method.
 Gives an unbiased estimate of generalization 

error.
 Try multiple splits of the dataset to 

understand the variability of the estimate of 
generalization error.

 Also provides unbiased estimates of the 
node probabilities.



Misclassification

 Classify all students as graduates
 Misclassification rate = 16.5%

 Using CART
 Misclassification rate = 15.9%

 Cost of misclassification is almost 
always an important factor in 
determining predictive performance.



Re-estimate probabilities

Discipline problem < 0.224

Socio-economic status < -0.8075 Parents’ aspirations for kid < 9.5

School changes < 2.5

46%34%

17%

23.5% 5%



Trained on one half

Discipline problem < 0.224

Socio-economic status < -0.8075 Parents’ aspirations for kid < 9.5

School changes < 2.5

26% 5.5%

33% 65%

16%



Trained on the other half

Grade composite < 2.95

Discipline < 0.224

Days absent < 2.564

not married(like) or separated
18%

28% 60%

58%

6%



The out-of-control tree

|
VAR171<2.95

VAR85<0.224

VAR42<2999.5

VAR25<-0.717
VAR85<0.5835 VAR143:a



Tree size vs. Generalization error 
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Optimal tree

VAR171<2.95

VAR85<0.224

VAR42<2999.5

VAR25<-0.717



Prediction and massive datasets
 Prospective prediction is the primary goal.
 Mined datasets are almost always 

retrospective.
 Interpretation has to be a secondary goal.

 Policy is often based on the prediction 
alone.
 Example: Children from broken homes are 

more likely to drop out. The intervention does 
not fix the home but acts on the predicted risk 
of dropping out.

 Designed experiments are outside the 
scope of data mining.



Precautions

 Situations that limit the predictor’s 
future performance
 Changes in the composition of the 

target population
 Biased selection of the training dataset
 Ignoring patterns of missing data



Innovations in prediction

 Bagging – Average multiple models 
to control variance.
 Pasting – Averaging models 

constructed on small subsamples
 Boosting – Incrementally learn the 

predictor.
 Gradient boosting – Generalizes 

boosting and incorporates 



Bagging (Bootstrap Aggregating)

Goal: Variance reduction
Method: Create bootstrap replicates of 

the dataset and fit a model to each. 
Average the predictions of each model.

Properties:
 Stabilizes “unstable” methods
 Easy to implement, parallelizable
 Theory is not fully explained



Bagging

Original 
data

Bag #1 Bag #2 Bag #99…
0.50.2 -0.1

Average prediction for a new observation 



Bagging algorithm

1. Create K bootstrap replicates of the 
dataset.

2. Fit a model to each of the replicates.
3. Average (or vote) the predictions of the 

K models.

Bootstrapping simulates (approximately) 
an infinite stream of datasets.



Connect-the-dots predictor
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On half-samples…
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Average over half-samples
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Average over quarter-samples
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Bagging Example
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CART decision boundary
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100 bagged trees
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Bagged tree decision boundary
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Regression results
Squared error loss
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Classification results
Misclassification rates
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Gradient Boosting
Automating the process

 Initialize the predictor to be the average 
output.

 Propose an additive improvement, g(x), to 
f(x) using the dataset.

 g(x) may be a tree.
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 This shows that we should choose g(x) 
that predicts the residuals using least 
squares.
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Proposing an improvement



Geometric view
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After several iterations
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Further innovations

 Use a random subsample to make 
a proposal.
 Requires fewer observations in 

memory
 Actually improves performance!

 Make conservative moves
 Use small trees
 Shrink the predictions toward zero

 Use the “out-of-bag” observations 
to judge improvement



Effect of subsampling
Predicting cost of stroke care
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Accepting the proposal

 Let’s use half of the dataset to suggest a 
modification of the predictor.

 We can use the second half to estimate, 
in a nearly unbiased fashion, if this 
proposal improves generalization error.
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Out-of-bag estimation
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1. Set f(x) to be the average y.
2. Iterate

a. Set zi = yi – f(xi)
b. Fit a regression tree, g(xi), predicting zi from the 

features xi using only half of the dataset.
c. Estimate the improvement g(x) makes in 

generalization error using the other half of the 
dataset.

d. If the improvement is positive then update f(x) and 
return to (a).
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An algorithm



Predicting cost of treating 
stroke patients
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Conclusions

 Building predictive models from massive 
datasets involves
 model complexity
 data access complexity

 A new generation of algorithms uses
 recursive partitioning strategies as a base for 

efficiency
 resampling methods
 out-of-bag estimates to

• control overfitting and
• estimate variable effectiveness
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