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2 Introduction to the prediction problem

Many data mining problems depend on the construction of models, equations, or
machines that are able to predict future outcomes. Although prediction is an
important component of data mining, the abundance of methods such as linear
models, neural networks, decision trees, and support vector machines can make a
seemingly simple prediction problem rather confusing. Other chapters in this
volume focus on particular methods. In this chapter we will briefly assehdsde t
ideas into a common framework within which we can begin to understand how all
these methods relate to one another.

In many applications we are not only interested in having accurate pedlirt

the future but also in learning the relationship between the features of an
observation and the outcomes. For example, we will consider an example of
predicting at age 12 which students are likely to drop out of high school before
age 18. Certainly we wish to have an accurate assessment of dropout risk, but we
also wish to enumerate those factors that place certain students et gs&at
Understanding the mechanism relating the student features to the outcome helps
formulate rules-of-thumb for identifying at-risk students and interventions
targeting those students. Whether our goal is prediction alone or understanding
the underlying mechanism or both, a well-structured and well-estimated
prediction model is the first step in the process.

In this chapter, we introduce the basics of prediction problems. We offer
strategies on how to relate the choice of prediction method to applications and
describe several of the frequently used prediction methods. This is far from a
complete catalog of available tools and strategies but rather, like tiu tieis
handbook, it represents a starting place from which the reader could springboard
into other, more technical developments of the methods. After reading this
chapter the data miner will know the fundamental prediction concepts and be able
to think critically and creatively about solving specific prediction problems.

Throughout this chapter we will use the following notation. Generically we have a
dataset containinly observationsy, x;) wherei = 1, ...,N. These observations

come from some unknown process, generating mechanism, or probability
distribution. The features;, often referred to as covariates, independent
variables, or inputs, may be a vector containing a mix of continuous, ordinal, and
nominal values. We wish to construct our prediction model, denotgat)aso

that it predicts the outcomg, also called the response, the output, or the target,
from the features.



2.1 Guiding examples

This chapter will focus on three examples to help explain the concepts and
techniques. The applications generally focus on public policy issues but the same
methods apply to problems spanning the scientific domains.

2.1.1 Regression: Cost of stroke rehabilitation

Regression problems (some engineering literature refers to thestnaation
problems) involve the prediction of continuous outcomes. In 1997 the Balanced
Budget Act mandated that the Centers for Medicare and Medicare Services
(CMS) develop a prospective payment system for inpatient rehabilitation
facilities. This system would determine how to allocate a $4.3 billion budget to
facilities that provide care for individuals covered under Medicare, the United
States’ federal healthcare system for the elderly and disabled. Baat of
development involved building a cost model that predicts cost of rehabilitation
from patient features. From CMS billing records we obtained each paaget’s
reason for the stay (stroke, hip fracture, etc.), and cost of care. From secondary
sources we obtained functional ability scores that measured the patiers’ mot
and cognitive abilities. The prediction problem involves developing a model so
that for any future patient we can accurately predict cost of rehabiittiim the
patient’s features for accurate hospital reimbursement.

2.1.2 Classification: Detecting high school dropouts

The National Education and Longitudinal Study of 1988 (NELS:88) is an
extensive data source surveying the attitudes and behaviors of a nationally
representative sample of American adolescents. NELS:88 first surveyed it
respondents as eighth graders and has conducted three waves of follow-up
measures in 1990, 1992, and 1994. Student, family, and school level measures are
included in each wave of the survey. Offering multiple item indicators of
student’s goals, ability, past achievement, and involvement in school, NELS:88
also includes detailed data on parenting style, parent/child behavior and
interactions, religion, race/ethnicity, parents’ occupation(s) and incoarsy al

with numerous other measures of family background. The strengths of this data
set result from its large number of cases (over 15,000 students in this chapter’s
analyses), its comprehensiveness (measuring over 6000 variables), and its
longitudinal design (allowing temporal as well as cross-sectionalseslyThe
examples will utilize data from the first three survey waves, amajyzi

information from the baseline grade 8 data to predict failure to complete high
school.



2.1.3 Survival: Survival time of PBC patients

To show the breadth of loss functions available for consideration and the
flexibility of prediction methods we include a clinical trial example hiis t

example the problem is to estimate survival time of patients suffering from
primary biliary cirrhosis of the liver (PBC). Although analyses usingigal

models predict time until death or time in remission for medical treatmenéstudi
the models are applicable outside the domain of medicine. Applications also
include time until failure of a machine or part, time until a customer churns by
abandoning their current telecommunication provider for a competitor, and time
between when a gun is purchased and when it is confiscated or recovered at a
crime scene.

2.2 Prediction model components

Prediction methods may differ in three main ways:dtsefunction or

performance measure that it seeks to optimizesttietural form of the model,

and the manner of obtaining mogbalrameter estimates from training data. When
considering a new or unfamiliar method, understanding these three basic
components can go a long way toward realizing its limitations and advantages.
Several methods may have the same structural form but differ on performance
measures or scalability due to differences in how we estimate or leanotied

from data. We will see that three established classification methods Bajes,
logistic regression, and linear discriminant analysis, all have exhetlseime
structural form but differ on the loss function and parameter estimation method.
In addition, the chapter on tree models in this handbook discusses models that all
share the tree structure but may have different methods of forming splits and
estimating the number of terminal nodes from the available data.

The next section discusses the most popular loss functions in use in statistics,
machine learning, and data mining practice. Following that we give a concise
catalog of some of the structural forms used in practice. Even afteirsgkedbss
function and a structural form for our predictor, the main problem facing data
miners today is getting those models fit to massive datasets. We witieainon

the scalability issue as it arises but it continues to be an active arsaafteand
progress. Some accurate methods that were assumed to be not scalable to large
datasets now have been tuned and optimized for practical use.

3 Loss functions — what we are trying to accomplish
When developing a prediction model we usually have some performance measure

that we want our model to optimize. Thuss function is a function that takes as
input a prediction model and produces a single number that indicates how well



that prediction model performs. This section reviews some of the most commonly
used loss functions. The notatid(f ) indicates the loss functichevaluated for
prediction modetf.

3.1.1 Common regression loss functions

For regression problems the most widely used loss function is squared prediction
error, which is the expected squared difference between the true value and the
predicted value

I(F)=E,, (y-f(x)° (1)

where theE x represents the expectation operator that averagesall {/, x)

pairs drawn from some common distribution. By miizimg (1) we assure
ourselves that, on average, new predictions willagotoo far from the true
outcome. The properties of expectation indicaté ttef (x) that minimizes (1) is
f (X) = E(y[x), the average outcome at each value. dthe probability distribution
that generates thg, (k) pairs is unknown and so we cannot compute (Ectly.
Instead we rely on a sample based estimate

3= - F) @

Remember that it is almoalkways (1) that we really want to minimize but resort
to (2) to guide us to a solution. There are migx)ythat can make (2) arbitrarily
small but usually only one that minimizes (1). Thedel fitting process will find
anf that minimizes (2) subject to some constraintgoatructural form. An
unbiased evaluation of the performance of a pdsiathoice forf requires a
separate test dataset or some form of cross-viaidathe chapter on
performance analysis and evaluation in this voldesribes this process in more
detail.

Although squared error loss is the dominant losstion in most applied
regression work, decades of work on robustness tawv®nstrated that squared
error is highly sensitive to outliers, unusuallyge outcomes potentially from
data contamination and spurious measurements. étesoptediction error

J(F)=E, ly-f(x)] 3)
has its minimum wheh(x) = mediany|x), the median outcome at each value of

x. For data mining applications prone to contamorathe absolute prediction
error may be preferable.



Other regression loss functions use variationderabove theme. For example,
Huber (1964) proposed a loss function that behbkesquared-error near 0 and
like absolute error whey—f (x) exceeds some cutoff, providing some protection
against extremg values. Support vector machine regression metbaisnonly
use a loss function that is zero whenf (x) is less than some cutoff and then
behaves like absolute error for deviations grethim the cutoff. At this point,
simply note that there is considerable flexibilityterms of specifying what it
means to have a prediction be “close” to the taleerand that the different
choices result in different prediction models. Tinglications will follow shortly

in some examples.

