

Bayesian Analysis of Massive Datasets Via Particle Filters

Greg Ridgeway

RAND Statistics Group

<http://i-pensieri.com/gregr>

David Madigan

Rutgers University

<http://stat.rutgers.edu/~madigan>

Bayesian Analysis

- Use Bayes' theorem to learn about model parameters from data

$$f(\theta \mid \text{data}) \propto f(\text{data} \mid \theta) f(\theta)$$

- Examples:
 - Clustered data: hospitals, schools
 - Spatial models: public health
 - Support vector machines
 - Model based clustering

Metropolis-Hastings algorithm

1. Initialize θ_1
2. For i in $2, \dots, M$
 - a. Draw a proposal θ' from $q(\theta' | \theta_{i-1})$
 - b. Compute the acceptance probability

$$\alpha(\theta', \theta_{i-1}) = \min\left(1, \frac{f(\theta' | \mathbf{x})q(\theta_{i-1} | \theta')}{f(\theta_{i-1} | \mathbf{x})q(\theta' | \theta_{i-1})}\right)$$

- c. Set $\theta_i = \theta'$ with probability α

Otherwise $\theta_i = \theta_{i-1}$

Important ideas

- Metropolis makes Bayesian analysis practical
- Metropolis often requires an enormous number of laps through the dataset
- Given a θ drawn from $f(\theta | \mathbf{x})$, the Metropolis algorithm produces a new draw having the same distribution
- Using particle filtering we reverse the inner and outer for-loops of Metropolis

Importance sampling

- Target distribution is $f(\theta | \mathbf{x})$
- Sampling distribution is $g(\theta)$

$$\int \theta f(\theta | x_1, \dots, x_N) d\theta = \int \theta \frac{f(\theta | \mathbf{x})}{g(\theta)} g(\theta) d\theta$$

$$= \lim_{M \rightarrow \infty} \frac{\sum_{i=1}^M w_i \theta_i}{\sum_{i=1}^M w_i}$$

- θ_i has density $g(\theta)$ and
- $w_i = f(\theta_i | \mathbf{x})/g(\theta_i)$

Important ideas

- We cannot sample from $f(\theta | \mathbf{x})$ directly because the model is complex and \mathbf{x} is massive
- Importance sampling allows us to sample from difficult to sample distributions
- For efficiency, $g(\theta)$ and $f(\theta | \mathbf{x})$ should be similar

Importance sampling for massive datasets

- Set the sampling distribution as

$$g(\theta) = f(\theta \mid x_1, \dots, x_n)$$

where $n \ll N$

- The importance weights greatly simplify

$$w_i = \frac{f(\theta_i \mid x_1, \dots, x_N)}{f(\theta_i \mid x_1, \dots, x_n)} \propto \prod_{j=n+1}^N f(x_j \mid \theta_i)$$

- Use Metropolis to sample from $g(\theta)$ and reweight the draws to look like a sample from $f(\theta \mid \mathbf{x})$

The algorithm

- Load as much data into memory as possible to form D_1
- Draw M times from $f(\theta|D_1)$ via Metropolis
- Purge D_1 from memory
- Set $w_i = 0, i = 1, \dots, M$

For $j = n+1, \dots, N$

{

 for $i = 1, \dots, M$

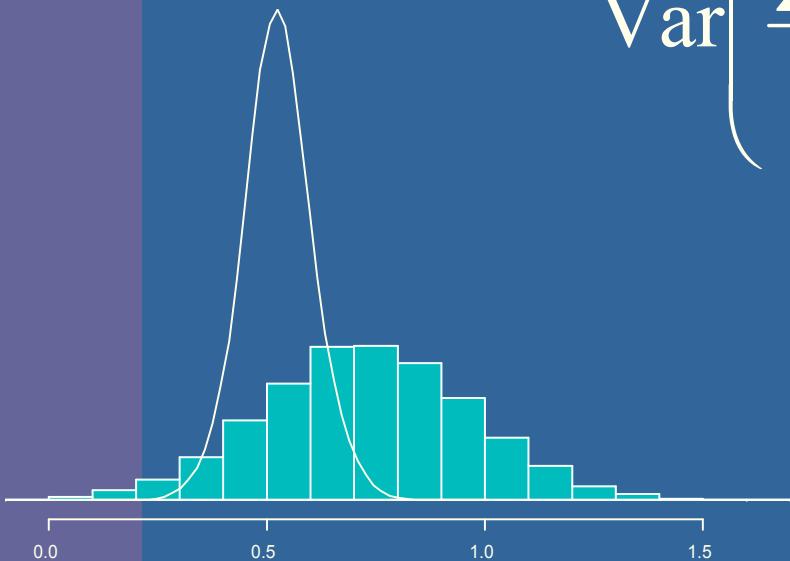
$$\log w_i = \log w_i + \log f(\mathbf{x}_j | \theta_i)$$

