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Outline

• Boosting and the Generalized Boosted Model

• Public policy examples

– Causal modeling: Effectiveness of drug
treatment programs. Adjust treatment effect
estimates for selection bias

– Least squares: Cost of rehabilitation. Predict
rehabilitation cost from patient functional status
and diagnosis

– Classification: High school dropouts. Estimate
risk of high school dropout at age 13
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Gradient Boosting: Least squares regression

J(f) = E (y − f(x))2

≈ 1
N

N∑
i=1

(yi − f(xi))
2

Find a g that offers a decrease in squared error.

Ĵ(f̂ + g) =
1
N

N∑
i=1

(
yi −

(
f̂(xi) + g(xi)

))2

Clearly this shows that g(xi) should be a least squares

predictor of the residual zi = yi − f̂(xi).
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Gradient Boosting: Least squares regression

1. Initialize f̂(x) = ȳ.

2. Let zi = yi − f̂(xi).

3. Construct a least squares predictor of the residuals,
g(x) using a tree-structured regressor

4. Update our guess as

f̂(x)← f̂(x) + g(x)

5. Return to step (2) for T iterations
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LogitBoost: Logistic regression

1. Initialize f̂(x) = log ȳ
1−ȳ

2. Let zi = yi − 1

1−exp(−f̂(xi))

3. Construct a tree structured predictor of zi

4. The tree assigns each observation to a terminal node
g(Tk) = arg maxλ

∑
i∈Tk

L(yi, f̂(xi) + λ)

5. Update our guess as

f̂(x)← f̂(x) + g(x)

6. Return to step (2) for T iterations
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LogitBoost: Logistic regression

1. Initialize f̂(x) = log ȳ
1−ȳ

2. Let zi = yi − 1

1−exp(−f̂(xi))

3. Construct a tree structured predictor of zi

4. The tree assigns each observation to a terminal node
g(Tk) = arg maxλ

∑
i∈Tk

yi(f̂(xi) + λ)− log
(
1 + exp(f̂(xi) + λ)

)
5. Update our guess as

f̂(x)← f̂(x) + g(x)

6. Return to step (2) for T iterations
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Advantages

1. Boosting has a straightforward application to most
prediction problems and loss functions

2. Trees handle continuous, nominal, ordinal, and
missing x’s

3. Invariant to one-to-one transformations of the x’s

4. Model higher interaction terms with more complex
regression trees

5. Use low variance models on each iteration: shrinkage,
subsampling, bagging

6. Automate the selection of the number of iterations:
out-of-bag estimation
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Example: Effect of drug treatment

• The treatment assign-
ments are non-random

• We want to estimate
treatment effect

• We can reweight the
individuals from the
other facility to look
like those from the
Phoenix house

Phoenix house Other facility

Offenders

Committee

Treatment
assignment 

Outcomes

Phoenix house Other facility

Offenders

Committee

Treatment
assignment 

Outcomes
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Drug treatment: Propensity scores

• Each individual has a yc and a yt, the outcome that
would happen if they went to the control or
treatment facility

E(yt|t) ≈
∑

i∈T yti

NT

E(yc|t) =
∫∫

ycf(yc, x|t) dx dyc
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Drug treatment: Propensity scores

• Each individual has a yc and a yt, the outcome that
would happen if they went to the control or
treatment facility

E(yc|t) =
∫∫

ycf(yc, x|t) dx dyc

=
∫∫

yc
f(yc, x|t)
f(yc, x|c)

f(yc, x|c) dx dyc
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Drug treatment: Propensity scores

• Each individual has a yc and a yt, the outcome that
would happen if they went to the control or
treatment facility

E(yc|t) =
f(c)
f(t)

∫∫
yc

f(t|x)
1− f(t|x)

f(yc, x|c) dx dyc

≈
∑

i∈C wiyci∑
i∈C wi
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Summary of the method