3.1.2 Common classification loss functions

While regression problems focus on predicting cardus outcomes,
classification methods attempt to label observatias one dk categories. The
most common loss functions used in classificatimbjems include
misclassification rate, expected cost, and loghhk®d. Misclassification rates
are generally the primary measure on which methoel€ompared. In fact, it is
generally what problem solvers are aiming to migenivhen considering a
particular classification problem. In almost albplems, however, a false positive
has a different cost than a false negative. Higjoskcdropouts are thought to cost
twenty times more than graduates in terms of salcoetsts. The false negatives in
this case are the more expensive mistakecdle¢ the cost of misclassifying a
true O case anti be the cost of misclassifying a 1 case. For adlass
classification problem our classifiér(x), predicts values 0 or 1. Then the
expected cost is

J(F) =EE, Gl (y=0)f(x) +c, I (y =D~ f(x))
= ECo A= P(y=1|x)) f(x) +¢,P(y =1|x)(1 - f(x)) (4)

where [) is the indicator function that is 1 if the exm®es is true and 0
otherwise. Minimizing the expression pointwise atlex we see that ideallfy(x)
should equal 0 wheneveg(1 —P(y = 1k)) > c;P(y = 1k). Equivalently, the best
classifier is

f0 :{O if P(y=1|x)<c,/(c,+c,) )

1 otherwise

We actually do not need an estimatd>0f = 1K) in order to obtain a good
decision rule. It is sufficient to have a methodttletermines which side of
co/(cotcy) the probability would fall. In fact, some exceiteclassifiers produce
poor estimates d?(y = 1k). Note that ifcy = 1 andc; = 20, as in the high school



dropout problem, then any student with a dropoabgbility exceeding 0.047
needs special attention.

Although many classification methods advertiserthbility to obtain low
misclassification costs, many classification praged minimize cost indirectly.
Classification trees are among the few procedinasdirectly aim to minimize
cost. Many other procedures aim for good estimait€®y = 1K), which (5) as
previously mentioned shows is sufficient but natessary for developing a
decision rule for any choice fas andc;. In some settings a probabilistic
prediction itself is necessary to have a complsteassessment.

The likelihood principle, studied in detail in Bergand Wolpert (1984), implies
that any inference about parameters of interesildldepend on the data only
through the likelihood function, the probabilityattthe model would generate the
observed data. So while (4) is the loss functiomimimizing misclassification
cost, when seeking good probability estimatesHerttvo-class classification
problem we should look to thgernoulli likelihood,

L(p) = ” p(x)* Q- p(x;))"™ (6)

wherep(x) = P(y = 1K) and is what we want to estimate and study. Wil¢o
this point we have usd(k) to denote the prediction model that we are tryog
estimate, here we up€x) to remind ourselves that it is a probability andst be
on the interval [0,1]. Many statistical proceduaes based on estimatespgx)
that maximize the likelihood, intuitively thEx) that makes the observed data
most likely. While before we discussed findiifg) to minimize a loss function,
here the goal is to find@x) to maximize a likelihood. The log-likelihood iset
more commonly used form of this loss function aghin, we are not simply
interested in maximizing it for our finite sampletln expectation over a new
observation drawn from the same distribution tleategated our dataset.

J(p)=E,,logL(p)

=E,, [ylog p(x) + (1- y) log(L— p(x)] @

We will see in section 4.2 that logistic regresgoocedures are based on
maximum likelihood estimates op(x).

The Bernoulli log-likelihood naturally extends taihiclass classification via the
multinomial log-likelihood,



E,«L(Pws Pyye-os Pe) = Ey 1 (Y =K)log p(X;) (8)

wherepy(x) = P(y =k | x) and thgx(x) sum to 1. With this loss function we will
seekk functions, each of which estimates one of thesgtaebabilities. Also,
ordinal regression methods are available when telasses are ordered as in
preference rating scales.

Using the Bernoulli log-likelihood as a loss fulctifocuses on obtaining good
probability estimates but it is unclear what “goedéans in this context.
Meteorologists especially have been studying ateymabability assessments,
decomposing prediction accuracy into discriminatod calibration components.
Discrimination, which generally gets the most ditam is the ability to separate
the classes while calibration is the ability toiggsneaningful probabilities to
events. When we are dealing with a binary outcome ¢ither 0 or 1) the Brier
score (Brier 1950) shown in (9) offers an interggtassessment of probabilistic
assignments.

J(p) = By, (y= p(x))* (9)

The Brier score is small when our probability estienis small angt = 0 and
when our probability estimate is near 1 when it yae 1. Clearly the Brier score
is minimized when we have perfect forecasts. YEt682) discusses thdurphy
decomposition of the empirical Brier score exposing differenpexts of
prediction quality.

LS (= P )2 = YA 9) = S 0 (T = )2+ = > 0 (py - V)2
N 4 N = N (10)

= uncontrollable variation + resolutidrtalibration

The first term is the variance of the outcomes lbmly small when thg’s are all

0 or all 1, something over which we have no conffble variance term also
represents the best we can do. In the second e tepresents the number of
observations that are given the probabilistic ol py and y, is the average of

the outcomes given the predictipn Thisresolution term is large (very negative)
when we are able to discriminate the 0 outcomes tie 1s. In that situation the
average outcome given predictipnis far from the baseline rate, near 0 or 1. The
last term measureaslibration, the ability to assign meaningful probabilitieghe
outcomes.

To understand calibration let us again turn tohtigéa school dropout problem.
Assume we have a probabilistic prediction modehetv set of students arrives



on which we assess the dropout risk. If the moglelell calibrated then among
the collection of students to which the model asstba dropout probability of,

for example, 0.3, 30% would actually dropout. Feggirshows a smoothed
calibration plot for a boosted classification mogsgction 5.6) for the high school
dropout example. The 45° line is the perfectlylaralied predictor. The tick marks
along the bottom of the figure mark the decilethefestimated probabilities,
most of which are below 0.1. Note that for all #tedents with an estimated
dropout probability around 0.3, 36% of them actudhopped out.
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Figure 1: Calibration plot for the high school doop example

We learn from the Murphy decomposition that wherasoeing classification
performance with the Brier score that both disanemionand calibration are
important. In practice we will have to decide whattributes are most important
for the problem at hand. Good classification accyiedone at times may be
insufficient.

Classification is conceptually quite simple. We wianput the right labels on
observations. But that conceptual simplicity is @asily translated into a loss
function without additional information on the geale seek. Choosing to
minimize cost or opting to go for the best prohab#stimates leads to different
choices for loss functions and, therefore, preaiictnethods. One of the early
strategic steps in a classification problem isrde§ the goals and usually that
translates into a natural choice for the loss fionct



So far we have presented three candidates fooseflinction but others have
been proposed. Figure 2 shows the similaritiesdsfiferences among the various
classification loss functions. First consider relaiy the two classes as -1 and 1,
y = Yfy+1), which simplifies the comparison. Therefore ewki f(x) is positive
the observation is correctly classified. The cualeeledM in Figure 2 reflects
this. Note that all of the loss functions are baifat the misclassification loss
function. Also shown in bolder lines are the lasscdtions for support vector
machines (section 5.5) and AdaBoost (section 51&.different loss functions
determine how much we penalize our predictor fotade mistakes. The Brier
score strongly penalizes mistakes but is the @dy function that also penalizes
overconfidence in predictions, indicated by thewipg in the Brier loss for

yf(x) > 1.

1 B Brier score

E(Yf (x) -1)?

A AdaBoost
EexpCyf (X))
SVM

E max(01- yf (x))

L ogistic

Loss
G

o Al Elogl+e™™)

-1.0 05 0.0 05 1.0 15 2.0 Misclassification
yf(x)
E1(yf(x)<0)

Figure 2: Classification loss functions
3.1.3 Cox loss function for survival data

The last specific loss function discussed herdtenaised for survival data. We
include it here partially for those interestedifatime data but also to
demonstrate creative developments of loss functammspecific problems.
Survival analysis continues to be a thriving arehiostatistics and this section
focuses on a small part, the Cox modelgiaportional hazards regression.

For each observation we observe the subject featqréhe time the subject was
last observed;, and a 0/1 indicator whether the subject failetiha¢ t;, 4. If we
know the exact failure time for all observatiosttisg = 1 for alli, then we can

10



turn to some of the standard loss functions froatice 3.1.1. When we have
many observations that have not failed, such a®ess who have not switched
their long distance carriget, we would lose information if we did not include
these observations in the estimation process. ke s more concrete,
customer A in South Dakota with no previously filemmplaints has used long
distance company X for 100 days and remains a mestorhe observation for
this customer would be

(x = {State=SD, Complaint=0} = 0,t = 100).

Since customer A remains a customer at day 100haey not yet “failed” and so
0 = 0. Customer B, on the other hand, is from N@&#kota, has filed 3
complaints, and on day 65 of service switches Wistance carriers. The
observation record for this customer would be

(x = {State=ND, Complaint=3}¢ = 1,t = 65).

