
Appendix 

Statistical Models and Analysis 

A statistical model of police shootings 

Structural model. The 800,000 police officers in the United States have roughly 80 

million reportable contacts with the public and millions of additional public contacts per year 

(Davis, Whyde, and Langton 2018). A small fraction of interactions involves police officers 

discharging their firearms. Approximately 1,000 of these discharges result in a fatality per year. 

In almost all environments and for most police officers, the risk of shooting is exceedingly low. 

Yet in select moments there are factors in place that increase the risk for a police shooting. 

Information for distinguishing the officer characteristics that lead to police shootings is 

embedded in the data on these tens of millions of interactions; in these interactions’ individual, 

situational, organizational, community, and legal factors; and in which officers in which 

interactions discharged their firearm. 

Consider the risk of shooting for an officer with characteristics 𝐱 (e.g., age, race, sex, 

experience, prior involvement in shootings) in an environment 𝐳, which captures the shared 

situational, organizational, community, and legal factors (e.g., time, place, lighting, suspect 

features, governing policies and laws, community conditions). Let 𝑅 = 1 indicate that the officer 

discharged their firearm, and 𝑅 = 0, that they did not. A standard statistical model for the 

probability of shooting is 

log
𝑃(𝑅 = 1|𝐱, 𝐳)

𝑃(𝑅 = 0|𝐱, 𝐳)
= 𝛼′𝐳 + 𝛽′𝐱 

(1) 



 This logistic regression model separates the log odds of a shooting into an environmental 

contribution (𝛼′𝐳) and an individual officer contribution (𝛽′𝐱). For most values of 𝐳, 𝛼′𝐳 is a 

large negative number signaling that almost all environments carry virtually no risk of shooting. 

Some components of 𝐳 greatly increase the risk of a police shooting, such as an armed suspect or 

officers being fired upon. The coefficients in 𝛼 associated with those environmental factors that 

exacerbate the risk of a shooting would be large and positive. exp(𝛽′𝐱) indicates by how many 

times the odds of shooting increases over the baseline odds exp(𝛼′𝐳) for an officer with 

characteristics 𝐱. If the environment drives all the risk of shooting and no specific officer 

characteristic influences the risk of shooting then 𝛽, which measures how strongly each officer 

characteristic influences shooting risk, will equal 0. In other words, when all the correlates of a 

decision to shoot are environmental, the officer’s individual characteristics have no correlation 

with the decision. 

 An analogous model for the number of rounds fired can be estimated with different 

statistical assumptions, using a Poisson regression model that explains differences in how many 

bullets were shot. This model denotes "𝑅" as recording the number of rounds that an officer with 

characteristics 𝐱 fires in an environment with characteristics 𝐳.i If any environmental factor is 

correlated with both an officer characteristic and the odds of shooting (or number of fired 

rounds), then failing to properly model the environment can introduce bias in the estimate of the 

effect of officer characteristics on 𝛽. This is specifically the statistical problem that generated the 

cautionary language about confounding in prior research. Failing to adequately measure and 

model the environmental factors will bias estimates of the 𝛽 for individual officer factors. And 

since for estimating the effect of officer characteristics, we have exclusive interest in 𝛽, this 

problem is a nuisance. But they are a nuisance that cannot be ignored. 



 Decomposing the information in police shooting data. To estimate both the effects of 

environmental and individual officer characteristics (𝛼 and 𝛽), we need to randomly select a 

moment in time and a place involving one or more police officers and record the following facts 

(in the form of 𝐱1, … , 𝐱𝑛, 𝐳, 𝑅1, … , 𝑅𝑛) for that instance: the characteristics of each of the n 

officers observed in that moment, the features of their shared environment, and whether each 

officer fired a gun or the number of rounds each fired. Given the rarity of shootings, except for 

very large samples, any random sample of instances will likely contain no shooting incidents. 

