

Model Selection for Estimating Propensity Scores

Greg Ridgeway

<http://www.i-pensieri.com/gregr>

RAND Statistics Group, Santa Monica, CA

Joint work with Dan McCaffrey and Andrew Morral

Propensity scores in a nutshell

- y_0 and y_1 are potential outcomes
- $t = 1$ indicates assignment to treatment,
 $t = 0$ indicates assignment to control
- $p_i = P(t = 1 | \mathbf{x}_i)$ is the propensity score
- $w_i = p_i / (1 - p_i)$ propensity score weight
- The treatment effect on the treated:

$$E(y_1 - y_0 | t = 1) \approx \frac{\sum t_i y_{1i}}{\sum t_i} - \frac{\sum w_i (1 - t_i) y_{0i}}{\sum w_i (1 - t_i)}$$

Estimating propensity scores

- Let $\log \frac{p(\mathbf{x})}{1-p(\mathbf{x})} = \beta_0 + \sum_{j=1}^J \beta_j h_j(\mathbf{x})$
- Consider the regularized logistic regression likelihood

$$\sum t_i \beta' \mathbf{h}(\mathbf{x}_i) - \log(1 + \exp(\beta' \mathbf{h}(\mathbf{x}_i))) - \lambda \sum_{j=1}^J |\beta_j|$$

- $\lambda = 0$ yields the usual logistic regression
- $\lambda = \infty$ yields $p(\mathbf{x}) = \bar{t}$, the baseline rate
- For other λ , many of the optimal β s are 0

Implementation

- We let h_j be the collection of up to 3-way interactions of indicator functions involving \mathbf{x} . For example,

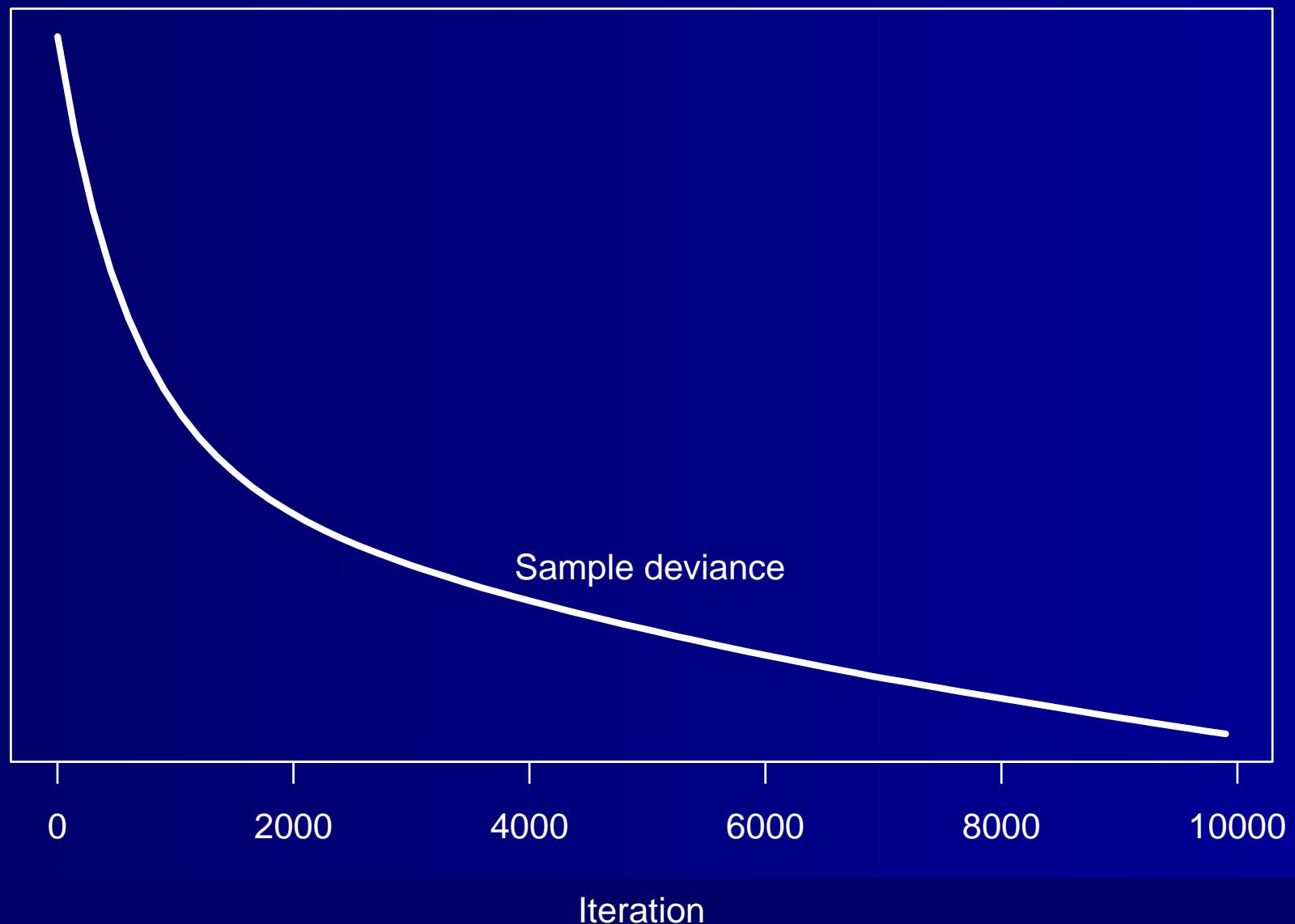
$$h_1(\mathbf{x}) = I(\text{age} < 15)I(\text{SFI} > 10)I(\text{probation} = \text{yes})$$

