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2 Introduction to the prediction problem 

Many data mining problems depend on the construction of models, equations, or 
machines that are able to predict future outcomes. Although prediction is an 
important component of data mining, the abundance of methods such as linear 
models, neural networks, decision trees, and support vector machines can make a 
seemingly simple prediction problem rather confusing. Other chapters in this 
volume focus on particular methods. In this chapter we will briefly assemble these 
ideas into a common framework within which we can begin to understand how all 
these methods relate to one another. 

In many applications we are not only interested in having accurate predictions in 
the future but also in learning the relationship between the features of an 
observation and the outcomes. For example, we will consider an example of 
predicting at age 12 which students are likely to drop out of high school before 
age 18. Certainly we wish to have an accurate assessment of dropout risk, but we 
also wish to enumerate those factors that place certain students at greater risk. 
Understanding the mechanism relating the student features to the outcome helps 
formulate rules-of-thumb for identifying at-risk students and interventions 
targeting those students. Whether our goal is prediction alone or understanding 
the underlying mechanism or both, a well-structured and well-estimated 
prediction model is the first step in the process. 

In this chapter, we introduce the basics of prediction problems. We offer 
strategies on how to relate the choice of prediction method to applications and 
describe several of the frequently used prediction methods. This is far from a 
complete catalog of available tools and strategies but rather, like the rest of this 
handbook, it represents a starting place from which the reader could springboard 
into other, more technical developments of the methods. After reading this 
chapter the data miner will know the fundamental prediction concepts and be able 
to think critically and creatively about solving specific prediction problems. 

Throughout this chapter we will use the following notation. Generically we have a 
dataset containing N observations (yi, xi) where i = 1, …, N. These observations 
come from some unknown process, generating mechanism, or probability 
distribution. The features, xi, often referred to as covariates, independent 
variables, or inputs, may be a vector containing a mix of continuous, ordinal, and 
nominal values. We wish to construct our prediction model, denoted as f (x), so 
that it predicts the outcome, yi, also called the response, the output, or the target, 
from the features. 
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2.1 Guiding examples 

This chapter will focus on three examples to help explain the concepts and 
techniques. The applications generally focus on public policy issues but the same 
methods apply to problems spanning the scientific domains. 

2.1.1 Regression: Cost of stroke rehabilitation 

Regression problems (some engineering literature refers to these as estimation 
problems) involve the prediction of continuous outcomes. In 1997 the Balanced 
Budget Act mandated that the Centers for Medicare and Medicare Services 
(CMS) develop a prospective payment system for inpatient rehabilitation 
facilities. This system would determine how to allocate a $4.3 billion budget to 
facilities that provide care for individuals covered under Medicare, the United 
States’ federal healthcare system for the elderly and disabled. Part of the 
development involved building a cost model that predicts cost of rehabilitation 
from patient features. From CMS billing records we obtained each patient’s age, 
reason for the stay (stroke, hip fracture, etc.), and cost of care. From secondary 
sources we obtained functional ability scores that measured the patients’ motor 
and cognitive abilities. The prediction problem involves developing a model so 
that for any future patient we can accurately predict cost of rehabilitation from the 
patient’s features for accurate hospital reimbursement. 

2.1.2 Classification: Detecting high school dropouts 

The National Education and Longitudinal Study of 1988 (NELS:88) is an 
extensive data source surveying the attitudes and behaviors of a nationally 
representative sample of American adolescents. NELS:88 first surveyed its 
respondents as eighth graders and has conducted three waves of follow-up 
measures in 1990, 1992, and 1994. Student, family, and school level measures are 
included in each wave of the survey. Offering multiple item indicators of 
student’s goals, ability, past achievement, and involvement in school, NELS:88 
also includes detailed data on parenting style, parent/child behavior and 
interactions, religion, race/ethnicity, parents’ occupation(s) and income, along 
with numerous other measures of family background. The strengths of this data 
set result from its large number of cases (over 15,000 students in this chapter’s 
analyses), its comprehensiveness (measuring over 6000 variables), and its 
longitudinal design (allowing temporal as well as cross-sectional analyses). The 
examples will utilize data from the first three survey waves, analyzing 
information from the baseline grade 8 data to predict failure to complete high 
school. 
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2.1.3 Survival: Survival time of PBC patients 

To show the breadth of loss functions available for consideration and the 
flexibility of prediction methods we include a clinical trial example. In this 
example the problem is to estimate survival time of patients suffering from 
primary biliary cirrhosis of the liver (PBC). Although analyses using survival 
models predict time until death or time in remission for medical treatment studies, 
the models are applicable outside the domain of medicine. Applications also 
include time until failure of a machine or part, time until a customer churns by 
abandoning their current telecommunication provider for a competitor, and time 
between when a gun is purchased and when it is confiscated or recovered at a 
crime scene. 

