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Origin of Boosting
Classification problems
X, Y} ,i=1,...n
Y e {0, 1}
The task - construct a function,
h(X): X— {0, 1}

so that 4 minimizes misclassification error.



Combining multiple classifiers

Generally, combining several classifiers into
one results in a more accurate classifier.

* Bagging (and adaptive bagging)
* Bumping

* Bayesian Model Averaging

* Bundling

* Boosting



Boosting

Equally weight the observations (X,Y),

Fortinl,....T
Using the weights, fit a classifier (X)) —> Y
Upweight the poorly predicted observations
Downweight the well-predicted observations

Merge h,,...,h;to form the boosted classifier



AdaBoost’s Performance
Freund & Schapire [1996]

Leo Breiman - AdaBoost with trees 1s the “best
oft-the-shelf classifier in the world.”

Performs well with many base classifiers and in a
variety of problem domains.

AdaBoost 1s generally slow to overfit.

Boosted naive Bayes tied for first place in the
1997 KDD Cup. (Elkan [1997])

Boosted naive Bayes 1s a scalable, interpretable
classifier (Ridgeway, et al [1998]).




Boosting
as optimization

Friedman, Hastie, Tibshirani [1998] -
AdaBoost 1s an optimization method for
finding a classifier.

Let ye{-1,1}, F(x)e(-o0,0)

J(F)=Ele”" | x)



Criterion

« E(e?f®) bounds the misclassification rate.
[(yF(x)<0)<e ™

« The minimizer of E(e>*™) coincides with
the maximizer of the expected Bernoulli
likelihood.

E(E(p(x),y)) = —Elog(l+e>""™)



Optimization step
J(F+f)= E(e—y(F(x)+f(x)) ‘ x)

* Select f to minimize J...

F) @ +%10g E [I(y=1)]x]

I-E,[1(y=1)]x]

—yF" (x)

w(x,y) =e



LogitBoost

Friedman, Hastie, Tibshirani [1998]
* Logistic regression
1  with probability p(x)
- {o with probability 1 — p(x)

1

PX) =%

» Expected log-likelihood of a regressor, F(x)
E ((F) = E(yF (x)—log(1+e"*)| x)




Newton steps

J(F + f) = E(y(F(x)+ £ (x)) —log(1+ "/ | x)

e [terate to optimize expected log-likelihood.

FIEO

0* (¢)
ZJF + f)|f0

FU(x) « FY(x)-



LogitBoost, continued

* Newton steps for Bernoull1 likelihood

F(x) < F(x)+ EW( y—p(¥) xj
p(x)(1— p(x))

w(x) = p(x)(1- p(x))

 In practice the E (°|x) can be any regressor -
trees, smoothers, etc.

* Trees are adaptive and work well for high
dimensional data.



Classification results
Friedman, Hastie, Tibshirani [1998§]

CART AdaBoost LogitBoost
Breast 4.5% 4.0% 2.9%
Ion 7.6% 6.8% 7.1%
Glass 40.0% 25.7% 26.6%
Sonar 59.6% 20.2% 20.2%
Waveform 36.4% 19.5% PAVN 2
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Generalized Boosted Models

G. Ridgeway, D. Madigan, T. Richardson [in progress]|

* Exponential family

£ (r160.4) exp[ye(m ~b(O(1)
. a(¢)

e Model the conditional mean
H; =EQX | x;)

+c(y, ¢)j

 Link the mean to the covariates
g(/ui) = F('xi)



The GBM algorithm
With b'(F©) =3, for¢t=1,...,T update F as

) (1) y=b'(F g ©9),
F"Y(x)« F (x)+ltEW£ S FO ) ‘x]

w(x) = b"(F'(x))

Proposition 7The GBM algorithm is a Newton
method, with learning schedule A,, for
maximizing a canonical exponential family
regression model.



GBMIII
encompasses a large set of standard

statistical models,

allows for non-linear predictors (prediction

bias-reduction),

trees work well for high-dimensional

feature extraction,

can incorporate ro

bust regression, and

reduces variance t

hrough a “bagging™ step.



Alternate paths

F(x) « FO(x)+ AE, (2(y, x)|x)

* Sub-sample a fraction of the data at each
step when computing the expectation.

« “Robustify” the expectation.

* Trim observations with small weights.



Survival prediction

* Exponential survival model
t. ~ Exp (ZeF(x"))

e Cox model




Gradient ascent

* Consider maximizing the N dimensional
function

log PI(F) = i@[ﬂ —logzj[(fj 2 ti)eFj]
i=1

» The gradient gives the direction of the
largest (local) increase 1n log PL.

0

=——l]oo PI(F
g, oF g PL(F)



Compress the gradient

* Optimization would have us modify F’ as
F-(H_l) :F(t) +pg

* Approximate the gradient using x.
N
: ) 2
arg min Z(gi -~ fOx)
i=1

* Modify F’as
F'"(x)=F"(x)+p f(x)



Hlustration

F(x)

Y

‘ ‘A

Initial FO(x)




Computing the step size

F(x)=F"(x)+p- [ (x)

e Choose p to maximize log PL.

N
>5[ F o)+ pr () —log s, 1, > 1) ]

=1

* This 1s just a linear Cox model!



Boosted Cox model

Initialize FO(x)=0and fortin1to T

1. Compute the working response

0
log PL(F
oF g PL(F)

2. Predict g from the covariates, x.
3. Fit a Cox model of the form
(2,0) ~ offse F” (x))+ pf  (x)

4. The new regression function 1s
F'"(x)=F"(x)+ " (x)

g =



Performance
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Main effects
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Discussion

Exponential family models

Bias reduction - non-linear fitting
Massive datasets - bagging, trimming
Variance reduction - bagging
Interpretability - additive models
High-dimensional regression - trees

Robust regression



Detail slides



AdaBoost

Freund & Schapire 1996

(X,Y); where Y.€ {0,1}, W = L

! Y

« With weights, fit the model H(x;) : X° [0,1].

» Compute the error ¢ => w|y, - H,(x,)
i=1

* Reweight
(t+1) _ o (0) pl=lyi—H, (x) _ 5
Wi = W IBt ‘ ‘ IBt i
1-¢,
Lastly, predict r
| D (og-)H,(x)
H(x) = r(x) ==

T T
[ B D (og 1)
t=1 =



LogitBoost performance
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Learning rate
G. Ridgeway, D. Madigan, T. Richardson [in progress]

« Aggressive maximization causes overfitting.

* Slow down the “learning” rate, A€(0,1).

F(x)(—F(x)Jr/ltEW[ y = p(x) xj
p(x)(1=p(x))

» Related to Copas’ proportional shrinkage
Y+ K(x)—Y)



nu

LogitBoost performance
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Bagging stage
F(xy, xp) =1 ()t (xy)

Bagging fraction vs. Validation log-likelihood
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Log-likelihood, bagged=0.1
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F1(x1)

Interpretation

T
0.0 0.2 0.4 0.6 0.8 1.0

F2(x2)

I
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Censored exponential regression

7 - survival time, o - death indicator

U(F|8,7) = 8(log T+ F(x))— e

b(F) — elogz'+F(x), a(¢) _ 1
o)

F(x)

F(x)« F(x)+ /LEM{
Te

1

xj , w(x)=re"



Results for
primary biliary cirrhosis

 GBM for survival time given treatment, sex,
age, and clinical measurements.

* 310 observations, split in half for model
fitting and model validation

* Compared with linear censored exponential
regression

* 10 replicates, 3 learning rates, using
regression stumps



Difference in deviance

PBC Results
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PBC Results

Difference in deviance
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