Appendix
Statistical Models and Analysis

A statistical model of police shootings

Structural model. The 800,000 police officers in the United States have roughly 80
million reportable contacts with the public and millions of additional public contacts per year
(Davis, Whyde, and Langton 2018). A small fraction of interactions involves police officers
discharging their firearms. Approximately 1,000 of these discharges result in a fatality per year.
In almost all environments and for most police officers, the risk of shooting is exceedingly low.
Yet in select moments there are factors in place that increase the risk for a police shooting.
Information for distinguishing the officer characteristics that lead to police shootings is
embedded in the data on these tens of millions of interactions; in these interactions’ individual,
situational, organizational, community, and legal factors; and in which officers in which
interactions discharged their firearm.

Consider the risk of shooting for an officer with characteristics x (e.g., age, race, sex,
experience, prior involvement in shootings) in an environment z, which captures the shared
situational, organizational, community, and legal factors (e.g., time, place, lighting, suspect
features, governing policies and laws, community conditions). Let R = 1 indicate that the officer
discharged their firearm, and R = 0, that they did not. A standard statistical model for the

probability of shooting is
P(R=1[x2) _ )

OgP(Rz—le,Z) (ZZ+,BX



This logistic regression model separates the log odds of a shooting into an environmental
contribution (a'z) and an individual officer contribution (8'x). For most values of z, a’z is a
large negative number signaling that almost all environments carry virtually no risk of shooting.
Some components of z greatly increase the risk of a police shooting, such as an armed suspect or
officers being fired upon. The coefficients in « associated with those environmental factors that
exacerbate the risk of a shooting would be large and positive. exp(f'x) indicates by how many
times the odds of shooting increases over the baseline odds exp(a’z) for an officer with
characteristics x. If the environment drives all the risk of shooting and no specific officer
characteristic influences the risk of shooting then g, which measures how strongly each officer
characteristic influences shooting risk, will equal 0. In other words, when all the correlates of a
decision to shoot are environmental, the officer’s individual characteristics have no correlation
with the decision.

An analogous model for the number of rounds fired can be estimated with different
statistical assumptions, using a Poisson regression model that explains differences in how many
bullets were shot. This model denotes "R" as recording the number of rounds that an officer with
characteristics x fires in an environment with characteristics z.' If any environmental factor is
correlated with both an officer characteristic and the odds of shooting (or number of fired
rounds), then failing to properly model the environment can introduce bias in the estimate of the
effect of officer characteristics on . This is specifically the statistical problem that generated the
cautionary language about confounding in prior research. Failing to adequately measure and
model the environmental factors will bias estimates of the g for individual officer factors. And
since for estimating the effect of officer characteristics, we have exclusive interest in g, this

problem is a nuisance. But they are a nuisance that cannot be ignored.



Decomposing the information in police shooting data. To estimate both the effects of
environmental and individual officer characteristics (a and ), we need to randomly select a
moment in time and a place involving one or more police officers and record the following facts
(in the form of x4, ..., X,,, Z, Ry, ..., R;,) for that instance: the characteristics of each of the n
officers observed in that moment, the features of their shared environment, and whether each
officer fired a gun or the number of rounds each fired. Given the rarity of shootings, except for
very large samples, any random sample of instances will likely contain no shooting incidents.

For the moment, assume that we can gather an enormous sample of this type. Then
consider the data recorded at one specific time and place, observation i. All the information
about the environmental factors and the officer characteristics in this i" instance is encoded in
the likelihood function, the probability of observing the shooting outcomes for given values of «

and B. The log likelihood function contribution for a single moment i is

logL;(a,B) =logP(Ry =1y, ..., Ry = 1|X1, e, X, Z, @, B) (2)

The likelihood of combining information from all sampled instances is the product of terms like
(2), one for each sampled instance. Virtually all statistical approaches fall into this likelihood-
based framework. If we could carry out a large-scale instance sampling operation recording all
the relevant individual officer characteristics and environmental factors, then we could estimate
a and £ with a logistic regression model.