- Forward stagewise regression:

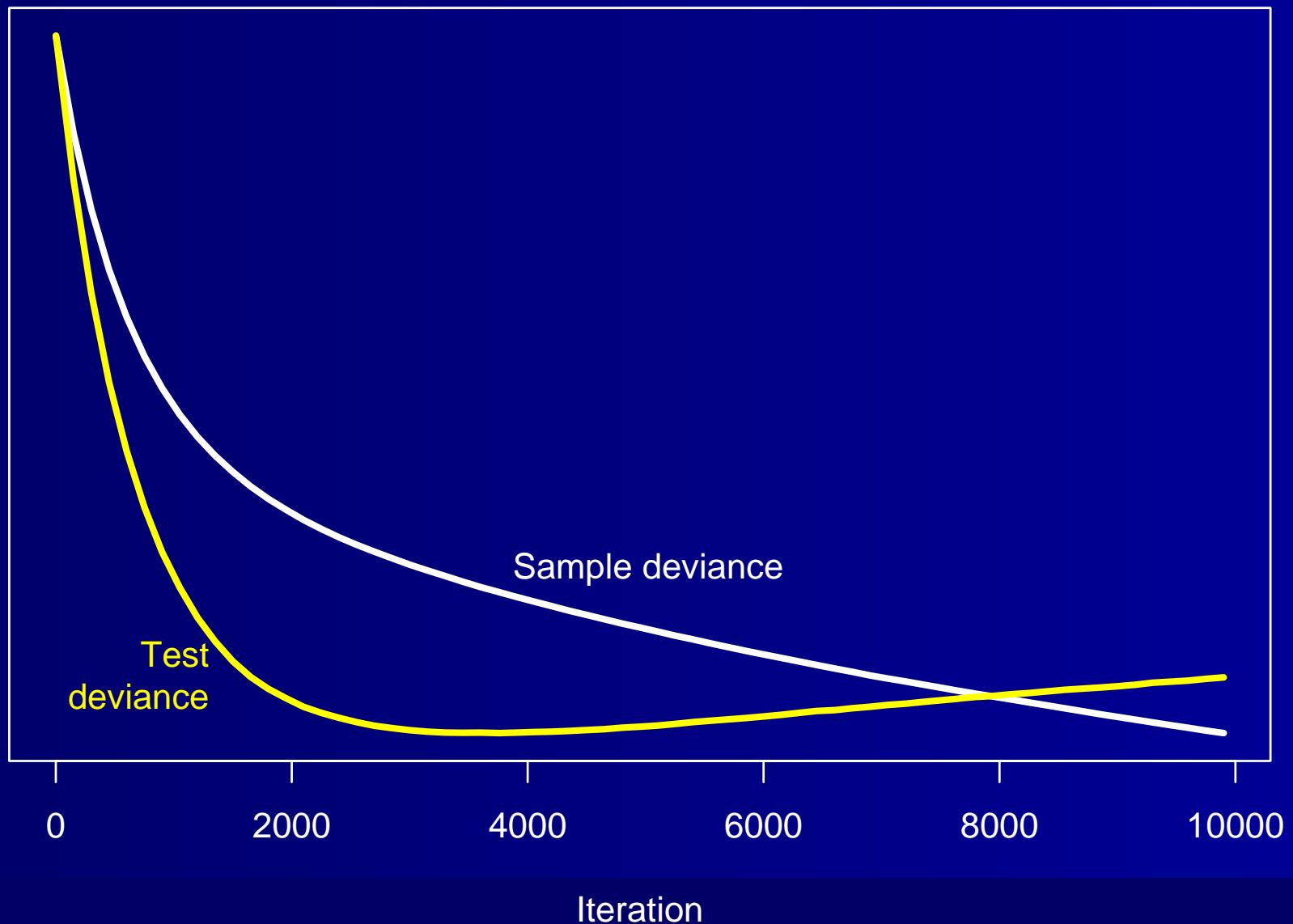
$$\log \frac{p(\mathbf{x})}{1 - p(\mathbf{x})} \leftarrow \log \frac{p(\mathbf{x})}{1 - p(\mathbf{x})} + \epsilon h_*(\mathbf{x})$$

