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Bayesian Inference

• Model for the data, yi ~ f (y | )

• Prior knowledge, f ( )

• Bayes’ Theorem
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Example 1: Beta-Bernoulli

• We observe y={0,1,1,1,1,0,0,1,0,1}

• A model

• A prior
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Beta-Bernoulli Posterior

• The posterior

• Summarize with
– density
– mean
– variance
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Example 2: Logistic regression

• We might have covariates with each yi.

{xi, yi}, yi{0,1}

• Let the probability depend on x.

• Linear logistic regression

ii y

i

y

iii xpxpxpyf
−

−=
1

))(1()())(|(

...
)(1

)(
log 22110 +++=

−
ii

i

i xx
xp

xp




Logistic regression posterior

The posterior distribution for the parameters 

of a logistic regression model is complex.

Mean and variance of f ( |x, y)?
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Monte Carlo methods

• Summaries from Bayesian data analyses

• Monte Carlo integration
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Sampling

• Many distributions are easy to sample from; 

beta, multinomial, multivariate normal, …

• Adaptive rejection sampling

• Markov Chain Monte Carlo

• Importance sampling



Importance sampling

• f ( ) - target density

• g ( ) - sampling density
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Accuracy of importance sampling

• Accuracy depends on the variance of the 

weights
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• A rule-of-thumb for ESS

• Drawing m times from g( ) is like drawing 

ESS times from f ( ) 
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Massive Datasets

• The dimension of  does not affect the 

convergence rate, but it does slow down 

each iteration.

• The sample size, n, can also substantially 

slow down the iterations, especially if it 

exceeds the computer’s main memory.
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Example: Logistic regression

The posterior distribution for the parameters 

of a logistic regression model is complex.

An evaluation for any  requires a scan of the 

dataset.
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Patching the posterior

G. Ridgeway, D. Madigan, T. Richardson [in progress] 
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Patching the posterior
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Efficiency

Efficient if f ( | g1) is close to f ( | g1, g2)

• Reasonably large g1 implies that the 

locations will be close.

• Variance of f ( | g1, g2) decreases as |g2| 

increases (on average).

Var( | g1) = E(Var( | g1, g2)) + Var(E( | g1, g2))

Var( | g1)  E(Var( | g1, g2))



Example: Logistic regression

|g1| = 10,000 and |g2| = 10,000



Weight variance

Variance of the importance sampling weights 

dictate the rate of convergence.

Proposition Assume that
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Adaptive importance sampling

• Small ESS is due to 

wasted draws.

• As n2 grows the size 

of these regions will 

increase.

• We can learn the 

weightless regions.

Small weights



Adaptive importance sampling

• i and wi are deterministically linked.

w( )= f (g2| )

1. Computing w( ) is expensive.

2. ’s for which w( ) is virtually 0 are 

useless.

3. Avoid computing w( ) for values for 

“weightless” ’s.



Predictive weight trimming

• Draw 1,…,m from f ( | g1).

• Compute wi = f (g2|i ) where n2 = n1.

• Construct a weight threshold predictor, I( )

• Repeat sampling from a truncated form

)I()(1  w

)|()(,
)I()|(

)I()|(
)|( 2

1

1
1 




 gfw

dgf

gf
gf ==





Preliminary results

• Simulate 20,000 observations from a logistic 

regression model, half for g1 and half for g2.

• Use BUGS to draw from f ( | g1), 

m=10,000.

• Iterate through the (xj, yj) in g2 and compute 

wi.
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Posterior mean convergence

additional observations
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Effective sample size

additional observations
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Predictive weight trimming
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Predictive weight trimming
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Features

• Using trees is much faster than using g2 to 

indicate 0 weight.

• The trees are easy to construct.

• We can trim 70% of the draws which 

combined only have the weight of 1/5 of a 

draw.



Future Work

• Evaluate predictive weight trimming

• Investigate the convergence properties of 

the adaptive importance sampling

• Apply fast vector quantization algorithms to

– select g1

– generate smaller pseudo-datasets with nearly 

equivalent information



Predictive weight trimming

• Draw 1,…,m from f ( | g1).

• Compute wi = f (g2|i ) where | g2 | = n1.

• Construct a weight threshold predictor, I( )

• Now sample from the mixture
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