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Introduction

Classification - from a set of observable
features choose among a discrete set of
class labels

Interpretability - the quality of a model
that exposes its reasoning process in a
way that a person could understand



Classification models
h : features — class label

Written digit recognition
Automated medical diagnosis
Credit approval

Remote sensing



Interpretability

acl = No

Tree models

effusion = No
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Logistic regression
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Naive Bayes Classification

Probabilistic Classification

x —x ) PXIY =P =)
A P(X)

The naive Bayes assumption
PX|Y=y)=P(X, =x|Y=y)-PX,=x,|Y=y)



Estimation

Probability estimates are trivial
count(X, =x NY =y)

P(X =x |Y=y)=
(X, =x1¥=7) count(X, = x,)

Estimation is linear in the number of
predictors and the number of observations



Interpretability

Consider the log-odds in favor of Y=1

P(Y =1| X)
P(Y =0 X)

d
log :wO+ZWJ(XJ.)
j=1

Positive w;are evidence in favor of ¥=1
Negative w;are evidence in favor of Y=0



Evidence balance sheets

Evidence in favor of Evidence against

knee surgery knee surgery

Female +8 Prior evidence -10

Knee is unstable +88  Age 50 -12

Knee locks +172  No effusion -62

Tender med JL +49  Negative -38
McMurray’s

Total positive +317 Total negative -122

evidence evidence

Total evidence +195

Probability of knee surgery 88%
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Boosting algorithms

1. Learn a classifier from the data

2. Upweight observations poorly predicted,
downweight observations well predicted

3. Refit the model using the new weighting

4. After 7 iterations, have each model vote
on the final prediction.




AdaBoost algorithm

Freund & Shapire (1997)

AdaBoost defines a particular reweighting
scheme and a voting method for merging
the classifiers

AdaBoost decreases bias and variance in
many settings - Bauer and Kohavi [1998]

Boosted naive Bayes tied for first place in
the 1997 KDD Cup



AdaBoost

Extremely dense voting scheme
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Destroys interpretability



Regaining Interpretability

Rewriting the voting scheme...
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Substitute Taylor expansion...
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Regained Interpretability

d T P(X |Y =1
g, log L £33 g log P =D
PY=0 <<% X |Y=0)

= boosted prior weight of evidence +

d
Z boosted weight ot evidence from X,
j=1

Boosting biases parameter estimates
Adjusts naive Bayes’ for over-optimism



Misclassification rates

Naive AdaBoost | Weight of

Bayes evidence
Knee diagnosis 14.0% 13.8% 13.4%
Diabetes 25.0% 24.4% 24.4%
Credit approval 16.8% 15.5% 15.5%
CAD 18.4% 18.3% 18.3%
Breast tumors 3.9% 3.8% 3.8%

Boosting offers modest improvement
Actual AdaBoost and approximation are close
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Calibration
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Future directions

Search for other boosted models that are
interpretable

Further investigation of the effect of
boosting on calibration

Synthesis of boosting and likelihood
methodology - Friedman, et a/[1998]



Conclusions

Naive Bayes is a simple, efficient, and
interpretable classifier
Boosting improves the naive Bayes

classifier but does not necessarily sacrifice
its interpretability

Boosting may improve calibration of
probabilistic classifiers
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