2.2 Prediction model components 

Prediction methods may differ in three main ways: the loss function or 
performance measure that it seeks to optimize, the structural form of the model, 
and the manner of obtaining model parameter estimates from training data. When 
considering a new or unfamiliar method, understanding these three basic 
components can go a long way toward realizing its limitations and advantages. 
Several methods may have the same structural form but differ on performance 
measures or scalability due to differences in how we estimate or learn the model 
from data. We will see that three established classification methods, naïve Bayes, 
logistic regression, and linear discriminant analysis, all have exactly the same 
structural form but differ on the loss function and parameter estimation method. 
In addition, the chapter on tree models in this handbook discusses models that all 
share the tree structure but may have different methods of forming splits and 
estimating the number of terminal nodes from the available data.  

The next section discusses the most popular loss functions in use in statistics, 
machine learning, and data mining practice. Following that we give a concise 
catalog of some of the structural forms used in practice. Even after selecting a loss 
function and a structural form for our predictor, the main problem facing data 
miners today is getting those models fit to massive datasets. We will comment on 
the scalability issue as it arises but it continues to be an active area of research and 
progress. Some accurate methods that were assumed to be not scalable to large 
datasets now have been tuned and optimized for practical use. 

3 Loss functions – what we are trying to accomplish 

When developing a prediction model we usually have some performance measure 
that we want our model to optimize. The loss function is a function that takes as 
input a prediction model and produces a single number that indicates how well 
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that prediction model performs. This section reviews some of the most commonly 
used loss functions. The notation J( f ) indicates the loss function J evaluated for 
prediction model f. 

3.1.1 Common regression loss functions 

For regression problems the most widely used loss function is squared prediction 
error, which is the expected squared difference between the true value and the 
predicted value 

2
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where the Ey,x represents the expectation operator that averages over all (y, x) 
pairs drawn from some common distribution. By minimizing (1) we assure 
ourselves that, on average, new predictions will not be too far from the true 
outcome. The properties of expectation indicate that the f (x) that minimizes (1) is 
f (x) = E(y|x), the average outcome at each value of x. The probability distribution 
that generates the (y, x) pairs is unknown and so we cannot compute (1) directly. 
Instead we rely on a sample based estimate 
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Remember that it is almost always (1) that we really want to minimize but resort 
to (2) to guide us to a solution. There are many f(x) that can make (2) arbitrarily 
small but usually only one that minimizes (1). The model fitting process will find 
an f that minimizes (2) subject to some constraints on its structural form. An 
unbiased evaluation of the performance of a particular choice for f requires a 
separate test dataset or some form of cross-validation. The chapter on 
performance analysis and evaluation in this volume describes this process in more 
detail. 

Although squared error loss is the dominant loss function in most applied 
regression work, decades of work on robustness have demonstrated that squared 
error is highly sensitive to outliers, unusually large outcomes potentially from 
data contamination and spurious measurements. Absolute prediction error 
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has its minimum when f (x) = median(y|x), the median outcome at each value of 
x. For data mining applications prone to contamination the absolute prediction 
error may be preferable. 
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Other regression loss functions use variations on the above theme. For example, 
Huber (1964) proposed a loss function that behaves like squared-error near 0 and 
like absolute error when y – f (x) exceeds some cutoff, providing some protection 
against extreme y values. Support vector machine regression methods commonly 
use a loss function that is zero when y – f (x) is less than some cutoff and then 
behaves like absolute error for deviations greater than the cutoff. At this point, 
simply note that there is considerable flexibility in terms of specifying what it 
means to have a prediction be “close” to the true value and that the different 
choices result in different prediction models. The implications will follow shortly 
in some examples. 