}

Transform and rescale to obtain the weights

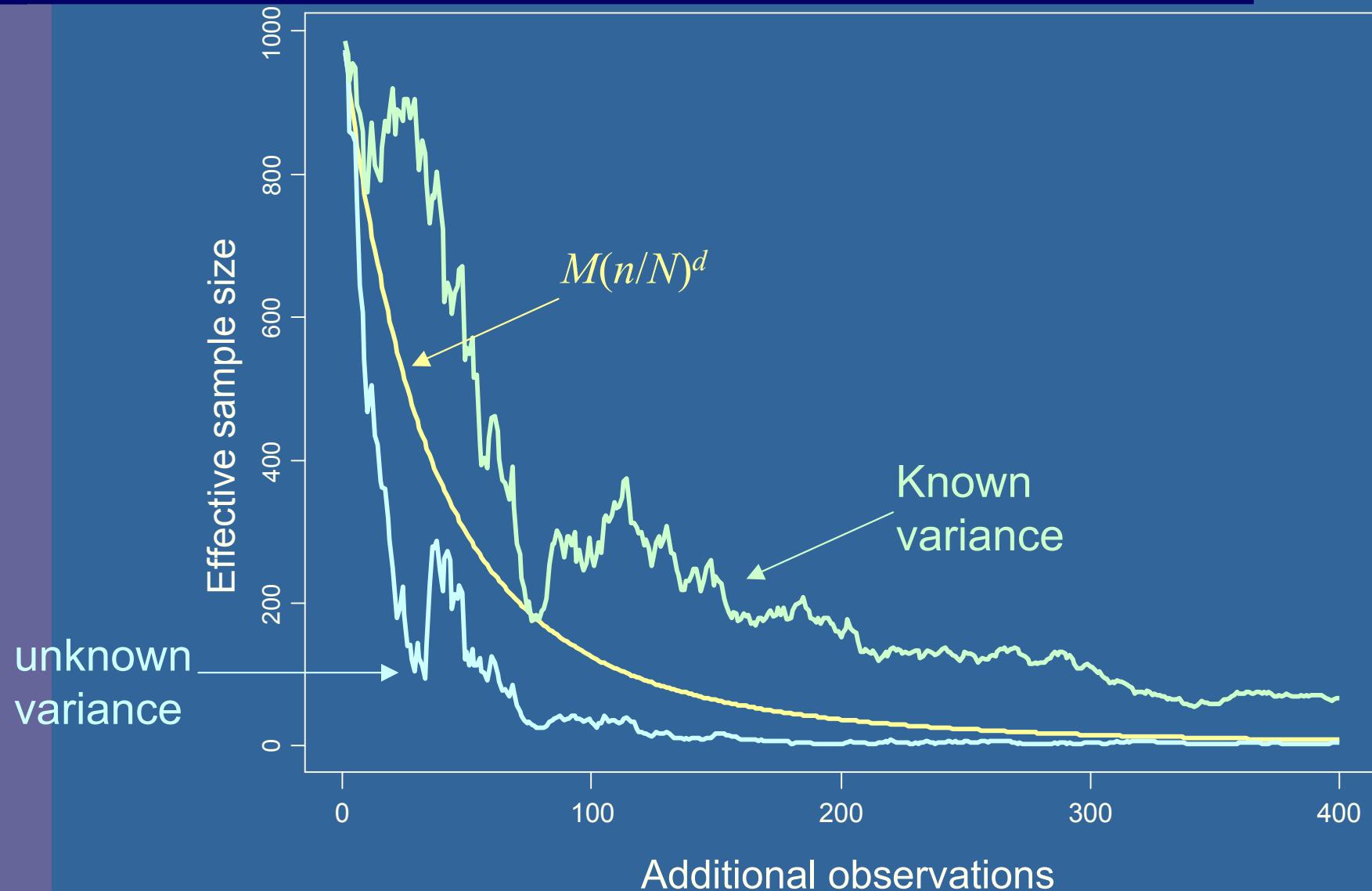
Effective sample size

$$\text{Var}\left(\frac{\sum_{i=1}^M w_i \theta_i}{\sum_{i=1}^M w_i}\right) = \text{Var}\left(\frac{1}{ESS} \sum_{i=1}^{ESS} \theta_i\right)$$



$$ESS = \frac{\left(\sum_{i=1}^M w_i\right)^2}{\sum_{i=1}^M w_i^2} \approx M \left(\frac{n}{N}\right)^d$$