where $\epsilon = 0.001$ and $h_*(\mathbf{x})$ is the basis function most correlated with the residuals of the current fit

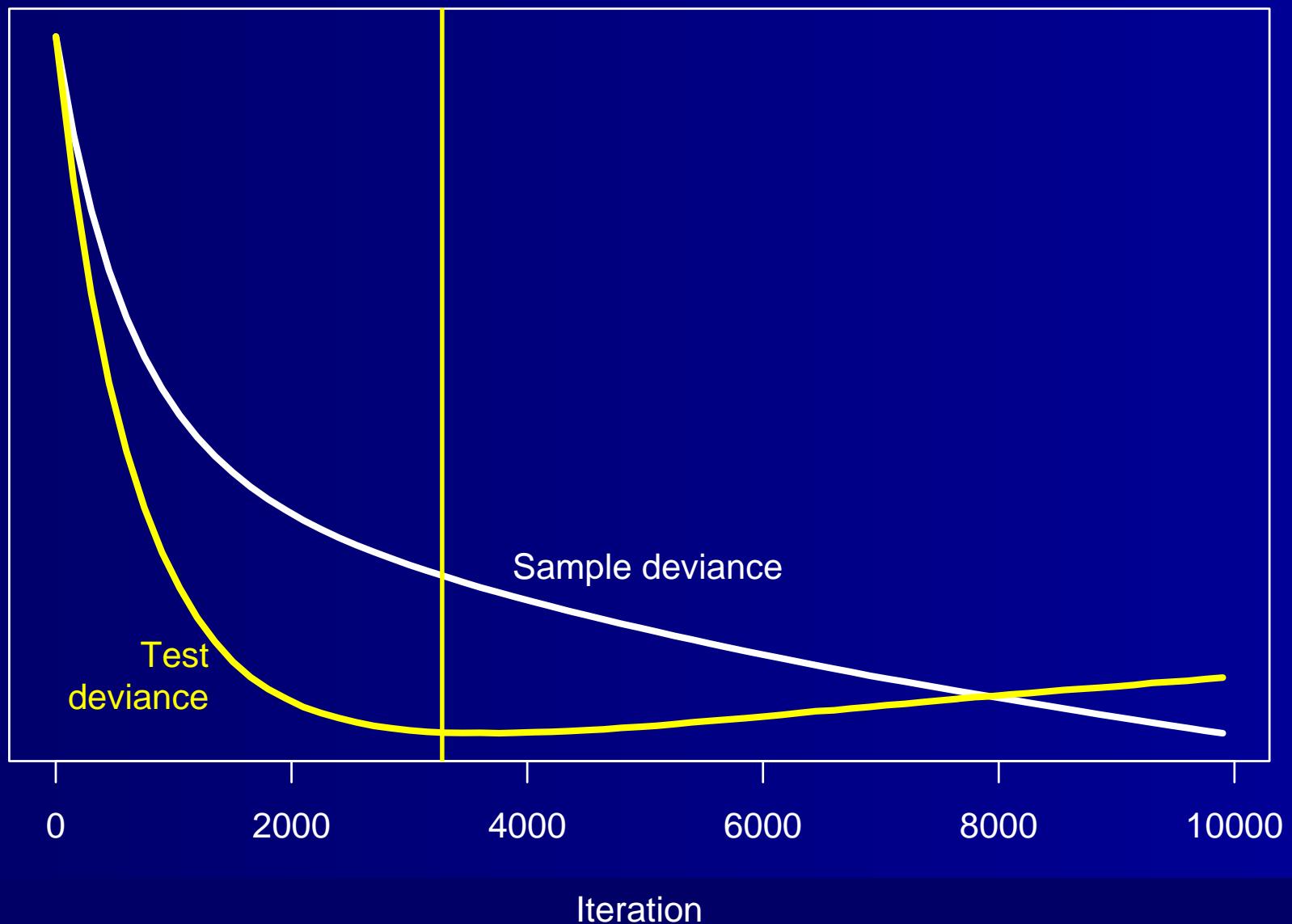
Each iteration decreases deviance



$p(\mathbf{x})$ can be overfit



