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Propensity scores Iin a nutshell

Yo and y; are potential outcomes

t = 1 Indicates assignment to treatment,
t = 0 Indicates assignment to control

w; = p;/(1 —p;) pro

ne propensity score

pensity score weight

The treatment effect on the treated:

o >ty > w; (1—t;)yoq

E(yr —wolt =1) = =7 > wi(1—t;)

Propensity scores — p. 2



Estimating propensity scores

Letlogl = Do ‘|‘Z _1 Bihj(x)

Consider the regularlzed logistic regression
likelihood

S .0 h(x;) — log(1 + exp(Fh(x,))) — A z 5,

» A = 0 yields the usual logistic regression
» A = oo yields p(x) = t, the baseline rate
» For other \, many of the optimal gs are O
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Implemention

We let i, be the collection of up to 3-way

Interactions of indicator functions involving x.
For example,

hi(x) = I(age < 15)I(SFI > 10)I(probation = yes)

Forward stagewise regression:

px) ., PX)
T px) 81— p(x)

where ¢ = 0.001 and h,(x) is the basis

function most correlated with the residuals of
the current fit

log

- ehy (X)
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Each 1teration decreases deviance

Sample deviance
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p(x) can be overfit
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10-fold CV minimizes deviance
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Effect size measure of balance

weighted
treatment control effect size
Variable mean mean weighted unweighted
Treatment motivation 2.52 2.22 0.23 0.89
Environmental risk 30.61 31.09 -0.05 0.17
Substance use 7.61 6.94 0.16 0.69
Complex behavior 12.84 13.00 -0.02 0.09
Age 15.82 15.76 0.07 0.56
Average |ES]| 0.107 0.307
\EVEI=N] 0.260 1.070
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Balance encourages overfit

Sample deviance
Test Max |ES| _
deviance \f
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Similar for other stopping rules

Sample deviance

Test Max |ES]| _
deviance
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Compare with treatment effect
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Performance of stopping rules

Within replication absolute error is greater for
non-likelihood based selection criteria

10-fold CV ranked #1 in 71% of replications
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Bias variance tradeoff
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Implications

Stopping rules that measure fit are appealing
for communicating the reduction of bias

Simulation seems to indicate that effort in
getting good propensity scores results in
better estimates of treatment effects

Competing factors: ratio bias, ANCOVA-style
variance reduction, balance on irrelevant
covariates
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