ESS deterioration

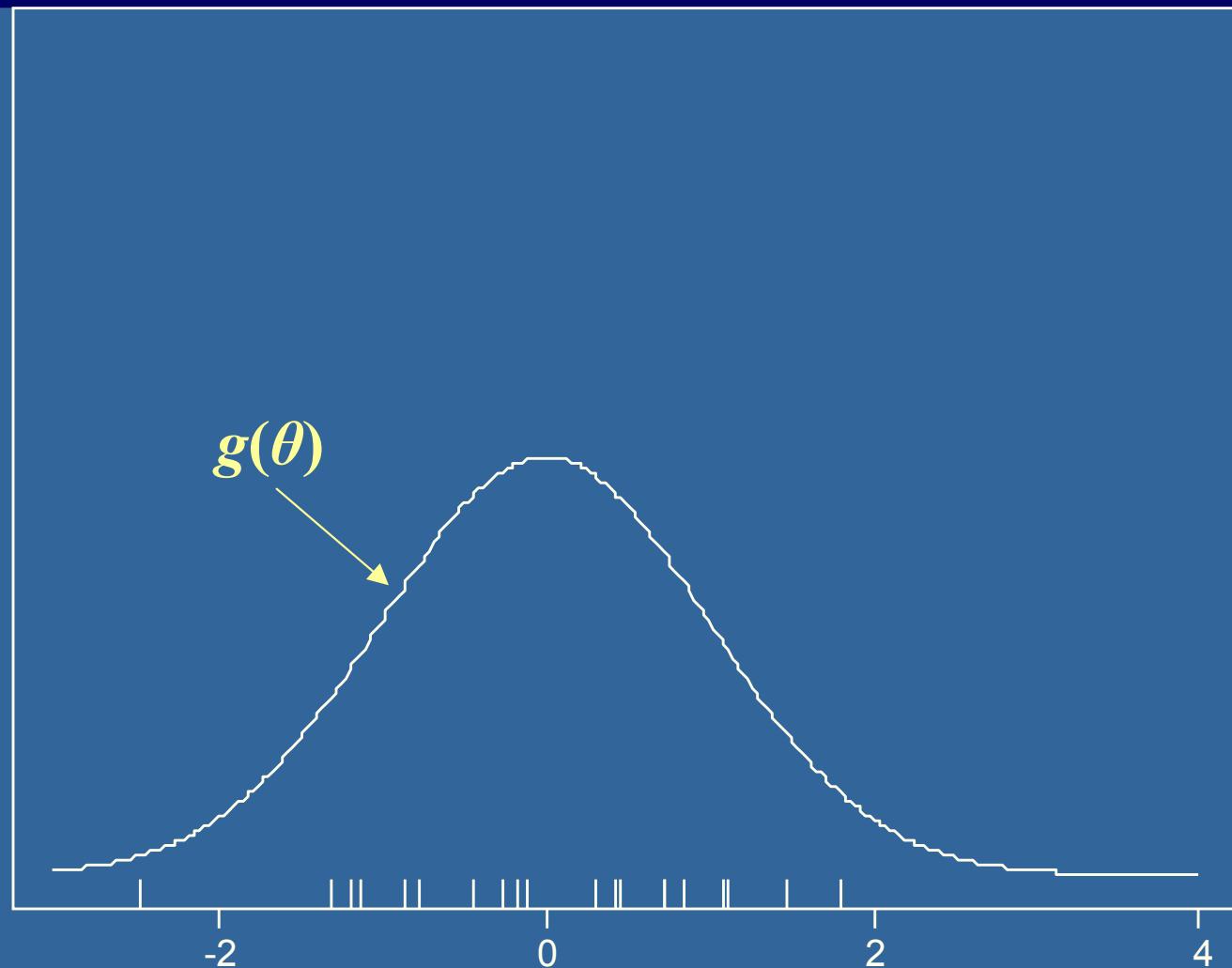


Gilks and Berzuini rejuvenation

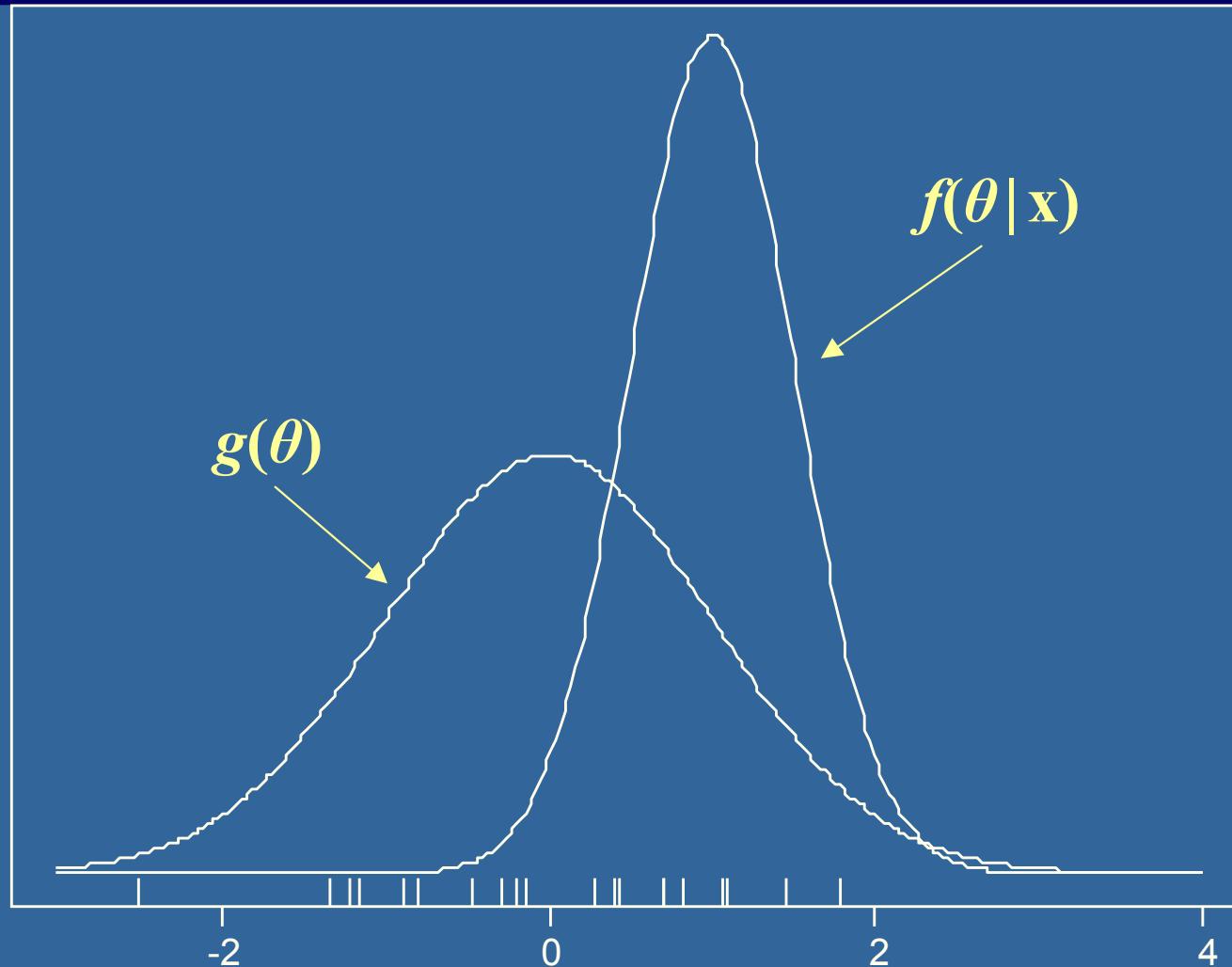
$\theta_1, \dots, \theta_M$ are *particles* and the weights *filter* the θ_i with little posterior mass