So from a dataset of observatiors, @, t), fori in 1, ...,N, we want to construct
a model to predicactual failure timet; from x;.

The proportional hazards model assumes thdtdreard function, the
instantaneous probability that a subject with festufails in the next small
interval of time given survival up to timeis

h(t,x) = A(t) exp(f (x)) (11)

whereA(t) is the baseline hazard. This model assumeshbattevance of a
particular feature does not change over time. Itae estimaté(x) then we can
determine those indicators that accelerate theofdtelure and those
observations that have an accelerated risk ofr&il@iven that an observation in
the dataset witlN observations failed at tintethe probability that it was
observation is

L(t, =t)A(t")exp(f (x,))
zj”:ll (t, 2t)At)exp(f (x,))

(12)

Conveniently, the baseline hazait), cancels in (12). We can then write down
the likelihood that the first observed failure wbhlave failed at its failure time
and the second observed failure would have fatlés &ilure time and so on.

11



N exp(f (x;)) (13)
El > =) exp(f (x))

If we can find arf (x) that makes th€ox partial likelihood (13) large, this

indicates that (x) can put theN observations approximately in order of when they
will fail. Subsequently we can use thi&) to determine which subjects that have
not failed yet are most at risk of failure in thean future. Even though we do not
know the exact form of the baseline haza(t) we are still able to estimatéx)

using only the order of failure times, rather thia@ actual failure times
themselves. We can then estimatg althoughf (x) is sufficient for identifying
observations that are prone to shorter times loréai

Now that we have a handful of loss functions foemeing predictive
performance, the next section begins a discusgionding the ideaf to optimize
our selected loss function.

4  Linear models

In this section we will begin looking at predictiorodels that have a linear
structure. Although the structure at first may sewive, the development is an
important one. First, these methods have a lortgryiand are still in widespread
use. Second, although apparently simplistic thestoals can perform
particularly well when the data is sparse. Anddhseveral of the most modern
methods build upon the basic linear structure &agdessome of the model
building tools.

4.1 Linear Regression

Section 3.1.1 introduced the squared error losstiimm Now let us restrict the
model to have the form

f(X) =6+ Bx + LBoX ...+ ByXy = BX (14)

whered+1 is the dimension of the feature vectand the first element ofis 1.
Rather than having a completely unspecifi@dl we now only havel+1 model
parameters to estimate. The coefficightrepresents a difference between two
subjects that have the same feature vector exdégtloly 1 unit on feature;.
When fitting linear regression models with a catexgd feature withk levels we
can creat& — 1 0/2dummy variables. If variablex; hask=3 levels then we can fit
the model

12



fOX) =B+ Bul (X =D+ LBl (X =2+ B, %, +...+ By % (15)

Now i1 represents a difference between category 1 sstyed category 3
subjects.

To fit the model we simply select the vector offficgents to minimize the
empirical squared error loss

. 1y . N
ﬂ—arg;mnﬁé(yi B%;) —arg;mnN(y XPB)'(y = XpB) (16)

whereX is theN x d+1 feature matrix ang is a column vector with thid
outcomes. The solution to (16) is

A

B=(XX)"Xy (17)

solvable in a single pass through the datasetr&igf{a) shows the result of a
linear least squares fit to stroke data from 199 jagged curve in the plot is the
average cost at each motor score. In this sim@Eeaple we have enough data at
most values of the motor score to get reasonakbileaes. The line generally
runs through the pointwise averages and showsaenadily less instability for

the sparsely sampled stroke patients with high netores. Theg that minimizes
squared éerror loss is (30251.0, —342.6) and thdtneg average squared error is
5.88 x 10.

Although this choice off minimizes squared error for the 1996 data we would
hope that such a model holds up over time. If weethe model fit to 1996 data to
predict costs for the 1997, 1998, and 1999 datavkeage squared error for those
years is 5.94 x 105.90 x 10, and 6.19 x 10 In general the error on the training
data will be an overoptimistic estimate of the perfance on future observations.

13
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Figure 3: Predicting cost of stroke rehabilitatfoom motor ability score. Least
squares linear fit and the pointwise average fia(a the least absolute
deviations linear fit and the pointwise mediar(lit.

Medical costs are particularly prone to extremesoletions. Modeling the
median rather than the mean offers a more stabtkeindhe minimizer of
absolute error does not have a convenient closed égpression, however,
moderately efficient algorithms do exist (Bloomdieind Steiger, 1983). Figure
3(b) displays the linear model that minimizes abt&prediction error along with
pointwise median estimates that are well appro@chaly the line. Thg that
minimizes average absolute loss is (28014.0, —320a2lucing a linear fit with a
gentler slope than one obtained using the squaredless.

4.2 Classification

In this section we will focus on procedures for Bldssification problems but will
make brief mention of the multiple class case atahd.

4.2.1 Linear logistic regression

Statistical methods for binary classification aseally designed to produce good
estimates op(x) = P(Y = 1k) using the Bernoulli likelihood shown in (6). Liare

logistic regression, one of the earliest technigaesumes a particular parametric
form for p(x),

_ 1 L
p(x)—1+exp(_f(x)),wheref(x) LBX. (18)

As in linear regression, the prediction dependtherfeature vector only through
a linear combination of the componentsxofgain this greatly reduces the

14



complexity of the model by reducing the problenestimating only thel+1 £s.
The logistic function transforms the linear combiioia from the whole real line to
the [0, 1] interval. Rewriting (18) we can see ttieg model assumes that the log-
odds are a linear function »f

P

Iogl— 000 = BX. (19)

Inserting (18) into the Bernoulli likelihood fror6)(and taking the logarithm we
obtain

L(B) = Zyi Bx; —log(L+exp(BXx,)). (20)

To fit the model by maximum likelihood we seleat ththat maximizes (20). No
closed form solution exists but we can utilizerape Newton-Raphson
procedure to numerically maximize the likelihootieTirst and second
derivatives of (20) are

oL(B) _~ _ 1 — Y (y—
B ;Xi(yi ” exp(ﬂ'xi)j X'(y-p) (21)
’L(B) _ &, 1 _ 1 -
o 1+expc8'xi>(1 1+expc3'xi)J T =

wherep is the vector of predicted probabilities amdis a diagonal matrix with
diagonal equal tp(x)(1 —p(x;)). After selecting an initial starting value f8ythe
Newton-Raphson update is

B~ B-(X'WX)™X'(y —p)
= (X'WX) ' X'W(XB-W™(y -p))
= (X'WX)*X'Wz. (23)

Note the similarity between (23) and the solutiothe linear regression model in
(17). Rather than simply having thi@as in (17) we haveworking response z and
we have the weight matriW/. The Newton update, therefore, is a weighted tinea
regression with observatiorhaving weighpi(1 —p;) where the features predict
the working responsg. This algorithm is known aseratively reweighted least
sguares (IRLS). In practice, convergence usually occutsrad to 4 iterations of
IRLS. We can also begin to think about improvemémtiiding non-linear

15



predictors in (19) or using non-linear regressiwide the IRLS algorithm. We
will visit these issues shortly. Note also thatwesght is largest whep is close
to Y2, close to the equal cost decision boundarissare that will arise again in
our discussion of boosting.

Figure 4 shows a linear logistic regression moilébfthe high school dropout
dataset with two predictors. As expected the mettatture forces the contours
to be parallel. From the predicted probabilitiescaa apply our decision rule and
estimate the expected cost per student. As bedeseiming that failing to detect a
dropout is 20 times more costly than failing tontiy a graduate the decision
boundary i = 0.047, marked by the upper contour in Figurldstudents
above that line are classified as graduates arsthelow that line are classified
as dropouts. Clearly this model puts the majorityases as dropouts. Had we
assumed everyone would graduate our expected costl e 3.3. Assuming
everyone is a dropout would cost us 0.83. But ugiegnformation in the two
predictors our expected costs are reduced slightly81. While this is a modest
decrease perhaps additional predictors may furétkrce misclassification costs.
On the other hand, perhaps the rigidity of thedimegistic model will prevent us
from identifying the characteristics of the dromout
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Figure 4: Probability of dropout predicted from fgnincome and percentage of
students at school in a free lunch program. Thelfoas indicate contours of
equal probability of dropping out. The x’s mark threpouts and the «'s mark the
graduates.

4.2.2 The naive Bayes classifier

The naive Bayes classifier (Hand and Yu, 2001ipispite of its name, a very
powerful classifier. It is simple to program, fit data, and is easy to interpret.