E(yt|t) ≈
∑

i∈T yti

NT
,E(yc|t) ≈

∑
i∈C wiyci∑

i∈C wi

• wi = pi

1−pi
, and pi is the probability that subject i

goes to the treatment group

• Derivation requires that treatment assignments
depend only on x

• x is high-dimensional (56) and we use the boosted
logistic regression method to estimate the
probabilities
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Algorithm progression
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SUFI
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Estimating the optimal number of iterations
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Relative influence
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Marginal effects
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Balance of subject features

weighted unweighted
treatment control control

Variable mean mean mean t
treatment motivation 2.52 2.22 1.35 1.84
environmental risk 30.61 30.68 28.94 -0.07
substance abuse 76.85 67.59 43.34 1.16
complex behavior 12.84 12.77 12.11 0.07
age 15.82 15.77 15.31 0.45
l5a124 0.62 0.55 0.38 1.13
withdrawal index 2.42 2.34 2.27 0.75
days in detention 44.37 52.37 54.11 -0.74
substance problem 9.91 9.26 6.64 1.27
age of first use 12.55 12.27 11.97 1.04
ESS 175 106 274
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Results
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Example: Prospective payment system

Balanced Budget Act of 1997

• Centers for Medicare & Medicaid Services (CMS) must
implement a Prospective Payment System for inpatient
rehabilitation

• The system should be based on a new severity-level
classification of cases

Medicare data from 1996-1999

• hospital reported costs,

• patient disease and functional status data,

• hospital level data,

• and modeled the cost to rehabilitate patients.
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Patients seek rehabilitation for an assortment
of impairments
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Payment system model

The prospective payment system has the form

paymentij = M ×Fj ×w(agei,motori, cognitivei)× ci × ai

• w is the main focus of this discussion

• M is a fixed budget normalizing constant

• Fj is a facility level adjustment for wages

• ci is an adjustment for comorbidities

• ai is an adjustment for transfer and outlier cases
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CART costs predictions
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Boosting cost predictions
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Aggregate Performance
of the Various Methods, R2

Fit Evaluation CART
Year Year Const Max 1 SE GAM GBM
96 97 0.16 0.35 0.34 0.36 0.36

98 0.15 0.33 0.33 0.35 0.35
99 0.15 0.32 0.32 0.33 0.33

97 96 0.17 0.36 0.35 0.37 0.37
98 0.15 0.34 0.33 0.35 0.35
99 0.15 0.32 0.32 0.34 0.34

98 96 0.17 0.36 0.35 0.37 0.37
97 0.16 0.35 0.34 0.36 0.36
99 0.15 0.33 0.32 0.34 0.34

99 96 0.17 0.36 0.35 0.37 0.37
97 0.16 0.35 0.34 0.36 0.36
98 0.15 0.34 0.33 0.35 0.35

96-97 98 0.15 0.34 0.33 0.35 0.35
99 0.15 0.33 0.32 0.34 0.34

98-99 96 0.17 0.36 0.36 0.37 0.37
97 0.16 0.35 0.35 0.36 0.36
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Explainable Variation for Stroke
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Explainable Variation for Burns
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CART and Boosting Pay Hospitals Similarly

Hospital Percent of Hospitals
Payment (Case Weighted)

Ratio 1996 1997 1998 1999
90 0.0 0.0 0.0 0.0
94 0.1 0.0 0.0 0.0
95 0.0 0.0 0.2 0.1
96 0.4 0.3 0.3 1.1
97 2.5 2.5 2.4 2.1
98 11.6 9.8 11.9 8.0
99 21.6 25.8 21.8 24.6

100 28.9 28.4 30.9 29.7
101 22.3 22.0 21.5 24.3
102 9.7 8.3 8.3 7.0
103 1.9 2.7 2.2 2.4
104 0.8 0.2 0.5 0.6
105 0.1 0.1 0.1 0.2
106 0.2 0.0 0.0 0.0
107 0.0 0.0 0.0 0.0

Total 100.0 100.0 100.0 100.0
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Summary

• Boosting methods offer flexible modeling strategies
when faced with

– many features,

– features of different types,

– redundant features

• Such situations are the norm in public policy
applications

• Public policy is a ripe area for data mining
applications
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