- Get initial sample from $f(\theta | x_1, \dots, x_n)$
- While ESS is large enough incorporate new observations using importance reweighting
- Sample with replacement from $\theta_1, \dots, \theta_M$ with probability proportional to w_i
- Rejuvenate: For each θ_i do a single Metropolis step

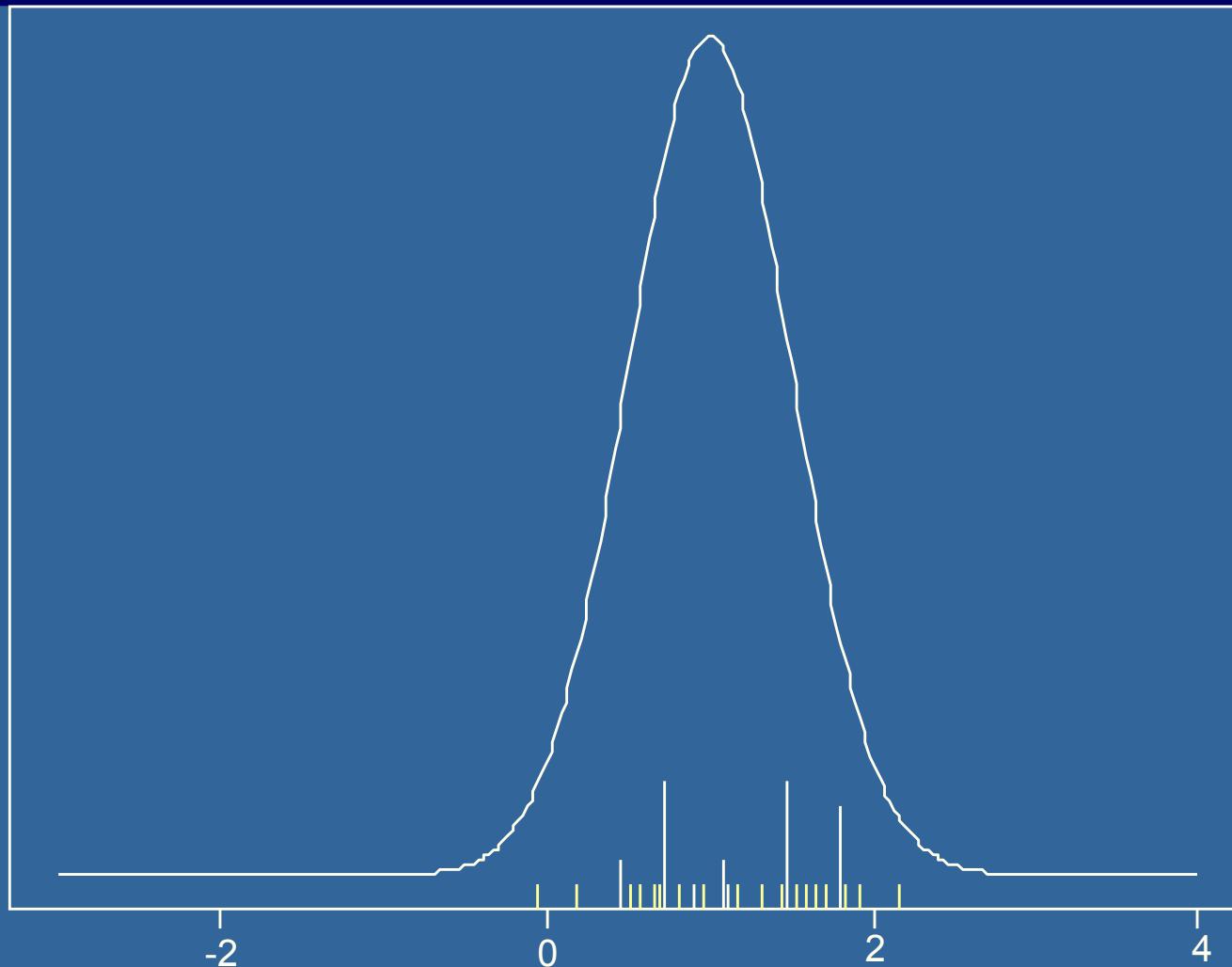