If Y is the class variable that we would like pred&ihg predictors, then the
naive Bayes classifier has the form

P(Y=y[x) OP(Y =y)P(x]Y =) (24)
=P(Y = y)u P(x; [Y=Y)
(25)

Equation (24) is a direct application of Bayes Tieen To transition to (25)
requires a naive assumption, that given the trassdhe features are independent.

17



For example, given that a particular child droppeat] knowing that they had
poor grades gives no additional information abbatrtsocioeconomic status.
This implies that dropout status is sufficient imfiation to estimate any of the
child’s features. The chapter on Bayesian methatgams the naive Bayes
classifier as a graphical model. Refer to the fgimere to see this graphically.

The naive Bayes assumption gives the naive Bagssifier the same structural
form as linear logistic regression described ingtevious section. Letting

p(x) = P(Y = 1 |x) we see that the naive Bayes classifier is adddivthe log
odds, or logit, scale.

PO _ o PY =D, 100 POSIY =D
1-p() P(Y=0) = P [Y=0) (26)

=Wy + W (%) + Wy (X,) ..+ Wy (%)

log

Note that the structural form is similar to thenfoused for linear logistic
regression in (19). If all of the are categorical then the functional forms are
exactly the same. Standard practice has beendretie the continuous's,
creating histogram estimatesR(f; | Y). This creates an additive model where the
w; components are step functions rather than lingsstions of;.

Logistic regression assumes tR4Y = 1K) = P(Y = OK)exp(5'x) where the
P(Y = 0k) can have an arbitrary form. In some respectyendayes has a more
restrictive assumption, specifying a distributiofaain for both classes,

The estimation procedure separately estimatesampanents foy = 0 andy = 1
before combining into a single classifier. Thisuasption has some advantages
for large dataset applications. The assumptiomallas to estimate this model in
a single pass through the dataset and misgwv@jues can be ignored. In the next
section we will look at a third linear classifieitivyet another set of associated
assumptions.

4.2.3 Linear discriminant analysis

Fisher (1936) proposed linear discriminant analfsi3A) for classification
problems. As with the naive Bayes classifier, LDs&sIBayes theorem to reverse
the conditional probability (24) and makes an agstiion about the distribution of
the features with in each class. Rather than assonmditional independence as in
(25), LDA assumes th&(x | Y =y) is a multivariate normal density where all the
classes share a common covariance matrix. Witle ttvas assumptions the log-
odds again has a form that is lineakinUnlike logistic regression and naive
Bayes, LDA is very sensitive to outliersxrand in general performs quite poorly.
Figure 5 shows an LDA fit to simulated data. Whea fieatures are truly
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multivariate normal as in Figure 5(a) both LDA dadistic regression produce
approximately the same decision boundary. Wherctass is contaminated with
outliers the decision boundary can move substéynaald perform worse than
logistic regression Figure 5(b).

() (b)

Figure 5: LDA decision boundaries wheres multivariate normal with each class
(a) and when one class is contaminated with oat(iey. The heavy line is the
LDA boundary and the lighter line is the logistegression boundary.

In the last 70 years discriminant analysis, likeeotmethods, has undergone
considerable modernization. Although the simplenfalescribed here tends to
perform poorly, LDA’s descendants can perform quiétl. They generally relax
the normal distribution assumption and allow tlesses to have separate
distributions each of which we can model with a enbexible density estimator.
See Hastie et al (1994) and Ridgeway (2002) fomgies of these extensions.

4.3 Generalized linear model

In this section we briefly mention the connectioratlarge class of regression
models that one can understand as variations dmtwe logistic regression
development. Section 4.2.1 showed a particulastommation off(x) onto the
probability scale using the logistic transform (&84 then used the Bernoulli
likelihood to determine the best fitting linear nebdStatisticians often prefer the
logistic transform as thienk function, the function relating the probability t6x),
mostly because it allows interpretation of modedfticients as log odds-ratios.
Economists, on the other hand, have tended tpnaob#t regression differing

from logistic regression by its use of the inve@mussian cumulative distribution
as the link functionp(x) = ®™*(f(x)). There is considerable flexibility in choosing
the link function although the logit and probit dnefar the most common.
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Besides the choice of link function for logistigression, we can vary the
likelihood itself to capture an enormous classs#ful prediction problems. The
Bernoulli distribution is particular to 0/1 outcomd& hePoisson distribution is
often used to model outcomes involving counts (#gmrchased, cigarettes
smoked, etc.) and has the form

A(X)” exp(A(x)

Pr=ylx)= y

(27)

whereA(x) represents the expected count for an observatitnfeatures.
Oftentimes an observation will have a time measerdgrm addition, such as time
as a customer or time since released from treatrirestich instances researchers
commonly parameterize the Poisson model as

) = (A1) expEA()L)
’ y!

Py =ylx (28)

so thatA(x) represents a rate of occurrences. Using than&gunction,

log A(x) = £, we are assured that the rate will always be pesiEor this reason
Poisson regression is often referred to as logatineodeling. If we havhl
independent observationg, ;, t)) then we can write down the log-likelihood as

N (A L)Y —A(x )t
|og L(ﬂ) - |Og II:J ( (X| )tl) ey)l(lp( (X| )t|) (29)
= i Y.B% —t exp(Bx;) +y, logt, —logy;! (30)

i=1

Except for the last two terms that do not invol/€30) closely resembles (20).
Inside the sum in both cases we have the outcgntiejes the linear predictor
minus a term which has the expected valug ax its derivative. Fitting the
Poisson model also involves a few iterations afrgpke IRLS algorithm.

The Bernoulli and Poisson prediction methods aeeispcases of the class of
generalized linear models (GLM). After selecting the variables for the limea
predictor, the distribution of the response, atidlafunction, the GLM

framework packages together a likelihood basedflgsgion and an IRLS
algorithm for fitting the models. Even the lineaast squares model from section
4.1 falls into this framework with a Gaussian digition for the response and an
identity link function. Simply replace the Poissdistribution in (29) with the
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Gaussian distribution. Then setting the derivatizéhe log-likelihood equal to O
and solving fop produces exactly the least squares solution weesaler.

Other useful GLMs includenultinomial logistic regression for multiclass
classificationGamma regression for skewed outcome distributions (like cost),
andnegative binomial regression for count data with extra-Poisson variation.

McCullagh and Nelder (1989) provide a complete gtidihe basics of the GLM.
Greene (1999) also discusses these methods wiibatet® econometrics.
Although the development of the GLM in this sectisibrief, this overview
should give the impression that one has consideféxibility in determining
how to model the outcome variable. For continubusgary, and count outcomes
the GLM framework is one good starting place. Thedr part is easily
replaceable with any other functional form as wk sde in the next section.

5 Non-linear models

In spite of their computational simplicity, stabjliand interpretability, linear
models have an obvious potential weakness. Thalgatacess may not be linear
and such an assumption introduces uncorrectaldari@the predictions. When
data is sparse or the dimensiorxas$ large, linear models often capture much of
the information in the data as shown in Figure .6[&gre the linear model seems
to capture much of the information. Detecting nioredr features requires more
data with a low signal-to-noise ratio. Data minagplications inherently involve
large datasets and so the general trend is alrvesysto use non-linear methods,
implying that most data miners feel that their dateloser to the situation in
Figure 6(b). Although the same mechanism geneftaddddatasets, the increase
in data in Figure 6(b) makes the linear model &gzealing. Problems with a
large number of features require caution. Suctasdns will more closely
resemble Figure 6(a). Non-linear models run a ngrelter risk of being overfit
to the training dataset and the chapter on perfocaanalysis and evaluation in
this handbook requires careful attention.
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Figure 6: Utility of linear and non-linear models

This section explores a few of the popular nondmarediction methods. These
methods generalize the previous discussion by allpf{x) to take on a more
flexible form.

5.1 Nearest neighbor and kernel methods

Thek nearest neighbor (knn) prediction model simplyestdhe entire dataset. As
the name implies, to predict for a new observati@npredictor finds thie
observations in the training data with feature sectlose to the one for which
we wish to predict the outcome. The prediction aejgseon the loss function and
in general is

f(x)= arg;nin In (@) (31)

where@is a constant andi x represents the loss function computed for only the
k closest observations in a neighborhood me&or example, the knn predictor
for squared error loss is

f(x)=arg£nin% Sy-6)2== Yy (32)

iON (k. x) Kk iON (K X)

the average of the outcomes for khabservations nearestxoThe knn classifier
works similarly. It collects th& nearest observations and predicts the class that
minimizes cost, the most popular class in the chggual misclassification costs.
Although the method may seem naive it is often cetitipe with other, more
sophisticated prediction methods. Figure 7 showktin classifier predicting

high school dropout probability from family incoraad where = 100. The
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features were rescaled for the distance calculasorthat they both had unit
variance. The heavy contour line marks the decismmdary between predicting
a dropout and predicting a graduate. Only the stisdieom the wealthier families
in schools with few students on a free lunch progvéll not be classified as a
dropout risk.