3.1.2 Common classification loss functions 

While regression problems focus on predicting continuous outcomes, 
classification methods attempt to label observations as one of k categories. The 
most common loss functions used in classification problems include 
misclassification rate, expected cost, and log-likelihood. Misclassification rates 
are generally the primary measure on which methods are compared. In fact, it is 
generally what problem solvers are aiming to minimize when considering a 
particular classification problem. In almost all problems, however, a false positive 
has a different cost than a false negative. High school dropouts are thought to cost 
twenty times more than graduates in terms of societal costs. The false negatives in 
this case are the more expensive mistake. Let c0 be the cost of misclassifying a 
true 0 case and c1 be the cost of misclassifying a 1 case. For a two class 
classification problem our classifier, f (x), predicts values 0 or 1. Then the 
expected cost is 
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where I(�) is the indicator function that is 1 if the expression is true and 0 
otherwise. Minimizing the expression pointwise at each x we see that ideally f (x) 
should equal 0 whenever c0(1 – P(y = 1|x)) > c1P(y = 1|x). Equivalently, the best 
classifier is 
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We actually do not need an estimate of P(y = 1|x) in order to obtain a good 
decision rule. It is sufficient to have a method that determines which side of 
c0/(c0+c1) the probability would fall. In fact, some excellent classifiers produce 
poor estimates of P(y = 1|x). Note that if c0 = 1 and c1 = 20, as in the high school 
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dropout problem, then any student with a dropout probability exceeding 0.047 
needs special attention. 

Although many classification methods advertise their ability to obtain low 
misclassification costs, many classification procedures minimize cost indirectly. 
Classification trees are among the few procedures that directly aim to minimize 
cost. Many other procedures aim for good estimates of P(y = 1|x), which (5) as 
previously mentioned shows is sufficient but not necessary for developing a 
decision rule for any choice for c0 and c1. In some settings a probabilistic 
prediction itself is necessary to have a complete risk assessment. 

The likelihood principle, studied in detail in Berger and Wolpert (1984), implies 
that any inference about parameters of interest should depend on the data only 
through the likelihood function, the probability that the model would generate the 
observed data. So while (4) is the loss function for minimizing misclassification 
cost, when seeking good probability estimates for the two-class classification 
problem we should look to the Bernoulli likelihood, 
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where p(x) = P(y = 1|x) and is what we want to estimate and study. While up to 
this point we have used f(x) to denote the prediction model that we are trying to 
estimate, here we use p(x) to remind ourselves that it is a probability and must be 
on the interval [0,1]. Many statistical procedures are based on estimates of p(x) 
that maximize the likelihood, intuitively the p(x) that makes the observed data 
most likely. While before we discussed finding f(x) to minimize a loss function, 
here the goal is to find a p(x) to maximize a likelihood. The log-likelihood is the 
more commonly used form of this loss function and, again, we are not simply 
interested in maximizing it for our finite sample but in expectation over a new 
observation drawn from the same distribution that generated our dataset.  
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We will see in section 4.2 that logistic regression procedures are based on 
maximum likelihood estimates of p(x). 

The Bernoulli log-likelihood naturally extends to multiclass classification via the 
multinomial log-likelihood, 
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where pk(x) = P(y = k | x) and the pk(x) sum to 1. With this loss function we will 
seek k functions, each of which estimates one of the class probabilities. Also, 
ordinal regression methods are available when the K classes are ordered as in 
preference rating scales. 

Using the Bernoulli log-likelihood as a loss function focuses on obtaining good 
probability estimates but it is unclear what “good” means in this context. 
Meteorologists especially have been studying accurate probability assessments, 
decomposing prediction accuracy into discrimination and calibration components. 
Discrimination, which generally gets the most attention, is the ability to separate 
the classes while calibration is the ability to assign meaningful probabilities to 
events. When we are dealing with a binary outcome (y is either 0 or 1) the Brier 
score (Brier 1950) shown in (9) offers an interesting assessment of probabilistic 
assignments. 
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The Brier score is small when our probability estimate is small and y = 0 and 
when our probability estimate is near 1 when in fact y = 1. Clearly the Brier score 
is minimized when we have perfect forecasts. Yates (1982) discusses the Murphy 
decomposition of the empirical Brier score exposing different aspects of 
prediction quality. 
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            = uncontrollable variation + resolution + calibration 

(10) 

The first term is the variance of the outcome. It is only small when the yi’s are all 
0 or all 1, something over which we have no control. The variance term also 
represents the best we can do. In the second term the nk represents the number of 
observations that are given the probabilistic prediction pk and ky  is the average of 

the outcomes given the prediction pk. This resolution term is large (very negative) 
when we are able to discriminate the 0 outcomes from the 1s. In that situation the 
average outcome given prediction pk is far from the baseline rate, near 0 or 1. The 
last term measures calibration, the ability to assign meaningful probabilities to the 
outcomes. 