For the moment, assume that we can gather an enormous sample of this type. Then 

consider the data recorded at one specific time and place, observation i. All the information 

about the environmental factors and the officer characteristics in this ith instance is encoded in 

the likelihood function, the probability of observing the shooting outcomes for given values of 𝛼 

and 𝛽. The log likelihood function contribution for a single moment i is 

log 𝐿𝑖(𝛼, 𝛽) = log 𝑃(𝑅1 = 𝑟1, … , 𝑅𝑛 = 𝑟𝑛|𝐱1, … , 𝐱𝑛, 𝐳, 𝛼, 𝛽) (2) 

The likelihood of combining information from all sampled instances is the product of terms like 

(2), one for each sampled instance. Virtually all statistical approaches fall into this likelihood-

based framework. If we could carry out a large-scale instance sampling operation recording all 

the relevant individual officer characteristics and environmental factors, then we could estimate 

𝛼 and 𝛽 with a logistic regression model. 

When faced with a likelihood involving nuisance parameters, such as the coefficients for 

the environmental factors, a commonly used strategy is to identify a sufficient statistic for the 

nuisance parameters, condition on that statistic, and base inference for the parameter of interest 

on a conditional likelihood (Kalbfleisch and Sprott 1970, 1973). That is, we need a statistic 



computable from the data, 𝑆(𝑅1, … , 𝑅𝑛), such that when we condition on it, the likelihood factors 

into a component that involves 𝛽 but not 𝛼 as shown in (3). 

   log 𝐿𝑖(𝛼, 𝛽) = log  𝑃(𝑆(𝑅1, … , 𝑅𝑛)|𝐱1, … , 𝐱𝑛, 𝐳, 𝛼, 𝛽) + 

                               log 𝑃(𝑅1 = 𝑟1, … , 𝑅𝑛 = 𝑟𝑛|𝑆(𝑅1, … , 𝑅𝑛), 𝐱1, … , 𝐱𝑛, 𝛽) 

                          = collective group contribution + 

                               individual officer contribution 

(3) 

 A key statistical result for logistic regression models and Poisson regression models is 

that setting 𝑆(𝑅1, … , 𝑅𝑛) = 𝑅1 + ⋯ + 𝑅𝑛, the number of shooters or the total rounds fired, 

satisfies this factorization property (McFadden 1973; Breslow et al. 1978). The number of 

shooters or the number of rounds fired is a signal of how much risk a particular incident’s 

environment has. We do not need a good estimate of that risk, just a sufficient statistic for that 

risk.  

This factorization shows the information about the model parameters is separable into 

different sources. The first term in (3) describes the scene as a whole, how many officers shot or 

how many total rounds did the officers collectively discharge. The second term in (3) describes 

the specific individual officers’ actions on the scene, which specific officers shot or how many 

rounds each specific officer discharged. Information on the role of environmental factors is only 

available in the collective group term. Information on the role of officers’ characteristics is split 

between the individual officers’ actions (individual officer term) and their collective actions 

(collective contribution term). 

The individual officer term in (3) is known as the conditional likelihood model.ii What 

makes conditional likelihood so valuable for studying police shootings is that knowledge of the 

environmental factors, 𝐳, has no impact on the estimate of 𝛽. The conditional likelihood 



approach solves the confounding problem by providing a consistent estimate of 𝛽 without ever 

needing to specify a model for 𝐳 (Manski and Lerman 1977; Prentice and Pyke 1979). 

 For studying the decision to shoot versus not shoot, the individual officer contribution in 

(3) is 

𝑃(𝑅1 = 𝑟1, … , 𝑅𝑛 = 𝑟𝑛|𝑅1 + ⋯ + 𝑅𝑛, 𝐱1, … , 𝐱𝑛, 𝐳, 𝛼, 𝛽)

∝
𝑒𝑟1𝛽′𝐱1 ⋯ 𝑒𝑟𝑛𝛽′𝐱𝑛

∑ 𝑒𝜌1𝛽′𝐱1 ⋯ 𝑒𝜌𝑛𝛽′𝐱𝑛
𝜌𝑖∈{0,1},∑ 𝜌𝑖=∑ 𝑟𝑖

 
(4) 

The numerator only involves the officer characteristics and the actual observed configuration of 

shooters and nonshooters. The denominator sums over all possible configurations of shooters and 

nonshooters such that the counts match what was actually observed. Values of 𝛽 that make (4) 

large are those that among all configurations of shooters and nonshooters make the observed 

configuration of shooters most likely.iii 

For studying the number of rounds fired, the individual officer term is almost identical to 

(4), but in this case the denominator sums over all combinations of n non-negative integers that 

sum to the total number of rounds actually fired. 