100000 150000 200000

Family income

50000
|

0 20 40 60 80 100
Percent students in free lunch program

Figure 7: The 100 nearest neighbor classifiertieriiigh school dropout data.
The darker regions of the figure represent gregrigpout risk. The lightest
regions of the figure indicate a near O dropolW.ris

Where the linear model is rigid the knn predicoextremely flexible as Figure 7
clearly demonstrates. Compare Figure 7 to Figufiéhdt flexibility can be
abused by allowing to be too small. Recalling the discussion fromntieac3.1.2,
knn tends to offer poor probability estimates besertheless tends to be quite
good at minimizing misclassification cost. We caol at how different choices
for k affect prospective predictive performance as shioviigure 8. Assuming
that failure to identify a dropout is 20 times mopstly than failure to identify a
graduate, we can compute the average cost pemstid@ur decision rule.
Minimizing the expected cost heavily depends onfoaeelection ok. If we
classify every student as a graduate the expeosds3.3, about what we see
with the 1-nearest neighbor classifier. Classifyatigstudents as dropouts, the
decision rule wheR gets very large, produces an expected cost ofsh8@n as
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the horizontal line in Figure 8. The minimum ex@ectost, 0.75, occurs when
k = 90. The 90 nearest neighbor classifier puts 88%e students at a greater
than 4.7% chance of dropout. The linear logistzgession model has an
expected cost of 0.81 and classified 90% of theesits as dropouts.

0.75

'

0 90 200 400 600 800 1000
Number of neighbors

Expected cost
5

0.83

Figure 8: Predictive performance for different \edwfk. Expected cost uses
probability of dropout exceeding 4.7% as the deaisioundary

As N gets arbitrarily large arkigrows at a certain rate (much slower tharihis
predictor will converge to the true optimal predigta property known aBayes
risk consistency. However, the performance of the predictor foedats of
practical size depends heavily krthe metric used to determine which
observations are close, and the dimension of e vector.

A natural generalization of the knn predictps) involves having every
observation contribute its outcome to the predictieighted by its distance o
Returning again to squared error

£00 =argmin = > K, 0, -7 =y, /S 33)

a weighted average of the outcomes where K(x;, x), a function that decreases
asx; moves further fronx. The knn predictor is a special case of (33), when
K(xi, X) takes value 0 or 1 depending on whetheés among thé closest
observations. First considering the case with gleinontinuous predictor, let
K(x, X) be the Gaussian density
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K(x,%) =exp-1((% -x)/0)?) (34)

with mean equal t& and standard deviatiam known as théandwidth for the
kernel regression model. Figure 9 shows strokehibtadion cost models using
two kernel regression estimates with different lvaidth settings and the linear
model from Figure 3. The cost axis is rescaled ffogure 3 to reveal details of
the model differences. As the bandwidth gets sthalkernel regressor resembles
the pointwise average estimate shown in Figured3exhibits a lot of variance in
regions where there are fewer data points. Thetdrgndwidth is smoother and
shows a lot of stability even in the extreme matmres. Although all the
methods align for the most common motor scoresljriiear model reveals its
biasin the extreme motor score values. In many pregtigiroblems, data often
show the presence of saturation effects (at sonm¢ @dditional improvements in
motor ability do not decrease cost) and threshif&tes (decreases in cost do not
begin until motor exceeds some threshold). Noteitlvee only observe patients
in motor score in the 30 to 60 range, the lineadehavould work extremely well
and we would have little reason to consider othedes. Other prediction
methods can easily outperform linear models whembstantial portion of the
dataset lies to the right of the saturation pontt & the left of the threshold point.

25000
|

Kernel, o =%

Kernel, o = 10 \

Linear model ———»

20000
|

15000
|

Wage adjusted cost
10000
|

5000

0
|

Motor score

Figure 9: A kernel regression prediction model

Kernel regression methods generalize to multivarfieature vectors and the
reader is referred to Hasteal (2001) for more details. Support vector machines,
discussed in section 5.5, are in fact a partickilaat of kernel regression method.
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The primary disadvantage of the knn predictor aaigtenimplementations of
kernel methods for data mining applications isrtbed to store the entire dataset
and the expense of searching for nearest neiglao@@mputing kernels in order
to make a prediction for a single new observat®wme algorithms exist for
trimming down the storage needs for these modedsiener, they still generally
receive little attention as competitive data mingngcedures in spite of their
utility for non-linear modeling.

For the data miner interested in prediction methodarest neighbor and kernel
methods have instructional value. The heuristtbas when predicting an
outcome ak we borrow information from those points in theadst that are close
to x. We trust that the underlying function is fairlpsoth so that nearness in
terms ofx implies similar outcomes. The linear models disedsin section 4
share this idea but assume the rigid functionahftr interpolate between points.
Remember that all prediction methods that are miing the same loss function
differ only in how they interpolate between themisiin the dataset. In some
fashion they combine the outcomes from pointsmeighborhood neat. How a
method selects that neighborhood and how it consiiime outcomes will
determine its scalability, its interpretability,chits predictive performance.

5.2 Tree models

The chapter on tree models in this handbook extelysdiscusses the use of tree
structured prediction methods. Tree structurediptexd usually assume thifx)

is a piecewise constant function where splits eniidividual feature axes define
the pieces. The terminal node of the tree definesieighborhood and the
constant that minimizes the loss function withia terminal node becomes the
node prediction.
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Figure 10: CART for cost of stroke rehabilitatidrne two diamonds refer to the
hypothetical patients discussed in the text. T ticks on the axes mark the
deciles of the distribution of the motor and coiyeitscales.

The advantages of tree predictors for data mirsrthat fast algorithms exist to
construct them from data, prediction for new obagons is quick, the method
handles all types of input variables, and the mastorable in a compact form.
This differs sharply from the nearest neighbor radth However, as linear
models can be criticized for their rigid functioriafm, the constant within-node
prediction is rigid in a different way. Figure 10asvs how CART partitions
stroke patients by motor and cognitive score imtugs with relatively
homogeneous cost. Note that in Figure 10 the mueelicts that the patient with
a motor score of 27 and the patient with a motoresof 28 (marked with
diamonds in the figure) have costs that differ By530, the difference in the
predicted cost from each region. We really do radielve that cost varies so
abruptly. Such biases around the partition edgeseduce prediction accuracy.

Like the nearest neighbor predictor, tree structym@cedures are generally
Bayes risk consistent (Gordon and Olshen, 19843t iBh as the dataset grows
and the number of terminal nodes grows at a ceréa@ the model converges to
the minimizer of the population loss function. Altigh this is an interesting
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mathematical fact it should be taken as a cautitimer than a benefit. Trees can
have a lot of variability in addition to edge bisse

Although trees are often appreciated for their appanterpretability one should
use caution due to their instability. To demonstraé randomly split the high
school dropout data into two parts and fit a CARASsification tree to each.
Figure 11 shows the resulting models. The two tgdes very different
perspectives concerning what is important in deteing the risk of dropout.
When several variables are correlated with eacér@hd the outcome, the tree
must select a single variable for the splittingafale, hiding the importance of
other interesting inputs. Again, it is easy to beléd by the trees transparent
functional form and overlook important variableg mzluded in the tree.

Discipline problem = No

Grade composite >= 2.55

0 Parental aspirations >= 9.5

0 i =
Behavior problems = No school changes < 3.5 school changes < 1.5

Held back in 7th grade = No Grade composite >= 1.55 o School % mlnonty >=5 rbanicity >=1.5
Held back in 6th grade No

0 Parents aspirations >= 9.5 SES >=-0.766 1

Self-esteem O 525
0 1 0 1

0 1

o
[N

Figure 11: CART fit to two random splits of the higchool dropout dataset.
5.3 Smoothing, basis expansions, and additive model

One disadvantage of tree models is that they pediscontinuous predictions
and the main disadvantage of the linear modelsaisthey enforce strict
smoothness everywhere. This section considers methetween these two
extremes.