When faced with a likelihood involving nuisance parameters, such as the coefficients for
the environmental factors, a commonly used strategy is to identify a sufficient statistic for the
nuisance parameters, condition on that statistic, and base inference for the parameter of interest

on a conditional likelihood (Kalbfleisch and Sprott 1970, 1973). That is, we need a statistic



computable from the data, S(R;, ..., R,,), such that when we condition on it, the likelihood factors
into a component that involves £ but not a as shown in (3).
logL;(a,B) =log P(S(Ry, ..., Ry IXq, o, X, Z, @, B) + (3)
logP(Ry =14, ..., Ry = 1IS(Ry, ., Ry, X1, v, X, B)
= collective group contribution +

individual officer contribution

A key statistical result for logistic regression models and Poisson regression models is
that setting S(R4, ..., R,,) = R; + -+ + R,,, the number of shooters or the total rounds fired,
satisfies this factorization property (McFadden 1973; Breslow et al. 1978). The number of
shooters or the number of rounds fired is a signal of how much risk a particular incident’s
environment has. We do not need a good estimate of that risk, just a sufficient statistic for that
risk.

This factorization shows the information about the model parameters is separable into
different sources. The first term in (3) describes the scene as a whole, how many officers shot or
how many total rounds did the officers collectively discharge. The second term in (3) describes
the specific individual officers’ actions on the scene, which specific officers shot or how many
rounds each specific officer discharged. Information on the role of environmental factors is only
available in the collective group term. Information on the role of officers’ characteristics is split
between the individual officers’ actions (individual officer term) and their collective actions
(collective contribution term).

The individual officer term in (3) is known as the conditional likelihood model." What
makes conditional likelihood so valuable for studying police shootings is that knowledge of the

environmental factors, z, has no impact on the estimate of 8. The conditional likelihood



approach solves the confounding problem by providing a consistent estimate of g without ever

needing to specify a model for z (Manski and Lerman 1977; Prentice and Pyke 1979).

For studying the decision to shoot versus not shoot, the individual officer contribution in

@) is
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The numerator only involves the officer characteristics and the actual observed configuration of
shooters and nonshooters. The denominator sums over all possible configurations of shooters and
nonshooters such that the counts match what was actually observed. Values of § that make (4)
large are those that among all configurations of shooters and nonshooters make the observed
configuration of shooters most likely.'"

For studying the number of rounds fired, the individual officer term is almost identical to
(4), but in this case the denominator sums over all combinations of n non-negative integers that
sum to the total number of rounds actually fired.

P(Ry =1y, .., Ry =1|R; + -+ Rp, X4, o, X, Z,, B)
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Importantly, the individual officer contributions encoded in the expressions in (4) and (5) do not
involve a’z in any respect. There is no need to model or even record information on the

environment to compute these terms.



The only moments in time and the only places in space that provide information about
through the individual officer term are those instances in which multiple officers are present for
a police shooting. Even if we exhaustively documented millions of instances, for those instances
in which no officers shot both (4) and (5) reduce to 1. Also for instances involving a single
officer, both (4) and (5) reduce to 1. These points are critical for advancing research on
individual-level analysis of police shootings. Those rare multi-officer shootings are special
instances containing substantial information about the role of officer characteristics and,
fortunately, extracting that information requires no measurement or modeling of environmental

factors.

An illustration from a single shooting. Consider the data from a single shooting shown in
Table Al. These two officers are nearly identical in all respects, except that the first officer was
24 years old when he joined the police and the second officer was 25 years old. At a particular
moment and particular place, the first officer shot three rounds and the second officer shot four
rounds.

Table Al

Records for an Example Shooting Involving Two Officers who Differ Only in age at
Recruitment

OIS Rounds Recruit Years Sex Race  Prior Force Rank Assignment  Gun Caliber
ID age on job OIS# complaints type
2|3 24 4 Male White O 0 Officer Specialunit Pistol 9 mm
2| 4 25 4 Male White 0 0 Officer Specialunit Pistol 9 mm

