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Bayesian Inference

* Model for the data, y. ~f (v |0)

* Prior knowledge, 1 (6)

* Bayes’ Theorem

(01— 1O©)
| r10)7@do

< f(y10)1(0)



Example 1: Beta-Bernoulli

* We observe y={0,1,1,1,1,0,0,1,0,1}

* A model
_ |1 with probability 0
71710 with probability 1—@
[, 10)=0"(1-6)""
e A prior

FO)=1(0<0<1)



Beta-Bernoulli Posterior

* The posterior
927 (1-0)" 2"

j 02 (1-6)" 2" 4o

f(@]y)=

o 6°(1-6)°

= Beta(7,5)

e Summarize with

— density
— mean
— variance
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Example 2: Logistic regression

* We might have covariates with each y..

{)—Ci’ yi}a V€ {0,1}
* Let the probability depend on x.
F i pGe)) = p(x)” (1= p(x)) ™

* Linear logistic regression
p(x;)
1-p(x;)

log = By + B x; + Brx;, +...



Logistic regression posterior

The posterior distribution for the parameters
of a logistic regression model 1s complex.

d —Vi d =l
al —(ﬂo"'glﬂjxﬁ) ’ ﬂ0+§1ﬂjxy' ’
fBlxy e fP] ]| 1+e l+e
i=1

Mean and variance of f(f|x,)?



Monte Carlo methods

 Summaries from Bayesian data analyses

E(h(9)|xl,xz,...,xn):jh(ﬁ)f(mxl,xz,...,xn)dé’

* Monte Carlo integration
f(O|x,x,,....x,)

E(h(©0)|x) =% h(©)



Sampling

Many distributions are easy to sample from;
beta, multinomial, multivariate normal, ...

Adaptive rejection sampling
Markov Chain Monte Carlo

Importance sampling



Importance sampling

* f(0) - target density
* 9(0) - sampling density

j 0. 1(0)d6 = j PRAC) (H) 2(0)d0

m
Hi Wi
=1

where w, = Jgpg; and 0. ~ g(0)

1
m

N/
"N/




Accuracy of importance sampling

* Accuracy depends on the variance of the
welghts

Varg(i ZHZ.WZ.J = (1+ Var, (w)) xVarf(%Zé’ij
= =)

where w(60) = A
g(0)



Effective sample size

e A rule-of-thumb for £SS

1
1+ Var, (w/E, w)

ESS =m

* Drawing m times from g( @) 1s like drawing
ESS times from f(60)



Massive Datasets
jh(@)f(@ 1%, X, ., x. )

e The dimension of @ does not affect the
convergence rate, but i1t does slow down
each iteration.

* The sample size, n, can also substantially
slow down the 1terations, especially if 1t
exceeds the computer’s main memory.



Example: Logistic regression

The posterior distribution for the parameters
of a logistic regression model 1s complex.

d —Vi d =l
al —(ﬂo"'glﬂjxﬁ) ’ ﬂ0+§1ﬂjxy' ’
fBlxy e fP] ]| 1+e l+e
i=1

An evaluation for any frequires a scan of the
dataset.



Patching the posterior

G. Ridgeway, D. Madigan, T. Richardson [in progress]

[ 10110131230 = [ (O) (0 2,.2,)d0

'h(e) f(g 10)f(g,0)1(60) 10
f(g1,2,)

[ 10)1(2,10)101g))d0

[ 10)1@12)a0

By h0)/ (2, 10)
Eye /(2:10)




Patching the posterior

Epg, 1 (0)1(g,10)

Epe /(8210)

where w; = f(g, |0,) and®, ~ (0] g))



Efficiency

Efficient if /(8] g,) is close to /(8] g, 2,)

* Reasonably large g, implies that the
locations will be close.

* Variance of /(0| g, g,) decreases as |g,]

Increases (on average).

Var(60| g,) = E(Var(0| g, g,)) + Var(E(0| g, £,))
Var(60| g,) = E(Var(0| g, ,))



Example: Logistic regression

g,/ = 10,000 and |g,| = 10,000




Weight variance

Variance of the importance sampling weights
dictate the rate of convergence.

Proposition Assume that
X, ~ N(ILI,(TZ), H~ N(/anfg)

81 = {xla"'axnl}a g2 = {xn1+l"“9‘xn1+n2}

Im £ E Var

g1 &

Toy—>0

then
( f(ulg) n,

f(ugl,g»j:n_z



Adaptive importance sampling

« Small £SS 1s due to
wasted draws.

* As n, grows the size
of these regions will
Increase.

Small weights

* We can learn the
weilghtless regions.




Adaptive importance sampling

* 0. and w;, are deterministically linked.
w(0)=f(g,|0)
1. Computing w( @) 1s expensive.

2. @’s for which w(8) 1s virtually O are

useless.

3. Avoid computing w( &) for values for
“weightless” 0’s.



Predictive weight trimming

* Draw @,,...,0, from f(6| g/).

» Compute w; = f(g,|6. ) where n, = n,.

* Construct a weight threshold predictor, I( &)
l(w>¢g)=1(0)

* Repeat sampling from a truncated form

7012) =L)< fig, 10)
| r12)10)d0




Preliminary results

* Simulate 20,000 observations from a logistic
regression model, half for g, and half for g,.

» Use BUGS to draw from (8] g,),

m=10,000.
e Iterate through the (x, y,) in g, and compute
w..

foriml,... mdo
log(w,) < log(w;) +log f(x; | 6,)



Posterior mean convergence

posterior mean
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Effective sample size
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Predictive weight trimming
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Predictive weight trimming
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Features

» Using trees 1s much faster than using g, to
indicate 0 weight.

* The trees are easy to construct.

 We can trim 70% of the draws which
combined only have the weight of 1/5 of a
draw.



Future Work

» Evaluate predictive weight trimming

 Investigate the convergence properties of
the adaptive importance sampling

* Apply fast vector quantization algorithms to

— select g,

— generate smaller pseudo-datasets with nearly
equivalent information



Predictive weight trimming

Draw 6,,...,0, from f(0| g,).

Compute w; = f(g,|6; ) where | g, | = n;.

Construct a weight threshold predictor, I(6)

(w> &)~ 1(6)

Now sample from the mixture

f.0g)=a

J(@1g)1(0)

| ro12)10)d0

+(1-a)f(0]g)
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