Solines utilize piecewise polynomials (usually linear aibec) to modef(x).
Remember that trees use piecewise constants anlthtaa models use a single
linear equation. Splines are, therefore, one fugkep in this progression. As
with trees, spline methods need to select splitspknown agnots in spline
terminology. Between the knots we fit a polynonmfbur choice to minimize our
loss functionNatural cubic splines are among the most popular. Between each
knot these splines fit cubic polynomials but fitdar models in the range outside
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the first and last knots. In addition they enfocoatinuity off (x), f'(x), andf " (X)
at every knot. Figure 12 shows two examples ofnaagplines with differing
numbers of knots. One can fit fairly flexible cusyéncluding saturation and
threshold effects previously mentioned, with onlyamdful of knots.

Figure 12: Natural splines with 4 and 20 knots iomusated data. The knots,
shown as solid points, are placed at equally spguadtiles of the variable.

The motivation for splines given earlier is thaylseem a natural generalization
of piecewise constant and linear models. Naturlaep also arise in a curious
way from a redefined loss function. Rather thangdynminimize squared
prediction error, consider minimizing it subjectaenalty on the magnitude of
the function’s second derivative.

30 =520 = T+ F097x (35)

If A, known as themoothing parameter, is 0 then the function can be arbitrarily
jagged and interpolate the data. The best modehwhlarge ha$''(x) = 0
everywhere, the ordinary linear model. However, nvh¢akes on other,

moderate values, the function that minimizes (389athly fits the data. It turns
out that the minimizer of (35) over a very richsdaf functions is unique and is a
natural spline! The minimizing natural spline has knots at evalbgerved; but

the coefficients of each cubic are further restddby an amount that depends on
J. We can use cross-validation to select

A discussion on the details for fitting naturalispk comes later, but as discussed
so far, they can be computationally expensive fe&r with massive datasets. An
easy adaptation is to reduce the number of knotsigimally shown. Rather than
placing knots at every data point, 5 to 20 knogslikely sufficient for many
univariate applications. A potential downside dirggs is that they aneot

invariant to transformations in tkxevariable. If instead of usingwe use lox as
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the feature we will obtain a different natural splifor the samd. While tree
models are invariant to transformationsjrior smooth models one needs to think
more carefully about the scale usedxoin section 5.6 we will see that boosted
trees allow fairly smooth predictions but are afs@riant to transformations of

the features.

The above natural spline discussion focused onl@mabwith a single feature. So
far, for problems involving more than one feature lvave considered only
models that are linear ior are local averages in neighborhoods.@asis
expansions represent yet another broad class of models. Asshat the best
predictorf (x) is well approximated by a sum ledisis functions.

IEDWANE (36)

The basis functions in the collectian(x), are often simple functions that can be
combined to describe more complex functions.

Many of the models we have previously discussedrftdl this framework. Note
that if gu(X) = X1, With Xo = 1, then (36) reduces to the linear model presfiou
discussed. Trees can also be recast as a basisepahera(x) = 1(x [ N)
whereNy is a defined by upper and lower limits on cer@mponents ox, such
as the 12 partitions shown in Figure 10. Tree legralgorithms vary on how
they select the number of basis functions anddha bfNy. One can naturally
imagine other choices for the basis functions.

A univariate cubic spline witK knotscy, ..., ¢k is decomposable int¢+4 basis
functions

g1(x) =1 gz(x) =X gs(x) =x’ 94(X) =x° gk+4(x) = (X_Ck)i (37)

where &)+ = max(0,X). The cubic spline maintains a cubic fit befor@and after
ck Where the natural spline uses a linear fit. Tohi#gse models we can utilize all
the methods developed for fitting linear modelsteNibat if we havé&K=2 knots
our predictor looks like

f (X) = ﬂl + ﬂ2X+ ﬂ3X2 +/84X3 +/85(X_C1)i +ﬂ6(x_c2)i (38)

precisely a linear model with five features. Witlitide effort we can see that (38)
is a continuous piecewise cubic function with coatius first and second
derivatives at the knots. Since (38) is simplynadir model we can use (17) to fit
the cubic spline.
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Fitting cubic splines using the basis functionsvamin (37) requires NK*+K?)
operations. Other sets of basis functions for cabit natural splines are more
efficient. In particularB-splines, have computational properties that allow the
models to be fit in QY log N+K) operations.

General multivariate extensions to natural spleast, known ashin-plate
splines, but have not been developed to the computatipeé#iiciency needs of
data mining yetAdditive models, on the other hand, can take advantage of
smoothing methods to create particularly powerfathnods for exploratory
analysis as well as prediction. Additive models thgebasis functions

ok(X) = gk(X) so that each basis function is a function of amg of the features.
In this way we can generalize from the simple Imeaadel while maintaining a
fairly simple, stable model.

For the cost of rehabilitation data we can fit gression model where the
predictor has the form

f(x) = B, + g;(motor) + g, (cognitive (39)

requiring thaig; andg, are smooth functions of their arguments by modelin
them as natural splines. Additive models are gdliyarat Bayes risk consistent in
most applications. That is, as the dataset groess ¢hnnot capture true
interaction effects. However, they can often outpen other methods in practice
especially when the data is noisy. In additiontpigtthegk(x) can give much
insight into the contribution of the individual teges to the outcome. Figure 13
shows the additive model fit to the cost of stroddeabilitation data. Compare the
contours with Figure 10. The marginal plots in figere show the estimates gf
andg, and are scaled equivalently. From the marginalsealve can see that the
motor score is really driving the cost. The cogeitscore has some information
and seems to indicate that costs are slightly Idargpatients at the extremes of
the cognitive scale.
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Figure 13: The estimates gf andg, for cost of rehabilitation. The curves plotted
in the margin arg;(motor) andg,(cognitive).

Thebackfitting algorithm is the common method of fitting additive modelglos
form. The constang is fixed at the mean of thgs and the iterative algorithm
begins by fitting the univariate natural splingtedicty from motor score. Then
the algorithm builds a natural spline to fit theyndive score to the residuals left
over from the motor score component. The motorescomponent is refit and the
process iterates until convergence. This algorithfast as it generally involves
only a few iterations, each of which uses an afitiB-spline implementation.

Hastie and Tibshirani (1990) provides more detailsdditive models including
extensions to the GLMs from section 4.3. The inteaeseader might also look
into multivariate adaptive regression splines (MARS)edman, 1991). Just as
CART implements a greedy search to construct a Mé&dRS greedily constructs

a model by introducing features into the predictoodel (usually) through linear
splines. It selects the variable and the splinesfiimation that offers the greatest
decrease in prediction error through an exhaustaech similar to CART. The
result is a modeling framework that allows somealdes to enter as main effects
(CART is only one big interaction term) and oth&r$®e interacted with one
another. Many variations on this theme are possible.
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5.4 Neural networks

While the neural network chapter in this handboiskusses these models in
much greater detail, the brief discussion heresdasim into the framework
developed in this chapter. Like all the methodsuBsed so far there are
variations in the functional form of the neuralwetk predictors and the
algorithms for fitting them. Generally, howeveretsingle hidden layer neural
network can be expressed in terms of a basis ekppans

f(0=Y As@i) (40)

wheres(2) = 1/(1+€7), the logistic transformation. Thébasis functions are
known as the hidden units and the number of theoftés fixed but may be
selected by cross-validation.

For univariate classification problems neural nekgonodelP(Y = 1K) like the
logistic regression model (18). Rek-class classification problems we create a
multivariate outcome for each observatignwhere then" value takes on the
value 1 if the observation is in class Maintaining a common set of’s as in
(40), we allow each dimension pto have a differenfm, and the prediction as

expf  (x)
S expf(x)

00 =Y Bus(@x) and P(Y =m|x) = 41)

See the neural network chapter concerning mettardsstimating the parameters
of neural networks. Their inclusion in this sectisrio show that they share the
same building blocks as all the other methods. alewetworks make specific
choices for their basis functions but then candelito minimize any loss
function that we adopt for an application. The temiversal approximator has
been used for neural networks to mean that theyapproximate any regression
function. As the dataset grows ads allowed to grow they are Bayes risk
consistent (Barron, 1991). These are propertiessilared by trees, nearest
neighbors, and thin-plate splines. However, neneavorks have the curious
mathematical property that the rate at which thienaged predictor converges to
the best predictor does not depend on the dimemsiorber of features (Barron
1993).

5.5 Support vector machines

Several of the previous classification examplesi$ed on obtaining good
estimates oP(Y = 1 |x) and then perhaps applying (5) to get a cost mmniig
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decision rule. The support vector machine (SVM}srbasic form aims directly
for the decision boundary.

