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Density estimation

We observe a dataset of n iid d-dimensional
observations, z1, ..., xn drawn from an unknown
density f(x).

The problem is to produce an estimate, f(z), of
f(x) from the dataset alone.

We can assess the quality of the estimate using the
expected log-likelihood

J(f) = Ezlog f(z).

Indeed the true density, f(x), maximizes J(f).



Data mining and density estimation

e Density estimation is the first step in detecting lumps
(as well as holes) in the data.
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Data mining and density estimation

e Clustering or segmentation often involves
interpreting a mixture density.

e There are currently few reported high-dimensional
density estimators.

e This presentation will also demonstrate the utility and
flexibility of bagging and boosting variations for
creating practical algorithms for modeling massive
datasets.



With training data

We do not know f(x) but we can approximate.

e (Generalization error

J(f) = Eglog f(z) ~

e Training error
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J(f) = Z og f(xz;)
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Without constraints, the f(x) that maximizes the training
error puts point mass on the observed x;.



Boosting for classification and regression

The general boosting strategy says

1. Initialize f(z) = c where ¢ minimizes J(c).

2. Find an improvement, g(z), to f(z) such that

J(f+9) < I(f).

3. Adjust the predictor using a line search in the
direction of g(x).

f(z) « f(z) + Ag(a)



Relationship to boosting

Although we are dealing with density estimation, the
problem is akin to previous applications of boosting.

e There is a functional measuring generalization error
or model fit, J.

e We want to find a function that maximizes (or
minimizes) the objective function, J.

e We cannot compute J explicitly but can only
approximate it with our sample.



An algorithm for boosted density estimation

1. Let f(«) be an initial, naive guess for the density.
For example

f(x) = p(z; %, S)
where x is the sample mean and S is an estimate of
the covariance.

2. Mix f(z) with another density, g(«), so that

J(1—a)f+ag) > J(f)

The multivariate uniform and normal might be good
candidates for g(x).

3. Update the density estimate.
f(@) « (1 - a)f(z) + ag(z)



Selecting a normal proposal

Find a normal density o(x; 1, 32), so that

J((1 = a)f + ap) > J(f)

The normal requires O(d?) parameters but finding them
can be fast and easy to program.

At each iteration assume that each x; either comes from

o f(z) with probability (1 — ) or from

o o(x; 1, X) with probability «.

This is the setting for a two component mixture model
(except one component is fixed). The EM algorithm can
find a good choice for (i, X2, ).



Likelihood optimization using EM

e Initialize (i, X2, ).

— u = randomly sampled z;
— 2 = S, the sample covariance
- a=0.2

e E-step

(1 — ) f(z) + ap(z; p, 3)

Pi

e M-step: Find (u, X2, o) that maximize the expected
complete data log-likelihood.
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The algorithm

Set f(z) = ¢(z; 7, S)
While stopping criterion is not satisfied

{

1. Initialize the EM algorithm
a = 0.2,
1 = randomly selected x;,
>} = sample covariance of the x;’s

2. lterate the EM algorithm to convergence

v (1=a) f(z)Fap(z;p,3)
b) u© = weighted mean of the z;’s

v
>} = weighted covariance of the z;’s
« = mean of the p;’s

3. Update the density estimate as
f(z) < (1 —a)f(z) + ap(z; 1, X).



Stochastic boosting

Variance reduction and automatic stopping

e Sending 50% of the observations to the EM
algorithm helps to reduce overfitting.

e It also preserves a set of observations useful in
determining whether the proposed addition actually
offers an improvement.

With the data not used by the EM algorithm compute
AT =) log((1—a)f(z:)+ apziu, X)) —log fx;)

icout-of-bag

=Y log <(1 —a) + aw(xf;g’z))
ieout-of-bag f (i)




Out-of-bag gradient and generalization error
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Example 1: Old faithful data

Scott (1992) presents data on the duration of 107
eruptions of the Old Faithful geyser.
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Density J(F)
Unbiased cross-validation -1.01
Boosted density estimate  -1.07




Example 2: Simulated mixture distributions

e Multivariate normal, N = 100, 000, d = 20, mixture
of 5 equally weighted normal components with
similar location but random covariance.

Density J(f)
Knowing true structure -88.40
Boosted density estimate -89.01

e Multivariate uniform, N = 100, 000, d = 20,
mixture of 5 equally weighted components. Each
component was a random box in [0, 1]2C.

Density J(F)

True density 28.5
Boosted density estimate  23.9




Projection of the multivariate uniform
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95% contours ordered by when they entered the mixture.
The first component’s contour is outside of the picture.



Some interesting algorithmic features

e Point mass proposals

— The first several iterations capture the largest
lumps.

— At some point the EM algorithm starts proposing
point masses.

— | rejected the proposal when the smallest
eigenvalue became too close to machine
precision.

e Slowing the learning rate

— Surprisingly, shrinking o toward 0 seemed to
decrease the algorithm’s performance.



Data mining applications

e Density estimates reveal lumps in the dataset. Few
tools exist for density estimation in dimensions
greater than 4.

e Sending a subsample to the EM algorithm eases
computation.

— It reduces the size of the dataset for the
especially intensive calculations.

— We could use an even smaller, stratified sample.
e Substitute the multivariate normal with a multivariate

uniform to get more interpretable, box shaped
regions.