𝑃(𝑅1 = 𝑟1, … , 𝑅𝑛 = 𝑟𝑛|𝑅1 + ⋯ + 𝑅𝑛, 𝐱1, … , 𝐱𝑛, 𝐳, 𝛼, 𝛽)

∝
𝑒𝑟1𝛽′𝐱1 ⋯ 𝑒𝑟𝑛𝛽′𝐱𝑛

∑
1

𝜌1! ⋯ 𝜌𝑛! 𝑒𝜌1𝛽′𝐱1 ⋯ 𝑒𝜌𝑛𝛽′𝐱𝑛∑ 𝜌𝑖=∑ 𝑟𝑖

 (5) 

Importantly, the individual officer contributions encoded in the expressions in (4) and (5) do not 

involve 𝛼′𝐳 in any respect. There is no need to model or even record information on the 

environment to compute these terms. 



The only moments in time and the only places in space that provide information about 𝛽 

through the individual officer term are those instances in which multiple officers are present for 

a police shooting. Even if we exhaustively documented millions of instances, for those instances 

in which no officers shot both (4) and (5) reduce to 1. Also for instances involving a single 

officer, both (4) and (5) reduce to 1. These points are critical for advancing research on 

individual-level analysis of police shootings. Those rare multi-officer shootings are special 

instances containing substantial information about the role of officer characteristics and, 

fortunately, extracting that information requires no measurement or modeling of environmental 

factors. 

 An illustration from a single shooting. Consider the data from a single shooting shown in 

Table A1. These two officers are nearly identical in all respects, except that the first officer was 

24 years old when he joined the police and the second officer was 25 years old. At a particular 

moment and particular place, the first officer shot three rounds and the second officer shot four 

rounds. 

Table A1 

Records for an Example Shooting Involving Two Officers who Differ Only in age at 

Recruitment 

OIS 
ID 

Rounds  Recruit 
age 

Years 
on job 

Sex   Race  Prior 
OIS # 

Force 
complaints 

Rank  Assignment  Gun 
type 

Caliber  

 2   3  24  4 Male  White   0   0 Officer  Special unit Pistol   9 mm  
 2  4  25   4  Male  White   0   0  Officer  Special unit  Pistol   9 mm  

 

While evidence from a single shooting is not persuasive about its causation, this hypothetical 

shooting suggests that one additional year of recruit age is associated with 1.3 times as many 

rounds fired (4/3 = 1.3). To formally use these data to learn about the relationship between these 

officers’ characteristics and the number of rounds fired, we apply the conditional likelihood term 



from (5) to this shooting example. Since these officers are identical on almost all characteristics, 

all of the officer characteristics except age when recruited drop out of the conditional likelihood. 

Figure A1 plots the logarithm of the conditional log likelihood for a range of values for 

𝛽RecruitAge.iv This curve describes the relative likelihood of observing the younger officer shoot 

three rounds and the older officer shoot four rounds for different choices of 𝛽RecruitAge. 

Consistent with the fact that the shooter who discharged one additional round was also one year 

older at the time of recruitment, this hypothetical shooting’s likelihood is largest for positive 

values of 𝛽RecruitAge. The value of 𝛽RecruitAge that maximizes the curve in Figure A1 is 0.3, 

suggesting that one additional year of age at recruitment increases the shooting rate exp(0.3) = 

1.3 times. Indeed, the older officer shot 1.3 times the number of rounds that the younger officer 

discharged. 

Figure A1 

Contribution of the Example Shooting to the Log Conditional Likelihood Function 

 

 Since this example involves only one officer characteristic, tracing out the form of the 

conditional likelihood is simple. The curve peaks at a value that we can easily verify is consistent 

with the observed configuration of officers’ ages at recruitment and rounds fired. To combine 

information from all shootings, we compute the product of (4), for a decision to shoot analysis, 
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and the product of (5), for a number of rounds fired analysis, across all observed police shooting 

incidents. Though harder to visualize when combining data from numerous, more complex 

shootings, the relationships estimated from the full dataset using the conditional likelihood offer 

the best explanation for the observed police shooting patterns. 

