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Topics of discussion

• Importance sampling and propensity scores

• Estimating propensity scores via boosted logistic
regression

• Public policy examples

– Phoenix house: Effectiveness of residential drug
treatment program. Adjust treatment effect
estimates for selection bias

– Health insurance for reservists: Estimate
insurance premiums reservists would be willing
to pay if the DoD subsidized such a benefit
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Example: Phoenix house

• The treatment assign-
ments are non-random

• We want to estimate
treatment effect

• We can reweight the
individuals from the
other facility to look
like those from the
Phoenix house
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Estimating the causal effect of the treatment

• Each individual has a y0 and a y1, the outcome that
would happen if they went to the control or
treatment facility

Average treatment effect of the treated

= E(y1|T = 1)− E(y0|T = 1)

E(y1|T = 1) ≈
∑N

i=T tiy1i

NT

E(y0|T = 1) =
∫∫

y0f(y0,x|T = 1) dx dy0
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Causal estimation

• Each individual has a y0 and a y1, the outcome that
would happen if they went to the control or
treatment facility

E(y0|T = 1) =
∫∫

y0f(y0,x|T = 1) dx dy0

=
∫∫

y0
f(y0,x|T = 1)
f(y0,x|T = 0)

f(y0,x|T = 0) dx dy0
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Causal estimation

• Each individual has a y0 and a y1, the outcome that
would happen if they went to the control or
treatment facility

E(y0|T = 1) =∫∫
y0

f(T = 1|y0,x)
f(T = 0|y0,x)

f(y0,x)
f(y0,x)

f(T = 0)
f(T = 1)

f(y0,x|T = 0) dx dy0

• Assume f(T |y0,x) = f(T |x)
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Causal estimation

• Each individual has a y0 and a y1, the outcome that
would happen if they went to the control or
treatment facility

E(y0|T = 1) =
f(T = 0)
f(T = 1)

∫∫
y0

p(x)
1− p(x)

f(y0,x|T = 0) dx dy0

E(y0|T = 1) ≈
∑N

i=1 wi(1− ti)y0i∑N
i=1 wi(1− ti)
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Summary of the method

E(y1|T = 1) ≈
∑N

i=1 tiy1i

NT

E(y0|T = 1) ≈
∑N

i=1 wi(1−ti)y0i∑N
i=1 wi(1−ti)

• wi = pi

1−pi
, and pi is the probability that subject i

goes to the treatment group

• Derivation requires that treatment assignments
depend only on x

• x is high-dimensional (41) and we use the boosted
logistic regression method to estimate the
probabilities
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Logistic log-likelihood

• Choose p(x) to maximize

Et|x t log p(x) + (1− t) log(1− p(x))

• Or on the log-odds scale, p(x) = 1/(1 + e−F (x)), find
F (x) to maximize

Et|x tF (x)− log
(
1 + eF (x)

)
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Gradient boosting

• Initialize F (x) = 0

• Compute the gradient of the expected log-likelihood
pointwise with respect to F (x)

∂

∂F (x)
`(F ) = E

[
t− 1

1 + e−F (x)
|x

]
• The gradient implies that for some λ we can improve

F with F (x)← F (x) + λE [t− p(x)|x]

• We will use regression trees to estimate E [t− p(x)|x]
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Advantages

1. Boosting has a straightforward application to most
prediction problems and loss functions

2. Trees handle continuous, nominal, ordinal, and
missing x’s

3. Invariant to one-to-one transformations of the x’s

4. Model higher interaction terms with more complex
regression trees

5. Use low variance models on each iteration: shrinkage,
subsampling, bagging

6. Automate the selection of the number of iterations:
out-of-bag estimation
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Predict treatment group from abuse intensity
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Estimating the optimal number of iterations
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Relative influence
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Marginal effects
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Balance of subject features

weighted unweighted
treatment control control

Variable mean mean mean t
treatment motivation 2.52 2.22 1.35 1.84
environmental risk 30.61 30.68 28.94 -0.07
substance abuse 76.85 67.59 43.34 1.16
complex behavior 12.84 12.77 12.11 0.07
age 15.82 15.77 15.31 0.45
l5a124 0.62 0.55 0.38 1.13
withdrawal index 2.42 2.34 2.27 0.75
days in detention 44.37 52.37 54.11 -0.74
substance problem 9.91 9.26 6.64 1.27
age of first use 12.55 12.27 11.97 1.04
ESS 175 106 274
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Results: Phoenix house

Time 

su
bs

ta
nc

e 
ab

us
e 

fr
eq

ue
nc

y 
in

de
x 

0 2 4 6 8 10 12 

1.
0 

1.
5 

2.
0 

2.
5 

3.
0 

3.
5 

Time 

tr
ea

tm
en

t m
ot

iv
at

io
n
 

0 2 4 6 8 10 12 

1.
8 

2.
0 

2.
2 

2.
4 

2.
6 

Time 

su
bs

ta
nc

e 
in

vo
lv

em
en

t s
ca

le
 

0 2 4 6 8 10 12 

0.
5 

1.
0 

1.
5 

2.
0 

Treatment 
Control 

23



Results: Phoenix house
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Example: Military reservist and health
coverage

• Reservists often have difficulty maintaining employer
sponsored health insurance

• The DoD wants to determine the price that reservists
would be willing to pay if offered health coverage

• Problem: Survey of reservists did not ask how much
they would be willing to pay

• Premiums paid is an item on the national health
survey of the general US population (NHIS)
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Calibration: Reservists example

• We use boosted logistic regression to estimate
P (reservist|x)
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Sanity check: Reservist example

• In both the national sample and reservist sample we
observe indicators of having health insurance or not

• NHIS unweighted: 16%

• NHIS weighted: 22.3%

• Reservist sample: 21.6%
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Results: Reservist example

Estimated annual premium (SD): $814 ($21)

HMO PPO
Married $1233 $1230
Single $576 $577
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Summary

• Causal questions are the norm in public policy ... as
is observational data

• Propensity scoring via importance sampling is a
coherent framework to understand and develop
propensity score methods

• Boosting methods offer flexible modeling strategies
when faced with many features, features of different
types, redundant features

• Public policy is a ripe area for the intersection of
statistical methodology and data mining

29



Propensity scores and causal analysis
of observational data

Greg Ridgeway

RAND Statistics Group
Santa Monica, CA

http://www.i-pensieri.com/gregr
with Dan McCaffrey, Andrew Morral, and Nelson Lim

30



LogitBoost: Logistic regression

1. Initialize F̂ (x) = log ȳ
1−ȳ

2. Let zi = yi − 1

1−exp(−F̂ (xi))

3. Construct a tree structured predictor of zi

4. The tree assigns each observation to a terminal node
g(Tk) = arg maxλ

∑
i∈Tk

L(yi, F̂ (xi) + λ)

5. Update our guess as

F̂ (x)← F̂ (x) + g(x)

6. Return to step (2) for M iterations
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LogitBoost: Logistic regression

1. Initialize F̂ (x) = log ȳ
1−ȳ

2. Let zi = yi − 1

1−exp(−F̂ (xi))

3. Construct a tree structured predictor of zi

4. The tree assigns each observation to a terminal node
g(Tk) = arg maxλ

∑
i∈Tk

yi(F̂ (xi) + λ)− log
(
1 + exp(F̂ (xi) + λ)

)
5. Update our guess as

F̂ (x)← F̂ (x) + g(x)

6. Return to step (2) for M iterations
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