We begin with an example of a linearly separabtastt shown in Figure 14.
There are two continuous features and the clagtslaibey = +1 ory = —1 marked
by clear and solid dots respectively. Many lines separate the two classes.
SVNMs select the line that maximizes thargin, the space between the decision
boundary and the closest points from each of thgsels. With separable classes
we can find a separating line having the favir + b = 0 such that

w'x; +b>+1 wheny; = +1 (42)

w'x, +b< -1 wheny, = —1.
(43)
We can rescaler andb so that for some point(s) equality holds in (42 &

(43). A little geometry shows that the two planefired byw'x; + b =1 and

w'x; + b = -1 are parallel, have no points between theich aa@ separated by a
distance ofl where

d
d?=4/>w :4/||w||2. (44)
j=1

Putting these steps together, fitting the SVM cqroesls to maximizing the
margin (44) subject to the constraints (42) and &48vable as a quadratic
optimization problem.
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Figure 14: Geometry of the linear SVM.andx, represent two arbitrary
continuous features

In the more practical case when the classes areomapletely separable, SVMs
still maximize the margin but allow for a limitedimber of observations to be on
the wrong side of the decision boundary. We camdhice slack variableg,> 0,
into the constraints (42) and (43) as

w'x, +b=>1-¢ wheny; = +1 (45)
w'x, +b<-1+¢ wheny; = -1. (46)
" &<B (47)

i=171

Again SVMs maximize the margin subject to (45) a#@)) (but also penalize the
sum of theZ (47), restricting the budget we have for obseoratibeing to far
from the decision boundary. The details of thénfittalgorithm are fairly tedious
but two important ideas come in their developm@notfill in the details not
covered here see the excellent SVM tutorial in Bsi@®98). The SVM
optimization problem can be recast in its Wolfeldoem as

N 1 N N ,

J(a):zai _Ezl:z;aiajyiijixj (48)

i=1 i=

along with several constraints on s relating to the observed data and ¢he
The solution for the prediction rule is
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f (x) =sign(w'x +b) = sigr(i a,y xx + b] . (49)

i=1

Usually most of they’s turn out to be 0. Those observations correspantt a
positiveq; are called thaupport vectors. Conveniently the prediction rule
depends only on the support vectors. In Figurehgdetwere only three support
vectors.

As with the linear models described in sectionVMS are easily extended by
expanding the set of features used in forming #wstbn boundary. We could
assume that the decision boundary has a basis @gpdorm like (36). An
interesting feature of the SVM is that the featumely enter the fitting stage (48)
and the prediction stage (49) through the innedpcoof the features;’x. Rather
than having to specify the set of basis functiofdieitly, only the inner product
of the basis functions needs definition. The commeghacements fox;'x are

radial basis K (x;,x) = exp||x, -x| /c)
polynomial K(x;,x) = (@+x/x)* (50)
neural network K(x;,x) =tanhCx;x+¢c,).

These choices for the kernel are flexible and qtockompute. Therefore, to use
SVMs for prediction one needs to select a kernelk#éérnel tuning parameters,
and the roughness of the decision boundary detedrbgB from (47).

To make the comparison of SVMs with other classiitces we can reformulate
the optimization problem (45)-(47) as a loss fumtighown in (51).

IO =2 M=y FOL + AW (51)

Reuvisit Figure 2 to compare this to the other dfsdion loss functions. The first
part of the SVM loss function encourageandf(x;) to agree on the sign. When
they disagree the penalty increases linearly imthgnitude of(x;). The second
component penalizes the magnitude of the lineaificmats, equivalently
controlling the margin. As with the smoothing spbn(35) 1 is a user specified
smoothing parameter. SVMs, therefore, are charaett@as using (51) as the loss
function, having structural form (49) that may tengralized with a kernel choice
from (50), and utilizing quadratic programming tiotie models to data.
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5.6 Boosting

Although boosting has a technical definition imterof computational learning
theory, it has been more generally applied to nusthbat use a flexible gradient
ascent approach to fit a prediction model. Schapu Singer (1998) introduced
the Real AdaBoost algorithm for classification problems, one of thest
commonly used forms of boosting. Friedman et aD(@@ecomposed this
algorithm into its basic components: the loss fiam;tthe functional form, and
the estimation procedure.

First consider the classification problem for whyctakes on values +1 or —1. The
Real AdaBoost loss function is

J(f) = E,, expCyf (%) . (52)

If y andf(x) frequently agree on the sign then (52) will beaBnturthermore, the
AdaBoost loss function is an upper bound to theckassification rate as shown in
Figure 2. So intuitively, if on averageandf(x) frequently agree on the sign then
(52) is small and the misclassification rate wélgmall.

Boosting’s main innovation comes when we look a litcestimated(x). Assume
thatfo(X) is our current guess for the best predictor.mprbve upon our current
guess we can consider adding a new funcgfx, to “fix” it. Of course we want
to choose thg(x) that helps us to decrease the loss functiont{&jnost.

J(1) = E,, exd- y(f,(x) + 9(x))). (53)

Setting the derivative of (53) with respecg(@®) equal to zero gives us the
“direction” in whichfy(x) needs the most improvement,

2 9B, (y=-11% 4)

WhereP,(y | X) is a weighted probability estimate with weighpéyfo(x)). The
brief derivation here deals with expectations hig is easily translated into data
applications.

Begin with a naive guess ft)(x), perhaps a constait,
Fortin 1,....T do the following
1. Assign weights to the observatioms= exp(-fi1(Xi)).
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2. Obtain an estimate fé¥,(y = 1 |X) using any prediction model that can
handle weights and puts out a probabilistic préafictClassification trees
are by far the most popular.

3. Formg(x) as in (54) and lastly

4. Update the current guessf@s) «— f; _1(X) + gi(X).

For a new observatianthe model predicts thgt= sign(fr (x)).

It is helpful at this point to note some similagiwith the linear logistic
regression discussion in section 4.2.1. Like AdaBaihe IRLS algorithm for
linear logistic regression repeatedly fits weightegression models to the dataset
to obtain the best fit. In that situation the modeiestricted to have a linear form
and so the updates get directly absorbed intouhermt guess fgf. In addition

the IRLS weights werpi(1 —p;), which are largest whegm = Y2, the point at

which the equal cost decision rule is most in gaasiThis behavior is replicated
in the AdaBoost weights. Those weights are largginy andfy(x) greatly
disagree, perhaps the more difficult observationddssify.

Having discussed the loss function and estimatroogss, the last component is
the predictor’s form. This depends much on the lotessifier selected for the
Puw(y = 1 |x) estimate. If we use the naive Bayes classifieaBabst leaves it
unchanged from the linear form (approximately salie earlier Discrete
AdaBoost algorithm, Ridgeway et al 1998). If we ggenps, decision trees with
only a single split, the final model falls into tbkass of additive models of the
form (39). To see this, note that the model thaiBabst produces has a basis
expansion form

fr(X) =c+g,(X)+g,(X) +...+ gy, (X) + g (X) . (55)

In the additive model discussion the basis funstiaere decided upon ahead of
time then fit simultaneously to the data. Boossetects the basis functions in
(55) greedily rather than simultaneously. If we gganps then eadf(x) is a
function of one feature alone. We can then cobdldhoseg;(x)’s that split on
variablej into a single component.

fr(X) =c+0; (%) + 9o (%) +...+ gy (%) - (56)

A two split decision tree for the base classifesults in an additive model with
each term potentially being a function of two featu Therefore the depth of the
tree allows us to select the complexity of thedeainteractions.

For data mining applications decision trees turntoupe an excellent choice for
the base model. Trees seamlessly handle continaalisal, nominal, and
missing data. The other methods that this chapgeusises do not necessarily
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handle such a mix of data types easily. Treeslacei@variant to one-to-one
transformations of the features, using only theepmdformation to determine the
optimal partitions. For example, whether we useme or log(income) as a
feature the tree will have the same form and predhe same predictions either
way. The split points will be on the correspondatgle but all else will be the
same. The performance of other methods can beplarly sensitive to feature
transformations. This invariance in turn adds abrobustness to the boosted
tree model.

Generalizations of the AdaBoost algorithm amourddiecting a different loss
function, applying the same estimation procedund,@rhaps examining
different base classifiers. Boosting can be geizaa@lto all of the other loss
functions discussed in section 3. Friedman (2008sga general framework for
developing boosting algorithms, deriving specifigoaithms for least squares,
robust, and logistic regression.