Sample from $g(\theta)$



Reweighting, resampling to get $f(\theta | x)$



Rejuvenate



Frequency of rejuvenation

Observations absorbed at refresh k

$$= n \left(\frac{1}{p} \right)^{\frac{k}{d}}$$

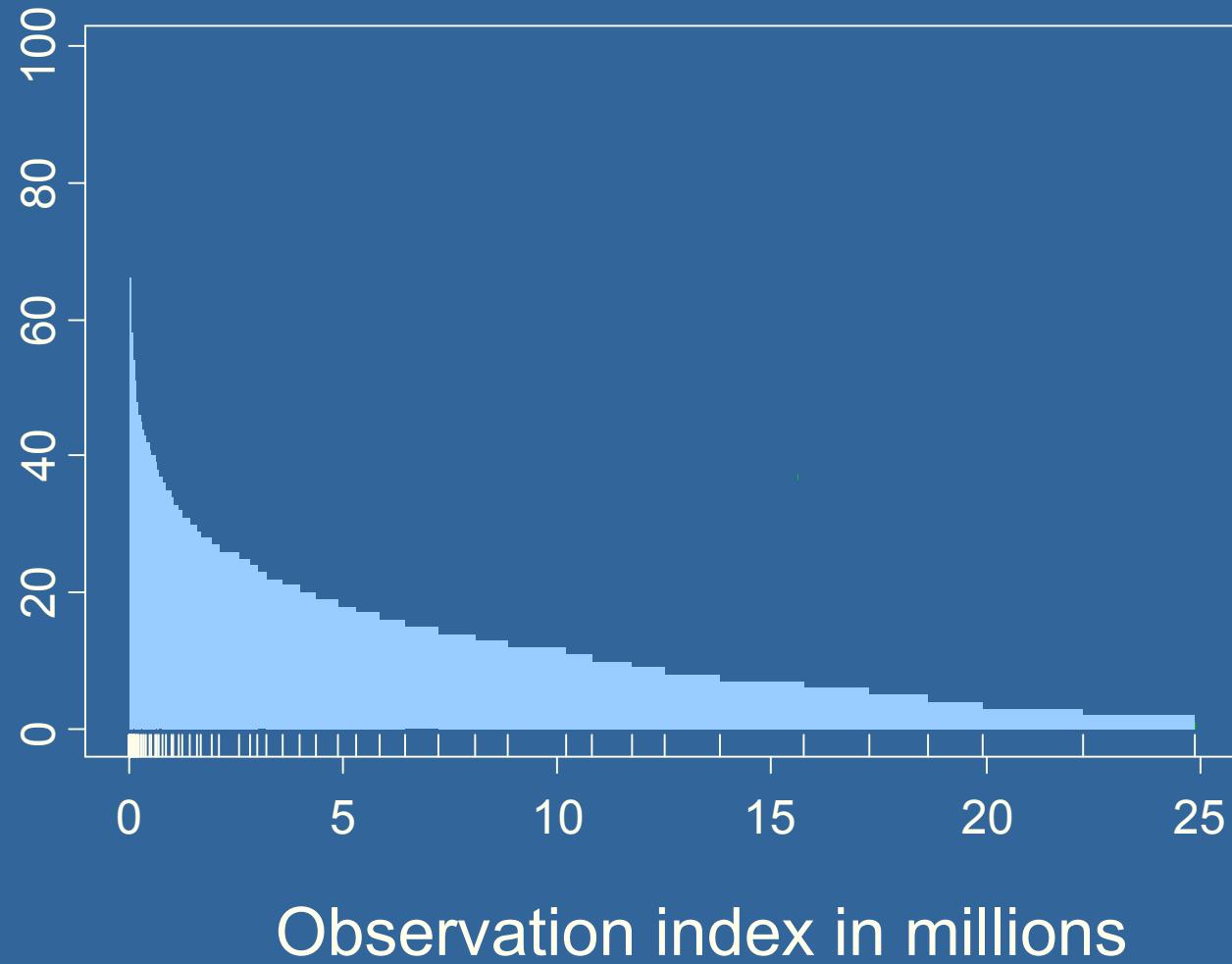
$$= \text{Initial dataset size} \times \left(\frac{1}{\text{percent decrease in ESS}} \right)^{\frac{k}{d}}$$