While evidence from a single shooting is not persuasive about its causation, this hypothetical
shooting suggests that one additional year of recruit age is associated with 1.3 times as many
rounds fired (4/3 = 1.3). To formally use these data to learn about the relationship between these

officers’ characteristics and the number of rounds fired, we apply the conditional likelihood term



from (5) to this shooting example. Since these officers are identical on almost all characteristics,
all of the officer characteristics except age when recruited drop out of the conditional likelihood.
Figure Al plots the logarithm of the conditional log likelihood for a range of values for
BRecmitAge.“’ This curve describes the relative likelihood of observing the younger officer shoot
three rounds and the older officer shoot four rounds for different choices of Brecruitage:
Consistent with the fact that the shooter who discharged one additional round was also one year
older at the time of recruitment, this hypothetical shooting’s likelihood is largest for positive
values of Brecruitage- The value of Srecruiage that maximizes the curve in Figure Al is 0.3,
suggesting that one additional year of age at recruitment increases the shooting rate exp(0.3) =
1.3 times. Indeed, the older officer shot 1.3 times the number of rounds that the younger officer

discharged.

Figure Al

Contribution of the Example Shooting to the Log Conditional Likelihood Function
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Since this example involves only one officer characteristic, tracing out the form of the
conditional likelihood is simple. The curve peaks at a value that we can easily verify is consistent
with the observed configuration of officers’ ages at recruitment and rounds fired. To combine

information from all shootings, we compute the product of (4), for a decision to shoot analysis,



and the product of (5), for a number of rounds fired analysis, across all observed police shooting
incidents. Though harder to visualize when combining data from numerous, more complex
shootings, the relationships estimated from the full dataset using the conditional likelihood offer

the best explanation for the observed police shooting patterns.

Weighing the information lost. Equation (3) explicitly shows that information about
environmental factors is available only in data on officers’ collective action (i.e., total number of
shooters, total number of rounds fired) while information about officer characteristics is split
between officers’ individual actions (i.e. did the specific officer shoot, how many rounds did the
specific officer fire) and the officers’ collective action. The illustration in Figure Al showed that
we can extract information about the officer characteristics by examining only officers’
individual actions.

While using only the individual officer contribution to the likelihood greatly simplifies
the analysis of officer characteristics, it ignores any information about officer characteristics that
we could extract from the collective group contribution to the likelihood. The problem with the
first term in (6), which shows the complete log-likelihood for a dataset with m incidents with
incident i involving n; officers, as described in Kalbfleisch and Sprott (1973, pg. 314),
“Information about [5] is tied up with information about the unknown [a] and it is difficult to

quantify or ascertain what is lost.”

m
(6)
logL(a,pB) = z logP(Ril + -+ Rmi|xi1, ...,xini,zi,a,ﬁ) +

i=1
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To explore this question, | simulated data on five million interactions, each involving a random
number of police officers. For almost all shootings, | simulated such that shootings would occur
in about 1 in 8,000 incidents, but for about 600 incidents the risk rises to 1 in 7 (to simulate the
presence of an armed offender). For 10 percent of the officers | assigned them a risk factor that
increases their risk of shooting by 50 percent, equivalent to § = log(1.5) = 0.4. | then simulated
the number of rounds fired by each officer in each incident. With this design, | can determine
how much information is contained in each term in (6). The simulated dataset contained a total
of five million incidents, 1,082 shooting incidents, 559 shooting incidents involving multiple
officers, and 157 shooting incidents involving multiple officers that had variation in their officer-
level risk factor. These latter 157 incidents are the only type of incident that have information
through the conditional likelihood.

Figure A2 shows three log likelihood curves. The highest one is the log conditional
likelihood using only information on individual officer actions, the second term in (6). The
middle curve is the log likelihood for the collective group contribution, the first term in (6), using
only data on the total number of rounds fired.” The lowest curve is the complete likelihood using

all information, the sum of the other two curves.



Figure A2

Components of the Log Likelihood for Simulated Data
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Notes: A is the maximum likelihood estimate from each source (true value was 0.4). The vertical lines mark each /3.
Z'is the observed Fisher information from each source

These curves express the amount of information about the officer characteristics
contained in each data source. All three give similar values of 3, the strength of association
between officer characteristics and shooting behavior, but the tightness of the curvature around
the estimate indicates the strength of information. The “observed Fisher information” formally
quantifies how much information is in the likelihood, computed as the negative second derivative
of the log likelihood at its maximum. For this model, the observed Fisher information is additive.
The total observed Fisher information in the full dataset equals the sum of the observed Fisher
information from the individual officer contribution and the observed Fisher information from

the collective group contribution.



