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Outline

e Boosting and the Generalized Boosted Model
e Public policy examples

— Causal modeling: Effectiveness of drug
treatment programs. Adjust treatment effect
estimates for selection bias

— Least squares: Cost of rehabilitation. Predict
rehabilitation cost from patient functional status
and diagnosis

— Classification: High school dropouts. Estimate
risk of high school dropout at age 13



Gradient Boosting: Least squares regression

J(f) = E(y- f(x)’
~ N — (y

Find a g that offers a decrease in squared error.
A 2
J(f - N Z (Zh ( Xz + g(Xz)))

Clearly this shows that g(x;) should be a least squares
predictor of the residual z; = y; — f(x;).



Gradient Boosting: Least squares regression

1. Initialize f(x) = 7.

2. Let 2y = Yi — f(XZ)

3. Construct a least squares predictor of the residuals,
g(x) using a tree-structured regressor

4. Update our guess as

fx) = F(x) +9(x)

5. Return to step (2) for T iterations



LogitBoost: Logistic regression

. Initialize f(x) = log 1%_@

. 1
B e o)

. Construct a tree structured predictor of z;

. The tree assigns each observation to a terminal node
9(Ty) = argmaxy >, cp L(ys, fx)+N)

. Update our guess as

f(x) = f(x) +9(x)

. Return to step (2) for T iterations



LogitBoost: Logistic regression

_ Initialize f(x) = log %

N SR
Lotz =y — T e)

. Construct a tree structured predictor of z;

. The tree assigns each observation to a terminal node
9(Ty) = argmaxs Xieq, vi(f(xi) + ) — log (1 -+ exp(f(x:) + )

. Update our guess as

F(x) = f(x) +g(x)

. Return to step (2) for T iterations



Advantages
. Boosting has a straightforward application to most
prediction problems and loss functions

. Trees handle continuous, nominal, ordinal, and
missing z's

. Invariant to one-to-one transformations of the x's

. Model higher interaction terms with more complex
regression trees

. Use low variance models on each iteration: shrinkage,
subsampling, bagging

. Automate the selection of the number of iterations:
out-of-bag estimation



Example: Effect of drug treatment
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Drug treatment: Propensity scores

e Each individual has a y. and a y;, the outcome that
would happen if they went to the control or
treatment facility

ZieT Yti

E(yt) ~ Ny

E(yelt) = // o f (e 2|t) daz g



Drug treatment: Propensity scores

e Each individual has a y. and a y;, the outcome that
would happen if they went to the control or
treatment facility
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Drug treatment: Propensity scores

Each individual has a y. and a y;, the outcome that
would happen if they went to the control or
treatment facility

Elt) = 29 L S _ i ale) do dye

FON 71— f(tlz)
Ziec WiYci

Yiec Wi



Summary of the method

E(ylt) ~ 2520 Byot) v Sgec i

° w; = lf’p and p; is the probability that subject

goes to the treatment group

e Derivation requires that treatment assignments
depend only on x

e 1z is high-dimensional (56) and we use the boosted
logistic regression method to estimate the
probabilities



Algorithm progression
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Estimating the optimal number of iterations
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Relative influence
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Log odds
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Balance of subject features

weighted  unweighted

treatment control control
Variable mean mean mean t
treatment motivation 2.52 2.22 1.35 1.84
environmental risk 30.61 30.68 28.94 -0.07
substance abuse 76.85 67.59 43.34 1.16
complex behavior 12.84 12.77 12.11  0.07
age 15.82 15.77 1531 0.45
152124 0.62 0.55 038 1.13
withdrawal index 2.42 2.34 227 0.75
days in detention 44.37 52.37 5411 -0.74
substance problem 9.91 9.26 6.64 1.27
age of first use 12.55 12.27 1197 1.04

ESS 175 106 274




Results
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Example: Prospective payment system

Balanced Budget Act of 1997

e Centers for Medicare & Medicaid Services (CMS) must
implement a Prospective Payment System for inpatient
rehabilitation

e The system should be based on a new severity-level
classification of cases

Medicare data from 1996-1999

e hospital reported costs,
e patient disease and functional status data,
e hospital level data,

e and modeled the cost to rehabilitate patients.



Patients seek rehabilitation for an assortment
of impairments
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Payment system model

The prospective payment system has the form

payment,; = M x F; x w(age;, motor;, cognitive;) X ¢; X a;

e w is the main focus of this discussion

e M is a fixed budget normalizing constant

F} is a facility level adjustment for wages

e ¢; is an adjustment for comorbidities

a; is an adjustment for transfer and outlier cases



CART costs predictions
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Boosting cost predictions
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Aggregate Performance
of the Various Methods, R?

Fit Evaluation CART
Year  Year Const | Max 1SE | GAM GBM
96 97 0.16 | 0.35 0.34| 036 0.36
98 0.15] 033 033| 035 0.35
99 0.15] 032 032] 033 033
97 96 0.17 | 036 035| 037 037
98 0.15| 034 033| 035 0.35
99 0.15| 032 032| 034 034
98 96 0.17 |1 036 035| 037 037
97 0.16 | 0.35 034 | 036 0.36
99 0.15| 033 032| 034 034
99 96 0.17 | 036 035| 037 037
97 0.16 | 0.35 0.34| 036 0.36
98 0.15| 034 033| 035 0.35
96-97 98 0.15| 034 033| 035 035
99 0.15| 033 032| 034 034
98-99 96 0.17 | 036 036 | 037 037
97 0.16 | 0.35 035| 036 0.36




Explainable Variation for Stroke
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Explainable Variation for Burns
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CART and Boosting Pay Hospitals Similarly

Hospital Percent of Hospitals
Payment (Case Weighted)
Ratio | 1996 1997 1998 1999
90 0.0 0.0 0.0 0.0
94 0.1 0.0 0.0 0.0
95 0.0 0.0 0.2 0.1
96 0.4 0.3 0.3 1.1
97 213 2.5 2.4 2.1
98 | 11.6 98 119 8.0
99 | 216 258 218 246
100 | 289 284 309 29.7
101 | 223 22.0 215 243




Summary

e Boosting methods offer flexible modeling strategies
when faced with
— many features,
— features of different types,
— redundant features

e Such situations are the norm in public policy
applications

e Public policy is a ripe area for data mining
applications



