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Propensity scores in a nutshell

y0 and y1 are potential outcomes

t = 1 indicates assignment to treatment,
t = 0 indicates assignment to control

pi = P (t = 1|xi) is the propensity score

wi = pi/(1− pi) propensity score weight

The treatment effect on the treated:

E(y1 − y0|t = 1) ≈
∑

tiy1i∑
ti
−

∑
wi(1−ti)y0i∑
wi(1−ti)
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Estimating propensity scores

Let log p(x)
1−p(x) = β0 +

∑J
j=1 βjhj(x)

Consider the regularized logistic regression
likelihood

∑
tiβ
′
h(xi)− log(1 + exp(β′h(xi)))− λ

J∑

j=1

|βj|

λ = 0 yields the usual logistic regression
λ =∞ yields p(x) = t̄, the baseline rate
For other λ, many of the optimal βs are 0
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Implemention

We let hj be the collection of up to 3-way
interactions of indicator functions involving x.
For example,

h1(x) = I(age < 15)I(SFI > 10)I(probation = yes)

Forward stagewise regression:

log
p(x)

1− p(x)
← log

p(x)

1− p(x)
+ εh∗(x)

where ε = 0.001 and h∗(x) is the basis
function most correlated with the residuals of
the current fit
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Each iteration decreases deviance

Iteration

0 2000 4000 6000 8000 10000

Sample deviance
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p(x) can be overfit

Iteration

0 2000 4000 6000 8000 10000

Sample deviance

Test
deviance
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10-fold CV minimizes deviance

Iteration

0 2000 4000 6000 8000 10000

Sample deviance
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Effect size measure of balance

weighted
treatment control effect size

Variable mean mean weighted unweighted
Treatment motivation 2.52 2.22 0.23 0.89
Environmental risk 30.61 31.09 -0.05 0.17
Substance use 7.61 6.94 0.16 0.69
Complex behavior 12.84 13.00 -0.02 0.09
Age 15.82 15.76 0.07 0.56
... ... ...
Average |ES| 0.107 0.307
Max |ES| 0.260 1.070
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Balance encourages overfit

Iteration
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Similar for other stopping rules

Iteration
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Compare with treatment effect

Iteration

0 2000 4000 6000 8000 10000

Sample deviance

Test
deviance

Max |ES|
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Performance of stopping rules
Within replication absolute error is greater for
non-likelihood based selection criteria

10-fold CV ranked #1 in 71% of replications

|e
rr

or
| −

 |c
v 

er
ro

r|

ES mean ES max KS mean KS max

−
0.

04
0.

00
0.

02
0.

04
0.

06

Propensity scores – p. 12



Bias variance tradeoff
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Implications

Stopping rules that measure fit are appealing
for communicating the reduction of bias

Simulation seems to indicate that effort in
getting good propensity scores results in
better estimates of treatment effects

Competing factors: ratio bias, ANCOVA-style
variance reduction, balance on irrelevant
covariates
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