In this simulation, the 157 interactions involving a police shooting with multiple officers
with variation in their risk factors contain 28 percent of the total observed Fisher information in
the full dataset of five million interactions. While representing 0.003 percent of the interactions,
these moments contain a disproportionate amount of the information. To access the remaining 72
percent of information, we would need comprehensive data collection on the other 4,999,843
police interactions including an exhaustive inventory of the environmental factors in each
instance. Perhaps someday a cost-effective, automated data collection process may be possible
using data passively collected through video, audio, and sensors. In the meantime, we should
forgo using that information since the cost of collecting the data and the risk of inadequately
documenting and modeling the environmental factors are too great. Going back four years to
gain a four-fold increase in the number of multi-officer shooting incidents would achieve the
same level of precision as an exhaustive examination of 5 million interactions in one year, but

without the risk of confounding.

Contagion, anti-contagion, and inference. The derivation of the conditional likelihood
terms in (4) and (5) required a key independence assumption, that given the officer
characteristics and the features of their shared environment, the officer outcomes are
independent. The validity of this assumption depends on whether officer actions are contagious
(an officer shoots because other officers are shooting) or anti-contagious (an officer does not
shoot because another officer shot first). The presence of contagion in police shooting is debated
(White and Klinger 2012).

Even in the presence of contagion or anti-contagion, use of the conditional likelihood will
still result in estimates of 8 with the correct sign. The officers with the highest risk of shooting or

the highest expected number of rounds discharged will still be most likely to shoot and likely fire



the most rounds. The magnitude of the effect can be amplified with strong anti-contagion, if an
officer with high risk factors for shooting abstains from shooting because another high-risk
officer shoots first. The magnitude of the effect can be muted with strong contagion, if one
officer shooting prompts other low risk officers to shoot. For the decision to shoot analysis,
incidents in which all officers shoot provide no information to the conditional likelihood. Strong
contagion could greatly reduce power by eliminating cases from the conditional likelihood.
Although violations of independence will not affect our conclusions on whether an
officer characteristic increases or decreases the shoot risk or expected number of rounds fired,
the traditional asymptotic standard errors will be incorrect. Permutation tests avoid relying on
asymptotic assumptions. A permutation test randomly permutes the observed data in a manner
that is consistent with the null hypothesis, computes new estimates based on the permuted data,
and repeats this process numerous times (Good 1994). The collection of parameter estimates
based on the permutated data provide a nonparametric reference distribution from which we can
compute p-values. The null hypothesis is that the officer characteristics are unrelated to an
officer’s shooting decisions. Therefore, generating a permuted dataset entails randomly shuffling
the shooting status or number of rounds among the officers within each shooting. Each police
shooting incident still will have the same collection of values of (1,15, ..., 7;,), but they will be
randomly assigned to the n officers involved in the shooting. In these permuted datasets, the
r; are independent of the officer characteristics, but will retain any dependence from contagion or

anti-contagion. The collection of estimates of § based on these permuted datasets yield a valid

reference distribution, the distribution of 8 under the hypothesis of no relationship between
officer characteristics and number of rounds fired. After generating several thousand permuted

datasets and computing the associated parameter estimates ﬁ(l), 3(2), ... the permutation p-value



for the kth coefficient is the fraction of estimates from the permuted data that were less than or
equal to the estimate computed on the original data.

Notes

" The Poisson regression model has the form log P(R = r|x,z) = r(a'z + B'x) — exp(B'x) — log 1!

ii Technically it is an approximate conditional likelihood for 8 since some information on 8 remains in the second
likelihood term.

it For example, if a shooting involved four officers where the first two officers shot and the others did not, then we
would denote r = (1,1,0,0), which is what the numerator would evaluate. The denominator would compare that
observed configuration to all of the six possible configurations of two shooting and two nonshooting officers,
(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1). A good estimate of 8 would be one that makes the

observed configuration (1,1,0,0) the most probable among all the configurations.

" The log conditional likelihood for this example is —log 3.5 _, exp ((p2 — 4)BRecruitAge).

1
(7=p2)ip2!

v A Poisson distribution with mean Y exp(aq + a,z; + Bx;).



