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Introduction

 Classification - from a set of observable 
features choose among a discrete set of 
class labels

 Interpretability - the quality of a model 
that exposes its reasoning process in a 
way that a person could understand



Classification models

h : features → class label

Written digit recognition
 Automated medical diagnosis
 Credit approval
 Remote sensing



 Tree models

 Logistic regression

Interpretability
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Naïve Bayes Classification
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Probabilistic Classification

The naïve Bayes assumption
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Estimation

 Probability estimates are trivial

 Estimation is linear in the number of 
predictors and the number of observations
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Consider the log-odds in favor of Y=1

 Positive wj are evidence in favor of Y=1
Negative wj are evidence in favor of Y=0

Interpretability
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Evidence balance sheets

Evidence in favor of
knee surgery

Evidence against
knee surgery

Female +8 Prior evidence -10
Knee is unstable +88 Age 50 -12
Knee locks +172 No effusion -62
Tender med JL +49 Negative

McMurray’s
-38

Total positive
evidence

+317 Total negative
evidence

-122

Total evidence +195
Probability of knee surgery 88%
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Boosting algorithms

1. Learn a classifier from the data
2. Upweight observations poorly predicted, 

downweight observations well predicted
3. Refit the model using the new weighting
4. After T iterations, have each model vote 

on the final prediction.



AdaBoost algorithm
 Freund & Shapire (1997)

 AdaBoost defines a particular reweighting 
scheme and a voting method for merging 
the classifiers

 AdaBoost decreases bias and variance in 
many settings - Bauer and Kohavi [1998] 

 Boosted naïve Bayes tied for first place in 
the 1997 KDD Cup



AdaBoost

 Extremely dense voting scheme

Destroys interpretability
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Regaining Interpretability
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Rewriting the voting scheme…

Substitute Taylor expansion… 



Regained Interpretability
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 Boosting biases parameter estimates
 Adjusts naïve Bayes’ for over-optimism



Misclassification rates

 Boosting offers modest improvement
 Actual AdaBoost and approximation are close

Naïve
Bayes

AdaBoost Weight of
evidence

Knee diagnosis 14.0% 13.8% 13.4%
Diabetes 25.0% 24.4% 24.4%
Credit approval 16.8% 15.5% 15.5%
CAD 18.4% 18.3% 18.3%
Breast tumors 3.9% 3.8% 3.8%
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Calibration

Predicted probability
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Future directions

 Search for other boosted models that are 
interpretable

 Further investigation of the effect of 
boosting on calibration

 Synthesis of boosting and likelihood 
methodology - Friedman, et al [1998]



Conclusions

Naïve Bayes is a simple, efficient, and 
interpretable classifier

 Boosting improves the naïve Bayes 
classifier but does not necessarily sacrifice 
its interpretability

 Boosting may improve calibration of 
probabilistic classifiers


	Interpretable Boosted �Naive Bayes Classification
	Introduction
	Classification models
	Interpretability
	Naïve Bayes Classification
	Estimation
	Interpretability
	Evidence balance sheets
	Boosting algorithms
	AdaBoost algorithm� Freund & Shapire (1997)
	�AdaBoost
	Regaining Interpretability
	Regained Interpretability
	Misclassification rates
	Calibration
	Future directions
	Conclusions