 Weighing the information lost. Equation (3) explicitly shows that information about 

environmental factors is available only in data on officers’ collective action (i.e., total number of 

shooters, total number of rounds fired) while information about officer characteristics is split 

between officers’ individual actions (i.e. did the specific officer shoot, how many rounds did the 

specific officer fire) and the officers’ collective action. The illustration in Figure A1 showed that 

we can extract information about the officer characteristics by examining only officers’ 

individual actions. 

While using only the individual officer contribution to the likelihood greatly simplifies 

the analysis of officer characteristics, it ignores any information about officer characteristics that 

we could extract from the collective group contribution to the likelihood. The problem with the 

first term in (6), which shows the complete log-likelihood for a dataset with m incidents with 

incident i involving ni officers, as described in Kalbfleisch and Sprott (1973, pg. 314), 

“Information about [𝛽] is tied up with information about the unknown [𝛼] and it is difficult to 

quantify or ascertain what is lost.” 

   log 𝐿(𝛼, 𝛽) = ∑ log 𝑃(𝑅𝑖1 + ⋯ + 𝑅𝑖𝑛𝑖
|𝐱𝑖1, … , 𝐱𝑖𝑛𝑖

, 𝐳𝑖 , 𝛼, 𝛽)

𝑚

𝑖=1

+ 

                             ∑ log 𝑃(𝑅𝑖1 = 𝑟𝑖1, … , 𝑅𝑖𝑛𝑠
= 𝑟𝑖𝑛𝑖

|𝑅𝑖1 + ⋯ + 𝑅𝑖𝑛𝑖
, 𝐱𝑖1, … , 𝐱𝑖𝑛𝑖

, 𝛽)

𝑚

𝑖=1

 

(6) 



To explore this question, I simulated data on five million interactions, each involving a random 

number of police officers. For almost all shootings, I simulated such that shootings would occur 

in about 1 in 8,000 incidents, but for about 600 incidents the risk rises to 1 in 7 (to simulate the 

presence of an armed offender). For 10 percent of the officers I assigned them a risk factor that 

increases their risk of shooting by 50 percent, equivalent to 𝛽 = log(1.5) = 0.4. I then simulated 

the number of rounds fired by each officer in each incident. With this design, I can determine 

how much information is contained in each term in (6). The simulated dataset contained a total 

of five million incidents, 1,082 shooting incidents, 559 shooting incidents involving multiple 

officers, and 157 shooting incidents involving multiple officers that had variation in their officer-

level risk factor. These latter 157 incidents are the only type of incident that have information 

through the conditional likelihood. 

Figure A2 shows three log likelihood curves. The highest one is the log conditional 

likelihood using only information on individual officer actions, the second term in (6). The 

middle curve is the log likelihood for the collective group contribution, the first term in (6), using 

only data on the total number of rounds fired.v The lowest curve is the complete likelihood using 

all information, the sum of the other two curves.  



Figure A2 

Components of the Log Likelihood for Simulated Data 

Notes: 𝛽̂ is the maximum likelihood estimate from each source (true value was 0.4). The vertical lines mark each 𝛽̂. 

𝔗 is the observed Fisher information from each source  

 

 These curves express the amount of information about the officer characteristics 

contained in each data source. All three give similar values of 𝛽̂, the strength of association 

between officer characteristics and shooting behavior, but the tightness of the curvature around 

the estimate indicates the strength of information. The “observed Fisher information” formally 

quantifies how much information is in the likelihood, computed as the negative second derivative 

of the log likelihood at its maximum. For this model, the observed Fisher information is additive. 

The total observed Fisher information in the full dataset equals the sum of the observed Fisher 

information from the individual officer contribution and the observed Fisher information from 

the collective group contribution. 
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β 

Information from 
individual officers 

𝛽̂ = 0.35 
𝔗 = 37.5 

Information from  
total rounds 

𝛽̂ = 0.42 
𝔗 = 95.1 

All information 

𝛽̂ = 0.40 
𝔗 = 132.6 



In this simulation, the 157 interactions involving a police shooting with multiple officers 

with variation in their risk factors contain 28 percent of the total observed Fisher information in 

the full dataset of five million interactions. While representing 0.003 percent of the interactions, 

these moments contain a disproportionate amount of the information. To access the remaining 72 

percent of information, we would need comprehensive data collection on the other 4,999,843 

police interactions including an exhaustive inventory of the environmental factors in each 

instance. Perhaps someday a cost-effective, automated data collection process may be possible 

using data passively collected through video, audio, and sensors. In the meantime, we should 

forgo using that information since the cost of collecting the data and the risk of inadequately 

documenting and modeling the environmental factors are too great. Going back four years to 

gain a four-fold increase in the number of multi-officer shooting incidents would achieve the 

same level of precision as an exhaustive examination of 5 million interactions in one year, but 

without the risk of confounding. 