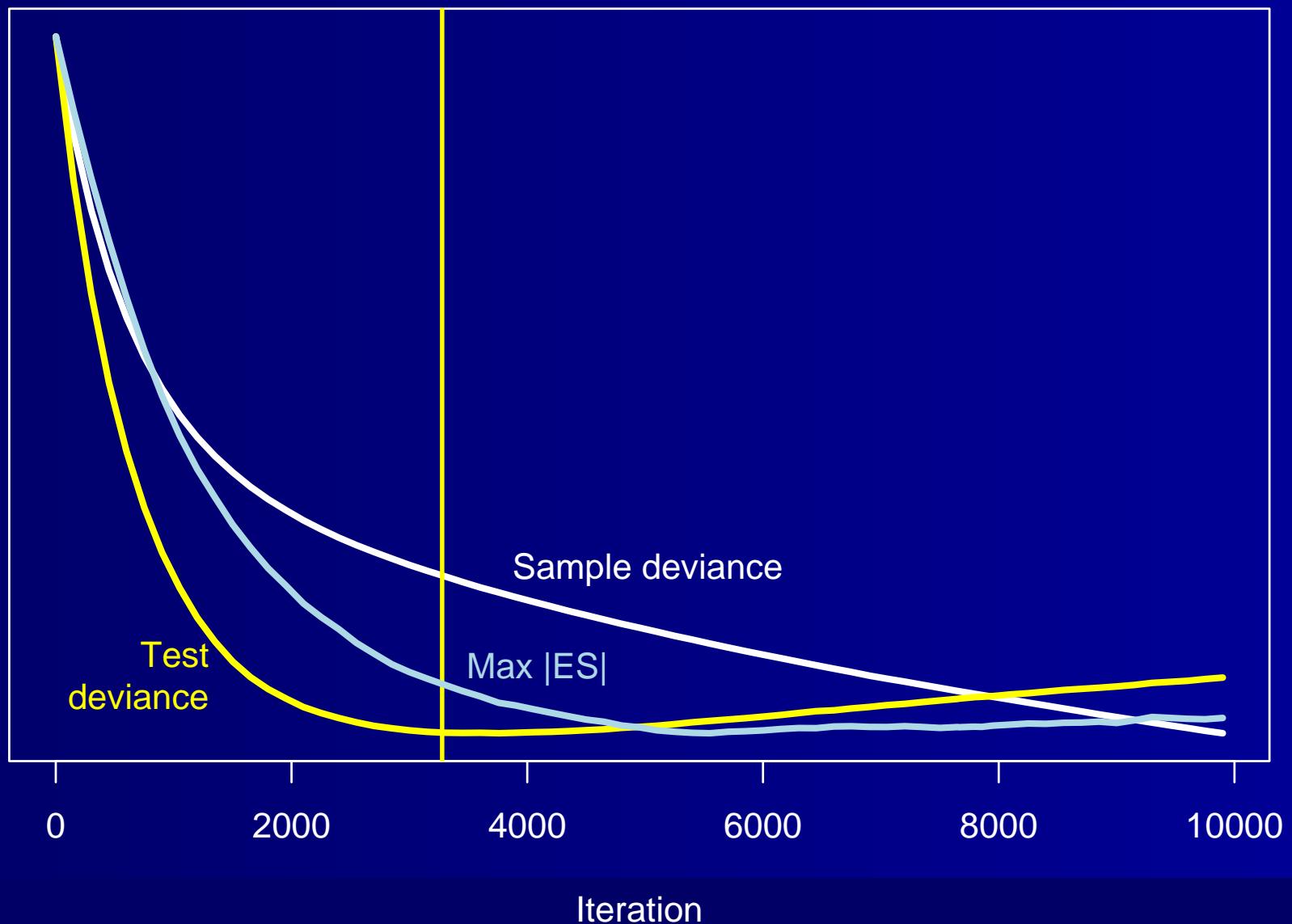
10-fold CV minimizes deviance



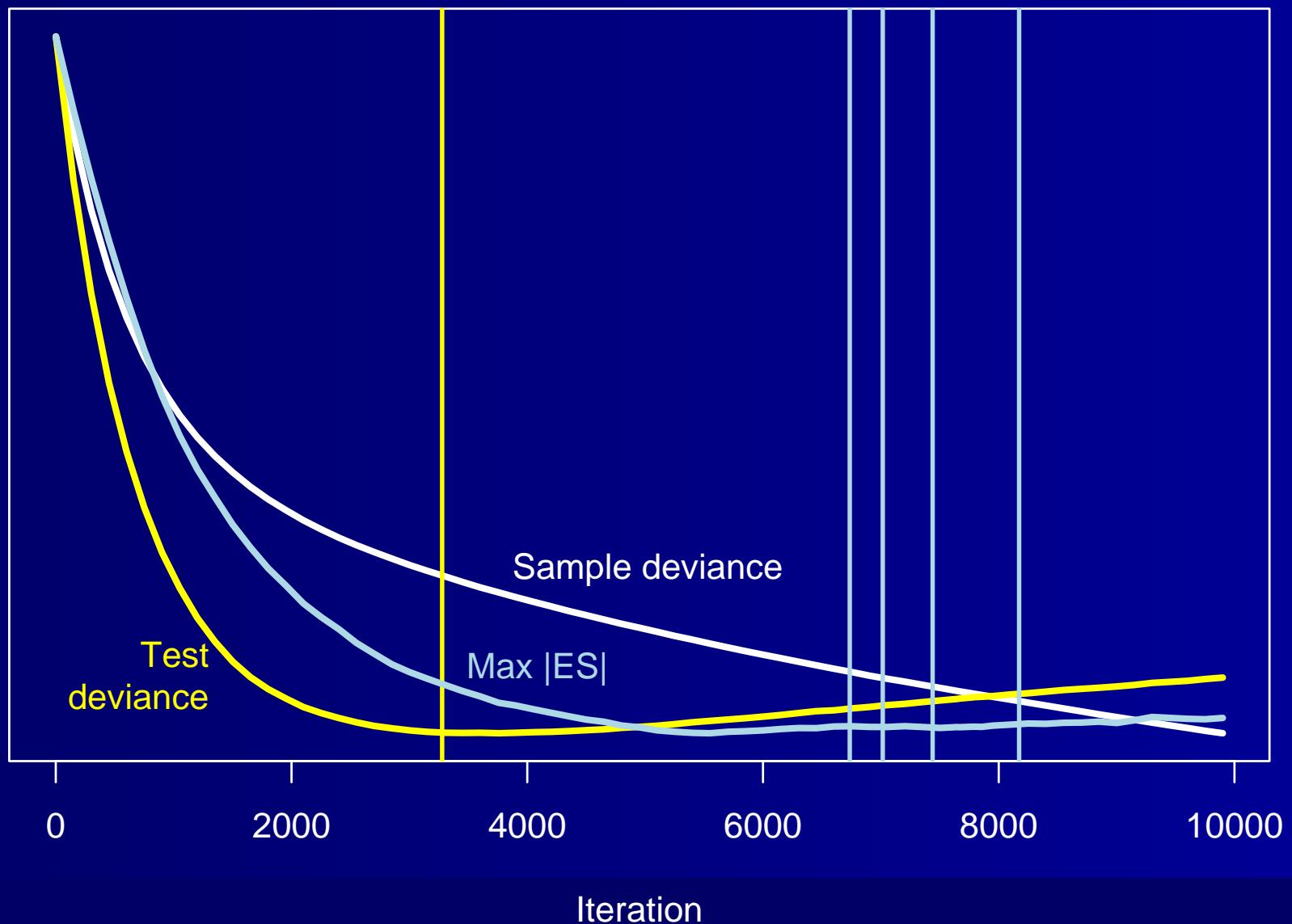
Effect size measure of balance

Variable	weighted		effect size	
	treatment mean	control mean	weighted	unweighted
Treatment motivation	2.52	2.22	0.23	0.89
Environmental risk	30.61	31.09	-0.05	0.17
Substance use	7.61	6.94	0.16	0.69
Complex behavior	12.84	13.00	-0.02	0.09
Age	15.82	15.76	0.07	0.56
:			:	:
Average ES			0.107	0.307
Max ES			0.260	1.070