Example: Mixture of transition models

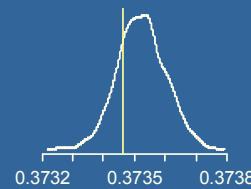
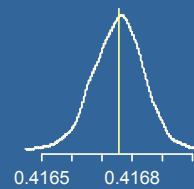
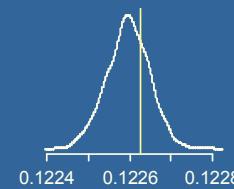
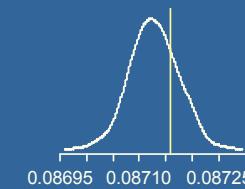
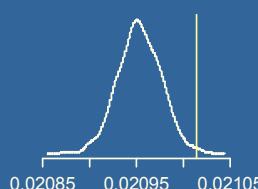
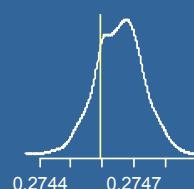
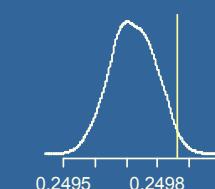
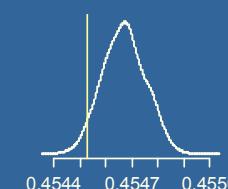
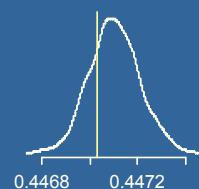
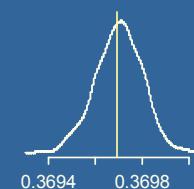
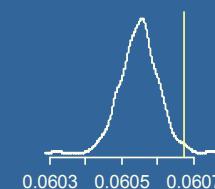
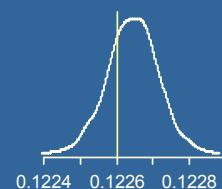
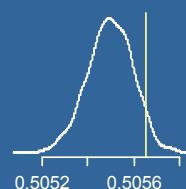
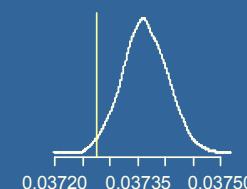
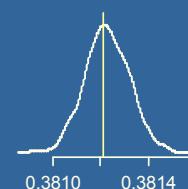
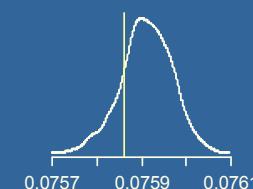
- Set of sequences of about 5 to 20 states visited by each observation
- Each sequence was generated by one of two first order probability transition matrices
- We do not know the transition probabilities nor the cluster assignments
- Properties
 - 25 million observations
 - 1 Gb of data
 - allowed only 1,000 sequences in memory

Number of accesses

Number of Access



Cluster 1 transition matrix



Conclusions

- Requires one good Metropolis-Hastings run up front with a small dataset
- Greatly reduces data access requirements
- Number of data accesses does not depend on M
- Chopin (2002) Biometrika article offers a similar strategy with interesting measures of sample quality

Bayesian Analysis of Massive Datasets Via Particle Filters

Greg Ridgeway

RAND Statistics Group

<http://i-pensieri.com/gregr>

David Madigan

Rutgers University

<http://stat.rutgers.edu/~madigan>