 Contagion, anti-contagion, and inference. The derivation of the conditional likelihood 

terms in (4) and (5) required a key independence assumption, that given the officer 

characteristics and the features of their shared environment, the officer outcomes are 

independent. The validity of this assumption depends on whether officer actions are contagious 

(an officer shoots because other officers are shooting) or anti-contagious (an officer does not 

shoot because another officer shot first). The presence of contagion in police shooting is debated 

(White and Klinger 2012).  

Even in the presence of contagion or anti-contagion, use of the conditional likelihood will 

still result in estimates of 𝛽̂ with the correct sign. The officers with the highest risk of shooting or 

the highest expected number of rounds discharged will still be most likely to shoot and likely fire 



the most rounds. The magnitude of the effect can be amplified with strong anti-contagion, if an 

officer with high risk factors for shooting abstains from shooting because another high-risk 

officer shoots first. The magnitude of the effect can be muted with strong contagion, if one 

officer shooting prompts other low risk officers to shoot. For the decision to shoot analysis, 

incidents in which all officers shoot provide no information to the conditional likelihood. Strong 

contagion could greatly reduce power by eliminating cases from the conditional likelihood. 

Although violations of independence will not affect our conclusions on whether an 

officer characteristic increases or decreases the shoot risk or expected number of rounds fired, 

the traditional asymptotic standard errors will be incorrect. Permutation tests avoid relying on 

asymptotic assumptions. A permutation test randomly permutes the observed data in a manner 

that is consistent with the null hypothesis, computes new estimates based on the permuted data, 

and repeats this process numerous times (Good 1994). The collection of parameter estimates 

based on the permutated data provide a nonparametric reference distribution from which we can 

compute p-values. The null hypothesis is that the officer characteristics are unrelated to an 

officer’s shooting decisions. Therefore, generating a permuted dataset entails randomly shuffling 

the shooting status or number of rounds among the officers within each shooting. Each police 

shooting incident still will have the same collection of values of (𝑟1, 𝑟2, … , 𝑟𝑛), but they will be 

randomly assigned to the 𝑛 officers involved in the shooting. In these permuted datasets, the 

𝑟𝑖 are independent of the officer characteristics, but will retain any dependence from contagion or 

anti-contagion. The collection of estimates of 𝛽 based on these permuted datasets yield a valid 

reference distribution, the distribution of 𝛽̂ under the hypothesis of no relationship between 

officer characteristics and number of rounds fired. After generating several thousand permuted 

datasets and computing the associated parameter estimates 𝛽̂(1), 𝛽̂(2), … the permutation p-value 



for the kth coefficient is the fraction of estimates from the permuted data that were less than or 

equal to the estimate computed on the original data. 

Notes 

i The Poisson regression model has the form log 𝑃(𝑅 = 𝑟|𝐱, 𝐳) = 𝑟(𝛼′𝐳 + 𝛽′𝐱) − exp(𝛽′𝐱) − log 𝑟! 

ii Technically it is an approximate conditional likelihood for 𝛽 since some information on 𝛽 remains in the second 

likelihood term. 

iii For example, if a shooting involved four officers where the first two officers shot and the others did not, then we 

would denote r = (1,1,0,0), which is what the numerator would evaluate. The denominator would compare that 

observed configuration to all of the six possible configurations of two shooting and two nonshooting officers, 

(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1). A good estimate of 𝛽 would be one that makes the 

observed configuration (1,1,0,0) the most probable among all the configurations. 

iv The log conditional likelihood for this example is − log ∑
1

(7−𝜌2)!𝜌2!
exp ((𝜌2 − 4)𝛽RecruitAge)6

𝜌2=1 . 

v A Poisson distribution with mean ∑ exp(𝛼0 + 𝛼1𝑧𝑖 + 𝛽𝑥𝑖). 

 