To demonstrate the flexibility of boosting, consitiee Cox loss function from
section 0 for survival data (see also Ridgeway 198 will apply the boosting
ideas to maximize the log-partial likelihood, tlogadrithm of (13).

J(f)=i5{f(xi)—log(il(tjzti)expf(xj)ﬂ. (57)

As with AdaBoost we can find a function to add(tg) to improve the model.
The derivative of (57) pointwise with respecf(q) indicates the direction that
will adjustf(x;) to increase the likelihood. The derivative equals

5 id I(t; =t;)expf(x)
z=6->0 :
=i Z:‘zll(tk >t;)expf(x,)

(58)

This means that for some step sjzdf all thef(x;) in (57) were replaced with
f(x;) + pz then the likelihood would increase. In the AdaBadgorithmp is
exactly 1 but more generally we need to set it.€eally, z has information
indicating how to adjust the current guessf{g). To pull in the features we fit a
regression treg(x), predictingz from x;. If g(x) can capture the gradient
information fromz a good update i%x) « f(x) + pg(x), wherep can be selected
with a line search.

To examine the performance of boosting Cox’s propoal hazards model, we
turn to a clinical trial for testing the drug DPGdt the treatment of primary
biliary cirrhosis of the liver (PBC). This datasets been the subject of several
modern data analyses (Dickson et al 1989, Flentiiad) 991, Raftery et al
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1996). The data consist of 310 patients with cotepddservations on the
predictors. Of these, 124 patients died duringsthdy and the remaining 186
were censored observations. Of the eight featuad®® et al (1996) considered,
we selected the six continuous features for uslednmodel.

o
N
o —

partial log-likelihood
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-280

0 20000 40000 60000
iteration

Figure 15: Partial log-likelihood for PBC data. Tingward trending curve
indicates the boosted trees performance on test daé horizontal line indicates
the partial likelihood from the linear Cox model.

We tested this method by comparing the out-of-sampdictive performance of
the linear Cox model to the boosted Cox model uskggession stumps ggx),
the base regressor. To judge the out-of-samplaginesiperformance of the two
models, we trained each on half of the observati@serving the rest for a test
set. Figure 15 shows the value of the validatigplikelihood as the algorithm
proceeds. To obtain a very smooth prediction sarfee shrunk thg by a factor
of 1000, making each adjustment very slight andiregy many more iterations.
We see that after 40,000 iterations the boostechats has surpassed the linear
Cox model. Furthermore, for the next 30,000 iteraithe boosted version
continues to improve, although at a diminishing m@treturn. Even though the
model fitting used many iterations, it takes aleutinute to complete the
iterations on this small dataset.
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Figure 16: Boosted estimates of the main effecta@PBC data. The curves are
the boosted estimates of the functions and thersopesed lines are the
estimates from the linear model.

Since the base regressors were one-split decigen,twe can investigate the
estimates of the main additive effects as in (B&ure 16 shows the boosted
estimates of four of those effects along with thibgsed on the linear model.
Every variable shows evidence of either a thresk@ilett, a saturation effect, or
both. In the region where most of the data poirgscancentrated, for most of the
variables (except bilirubin) the underlying regss nearly linear. For this
reason we would expect the linear model to perfi@asonably well. However,
for a patient with a more extreme value for anyhef variables the boosted model
is far superior. When effects depart substantiatign linearity, as in the PBC
dataset, accurate survival prediction for all pasedepends on a non-linear
estimation procedure like boosting.

6 Availability of software

This section returns to the methods reviewed & ¢hapter indicating what
software tools are available. Many of the availdbtds come in the form of add-
ons to other packages, such as S-plus, Gauss,tatVien general, a simple web
search for the method will likely turn up everythifitom original source code, to
Matlab scripts, to full stand-alone commercial vamns. The R project

41



(www.r-project.org is a great place to start for statistical algons. It is a free,
full-featured statistical package maintained by yniarthe statistical community
and is often the place where the latest statissiicalrithms first appear. Weka
(http://www.cs.waikato.ac.nz/ml/weR&s another well integrated, ever
improving, package that implements many algoritipmsular in the machine
learning community. There are stand-alone packdggsmplement individual
algorithms but they often lack convenient methantsrianaging the datasets.

Generalized linear models All standard statistical packages, SAS, SPSSaSta
S-plus, R, etc, include GLM procedures as welhasG@ox model and other
survival models.

Generalized additive models Original source code is available from StatLib
(lib.stat.cmu.edu/general). The standard S-pas( ) ) and R distributions
(mgcv library) come with GAM. SAS as of version 8& PROC GAM.

K Nearest Neighbors- Available in R knn() inthecl ass library) and Weka
(weka.classifiers.IBKk).

Tree structured models- Salford Systemsaww.salford-systems.com
maintains and develops the official implementatdi CART. Rpart, developed at
the Mayo clinic, is part of the standard R disttibn and is full-featured

including surrogate splitting for missing valuespl8s ¢ r ee() ) and SPSS
(AnswerTree) include tree structured modeling luhdt implement all the
features of the CART algorithm. Also look for impientations of Quinlan’s C4.5
and C5.0 on the web.

MARS - Salford Systems maintains and develops MARSr& hee various other
implementations, usually add-ons for other packagehk as S-plus or Gauss.

Support vector machines- Many research packages are now available. SVM-
Light is one of the most popular, freely availabtesvmlight.joachims.org.

Neural networks - There are many variants on neural networks atehat as
many programs out there. Matlab users may warddk &t Netlab
(www.ncrg.aston.ac.uk/netlabo become more familiar with the technique. For a
large catalog of free and commercial packages visit
www.emsl.pnl.gov:2080/proj/neuron/neural

Naive Bayes Available in Weka. Also Bayda exclusively implents naive
Bayes (www.cs.helsinki.fi/research/cosco/Projects/INONE)SW

Boosting- To accompany his Gradient Boosting paper, Freadhms an R add-
on for the LogitBoost algorithm, least squares, aimist regression methods.
(www-stat.stanford.edu/~jhf). Boosting methodsAoiaBoost and other loss
functions including Poisson regression and the @orel are available at
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www.i-pensieri.com/gregr/gbm.shtml as an R addaalditional functionality
forthcoming. Weka can apply the AdaBoost algoritienany of its standard
classifiers

7  Summary

For prediction problems the process begins by dhgasloss function, then
selecting the type of predictor, and lastly deteing how best to fit the model to
potentially massive datasets. Of course, this ardas ideal, but in practice we
may find that computational complexity or a pol@nstraint prevents us from
modeling exactly how we had hoped. As section bBadswed algorithms designed
to minimize particular loss functions can be sligimodified to minimize other
loss functions that we might prefer. Indeed, SVMsébeen used to maximize
the logistic log-likelihood and k-nearest neighbloas been used for to minimize
squared error loss. So while this chapter focusegy an particular combinations
commonly used in practice, data analysts can aodldghhink creatively to match
loss, model structure, and fitting algorithm to greblem at hand.

In public policy problems as well as business aneific applications,
interpretability is frequently a constraint. At tssithe SVM or the boosted tree
model might predict the outcome better than theeneasily interpreted models.
However, applications often require a model fit tten be translated into
humanly understandable relationships between Hteres and the outcome.
When a model like the linear model adequately apprates the optimal
predictor, interpretation is not in doubt. One ddawse great caution when trying
to interpret an apparently interpretable model wimeme complex models exist
that substantially outperform it. Clearly, we shibbk careful when creating
policies and actions based on interpreting modielsdo not fit the data well. See
Breiman (2001) and the accompanying discussiobdt sides of this debate. As
noted in section 5.2 interpreting the apparentigrpretable decision tree actually
requires a fair bit of care. Research continueteielop in the area of converting
the competitive “black box” models into interprd&@patterns. Friedman (2001),
for example, makes substantial gains in turningmemboosted regression
models into understandable relationships betwestnifes and outcomes.

While interpretability potentially is an issue, Edality is the main problem

facing data miners. The simplest models such akrthar models can be fit to
data in a small number of passes through the gatagetimes only once. But the
benefit of having large datasets is the abilityntodel complex, non-linear, deeply
interacted functions. As discussed in the tree rincluEpter, researchers have
made substantial progress in creating scalableitigts for decision trees.
Research has also shown that subsampling withistimgpiterations not only
decreases the computational complexity but alsoémtally improves predictive
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performance. Computational advances are making Shntially applicable to
large data mining problems. Watch for continuedaades in each of these areas
over the next few years.
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