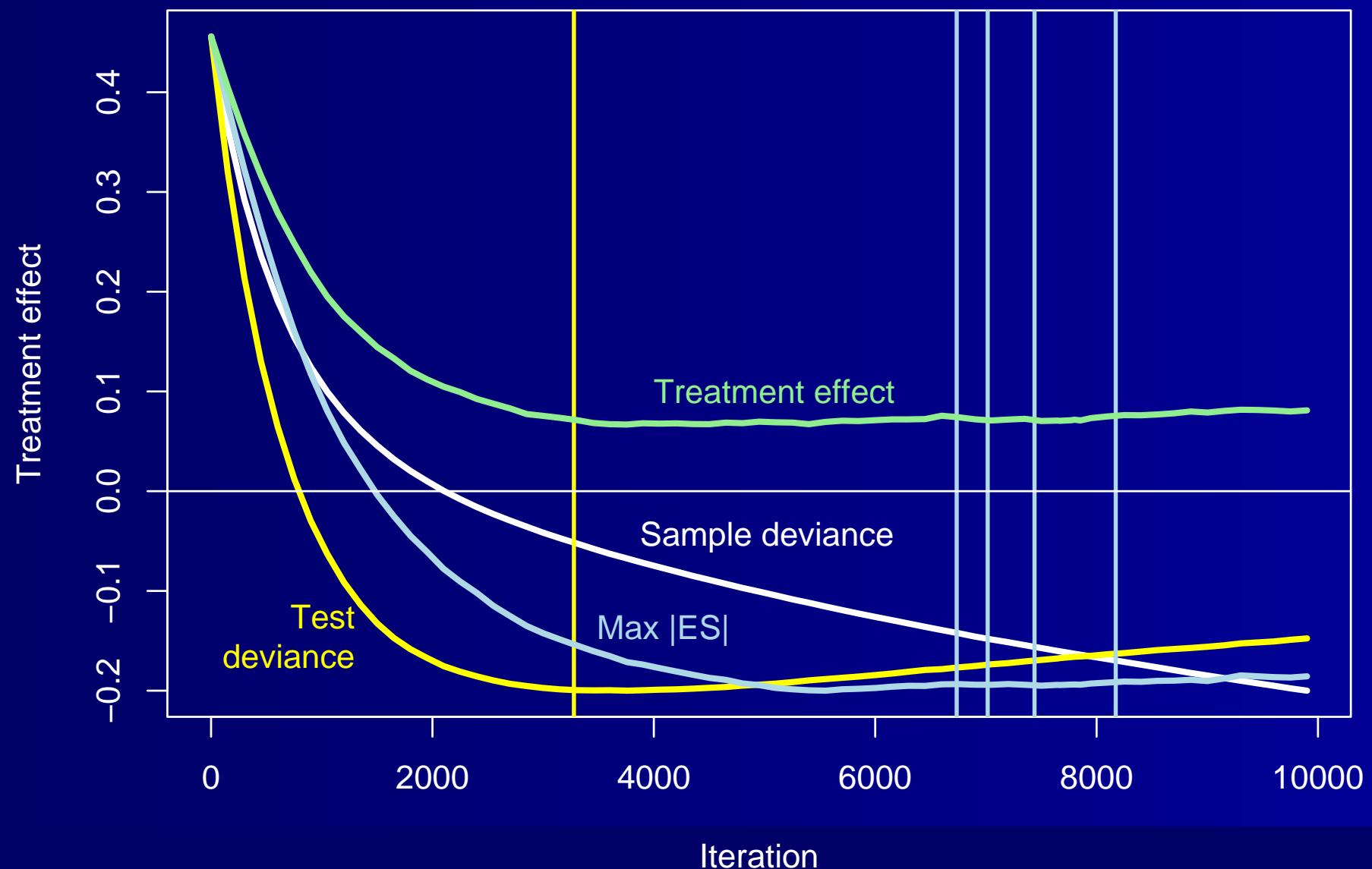
Balance encourages overfit



Similar for other stopping rules

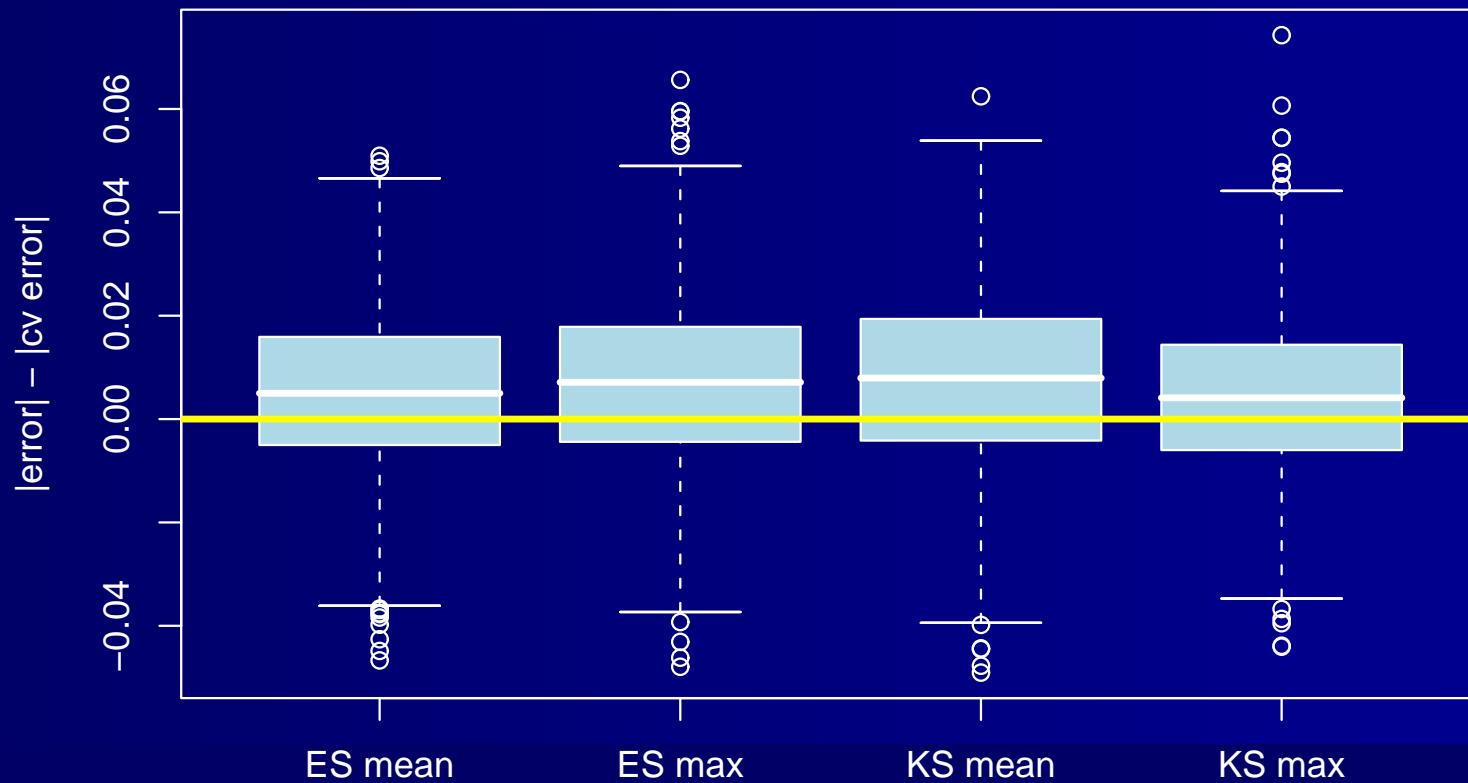


Compare with treatment effect

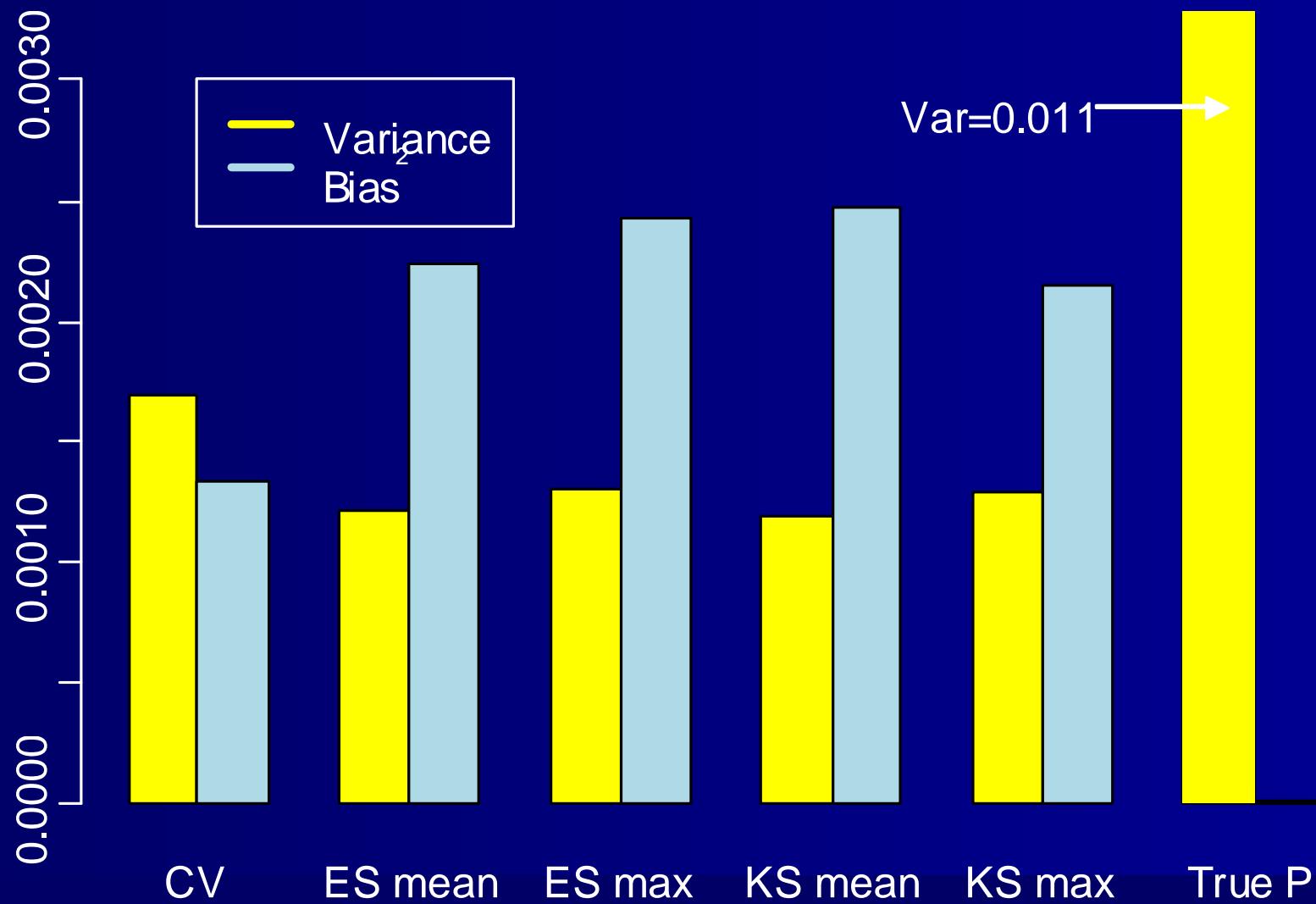


Performance of stopping rules

- Within replication absolute error is greater for non-likelihood based selection criteria
- 10-fold CV ranked #1 in 71% of replications



Bias variance tradeoff



Implications

- Stopping rules that measure fit are appealing for communicating the reduction of bias
- Simulation seems to indicate that effort in getting good propensity scores results in better estimates of treatment effects
- Competing factors: ratio bias, ANCOVA-style variance reduction, balance on irrelevant covariates