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Origin of Boosting
Classification problems

{X, Y}i , i = 1,…,n

Y ∈ {0, 1}

The task - construct a function, 

h(X) : X → {0, 1}

so that h minimizes misclassification error.



Combining multiple classifiers

Generally, combining several classifiers into 
one results in a more accurate classifier.

• Bagging (and adaptive bagging)
• Bumping
• Bayesian Model Averaging
• Bundling
• Boosting



Boosting

Equally weight the observations (X,Y)i

For t in 1,…,T
Using the weights, fit a classifier ht(X) → Y
Upweight the poorly predicted observations
Downweight the well-predicted observations

Merge h1,…,hT to form the boosted classifier



AdaBoost’s Performance
Freund & Schapire [1996]

• Leo Breiman - AdaBoost with trees is the “best 
off-the-shelf classifier in the world.”

• Performs well with many base classifiers and in a 
variety of problem domains.

• AdaBoost is generally slow to overfit.
• Boosted naïve Bayes tied for first place in the 

1997 KDD Cup. (Elkan [1997])
• Boosted naïve Bayes is a scalable, interpretable 

classifier (Ridgeway, et al [1998]).



Boosting 
as optimization

• Friedman, Hastie, Tibshirani [1998] -
AdaBoost is an optimization method for 
finding a classifier. 

• Let  y∈{-1,1},  F(x)∈(-∞,∞)
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Criterion
• E(e–yF(x)) bounds the misclassification rate.

• The minimizer of E(e–yF(x)) coincides with 
the maximizer of the expected Bernoulli 
likelihood.
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Optimization step

• Select f to minimize J…
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LogitBoost
Friedman, Hastie, Tibshirani [1998] 

• Logistic regression

• Expected log-likelihood of a regressor, F(x)
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Newton steps

• Iterate to optimize expected log-likelihood.
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LogitBoost, continued

• Newton steps for Bernoulli likelihood

• In practice the Ew(•|x) can be any regressor -
trees, smoothers, etc.

• Trees are adaptive and work well for high 
dimensional data.
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Classification results
Friedman, Hastie, Tibshirani [1998]

CART AdaBoost LogitBoost
Breast 4.5% 4.0% 2.9%
Ion 7.6% 6.8% 7.1%
Glass 40.0% 25.7% 26.6%
Sonar 59.6% 20.2% 20.2%
Waveform 36.4% 19.5% 20.6%
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Generalized Boosted Models
G. Ridgeway, D. Madigan, T. Richardson [in progress]

• Exponential family

• Model the conditional mean

• Link the mean to the covariates
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The GBM algorithm
With b          for t = 1,…,T update F as

Proposition The GBM algorithm is a Newton 
method, with learning schedule λt , for 
maximizing a canonical exponential family 
regression model.








 −
+←+ x

xFb
xFbyExFxF t

t

wt
tt

))((''
))((')()( )(

)(
)()1( λ

))(('')( xFbxw =

,)(' )0( yFb =



GBM…
• encompasses a large set of standard 

statistical models,
• allows for non-linear predictors (prediction 

bias-reduction),
• trees work well for high-dimensional 

feature extraction,
• can incorporate robust regression, and
• reduces variance through a “bagging” step.



Alternate paths

• Sub-sample a fraction of the data at each 
step when computing the expectation.

• “Robustify” the expectation.
• Trim observations with small weights.
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Survival prediction

• Exponential survival model

• Cox model
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Gradient ascent

• Consider maximizing the N dimensional 
function

• The gradient gives the direction of the 
largest (local) increase in log PL.
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Compress the gradient

• Optimization would have us modify F as

• Approximate the gradient using x.

• Modify F as
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Illustration
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Computing the step size

• Choose ρ to maximize log PL.

• This is just a linear Cox model!
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Boosted Cox model

Initialize F(0)(x) = 0 and for t in 1 to T
 1. Compute the working response
  

 2. Predict g from the covariates, x.
 3. Fit a Cox model of the form

 4. The new regression function is

)PL(log F
F

g
i

i ∂
∂

=

)())((~),( )()( xfxFoffsett tt ρδ +

)(ˆ)()( )()()1( xfxFxF ttt ρ+=+



Performance

iteration
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Main effects
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Discussion

• Exponential family models
• Bias reduction - non-linear fitting
• Massive datasets - bagging, trimming
• Variance reduction - bagging
• Interpretability - additive models
• High-dimensional regression - trees
• Robust regression



Detail slides



AdaBoost
Freund & Schapire 1996

(X,Y)i where Yi∈{0,1}, 

• With weights, fit the model Ht(xi) : Xº [0,1].
• Compute the error 
• Reweight

Lastly, predict
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LogitBoost performance

x x



Learning rate
G. Ridgeway, D. Madigan, T. Richardson [in progress] 

• Aggressive maximization causes overfitting.
• Slow down the “learning” rate, λ∈(0,1).

• Related to Copas’ proportional shrinkage
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LogitBoost performance
λ t = 0.01
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Bagging stage
F(x1, x2) = f (x1)+f (x2)
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Log-likelihood, bagged=0.1
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Interpretation
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Censored exponential regression

τ - survival time, δ - death indicator
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Results for 
primary biliary cirrhosis

• GBM for survival time given treatment, sex, 
age, and clinical measurements.

• 310 observations, split in half for model 
fitting and model validation

• Compared with linear censored exponential 
regression

• 10 replicates, 3 learning rates, using 
regression stumps



PBC Results

Number of trees
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PBC Results
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