To understand calibration let us again turn to the high school dropout problem. 
Assume we have a probabilistic prediction model. A new set of students arrives 
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on which we assess the dropout risk. If the model is well calibrated then among 
the collection of students to which the model assigned a dropout probability of, 
for example, 0.3, 30% would actually dropout. Figure 1 shows a smoothed 
calibration plot for a boosted classification model (section 5.6) for the high school 
dropout example. The 45º line is the perfectly calibrated predictor. The tick marks 
along the bottom of the figure mark the deciles of the estimated probabilities, 
most of which are below 0.1. Note that for all the students with an estimated 
dropout probability around 0.3, 36% of them actually dropped out. 
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Figure 1: Calibration plot for the high school dropout example 

We learn from the Murphy decomposition that when measuring classification 
performance with the Brier score that both discrimination and calibration are 
important. In practice we will have to decide which attributes are most important 
for the problem at hand. Good classification accuracy alone at times may be 
insufficient. 

Classification is conceptually quite simple. We want to put the right labels on 
observations. But that conceptual simplicity is not easily translated into a loss 
function without additional information on the goals we seek. Choosing to 
minimize cost or opting to go for the best probability estimates leads to different 
choices for loss functions and, therefore, prediction methods. One of the early 
strategic steps in a classification problem is defining the goals and usually that 
translates into a natural choice for the loss function. 
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So far we have presented three candidates for the loss function but others have 
been proposed. Figure 2 shows the similarities and differences among the various 
classification loss functions. First consider relabeling the two classes as –1 and 1, 
y´ = ½(y+1), which simplifies the comparison. Therefore, when y´f(x) is positive 
the observation is correctly classified. The curve labeled M in Figure 2 reflects 
this. Note that all of the loss functions are bounds for the misclassification loss 
function. Also shown in bolder lines are the loss functions for support vector 
machines (section 5.5) and AdaBoost (section 5.6). The different loss functions 
determine how much we penalize our predictor for certain mistakes. The Brier 
score strongly penalizes mistakes but is the only loss function that also penalizes 
overconfidence in predictions, indicated by the upswing in the Brier loss for 
y´f(x) > 1. 
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Figure 2: Classification loss functions  

3.1.3 Cox loss function for survival data 

The last specific loss function discussed here is often used for survival data. We 
include it here partially for those interested in lifetime data but also to 
demonstrate creative developments of loss functions for specific problems. 
Survival analysis continues to be a thriving area in biostatistics and this section 
focuses on a small part, the Cox model for proportional hazards regression. 

For each observation we observe the subject features, xi, the time the subject was 
last observed, ti, and a 0/1 indicator whether the subject failed at time ti, δi. If we 
know the exact failure time for all observations, that is δi = 1 for all i, then we can 
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turn to some of the standard loss functions from section 3.1.1. When we have 
many observations that have not failed, such as customers who have not switched 
their long distance carrier yet, we would lose information if we did not include 
these observations in the estimation process. To make this more concrete, 
customer A in South Dakota with no previously filed complaints has used long 
distance company X for 100 days and remains a customer. The observation for 
this customer would be  

(x = {State=SD, Complaint=0}, � = 0, t = 100). 

Since customer A remains a customer at day 100 they have not yet “failed” and so 
� = 0. Customer B, on the other hand, is from North Dakota, has filed 3 
complaints, and on day 65 of service switches long distance carriers. The 
observation record for this customer would be 

(x = {State=ND, Complaint=3}, � = 1, t = 65). 

So from a dataset of observations (xi , �i, ti), for i in 1, …, N, we want to construct 
a model to predict actual failure time ti from xi. 

The proportional hazards model assumes that the hazard function, the 
instantaneous probability that a subject with feature x fails in the next small 
interval of time given survival up to time t, is 

))(exp()(),( xx ftth λ=  (11) 

where λ(t) is the baseline hazard. This model assumes that the relevance of a 
particular feature does not change over time. If we can estimate f (x) then we can 
determine those indicators that accelerate the rate of failure and those 
observations that have an accelerated risk of failure. Given that an observation in 
the dataset with N observations failed at time t´ the probability that it was 
observation i is 
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Conveniently, the baseline hazard, �(t), cancels in (12). We can then write down 
the likelihood that the first observed failure would have failed at its failure time 
and the second observed failure would have failed at its failure time and so on.  
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If we can find an f (x) that makes the Cox partial likelihood (13) large, this 
indicates that f (x) can put the N observations approximately in order of when they 
will fail. Subsequently we can use this f (x) to determine which subjects that have 
not failed yet are most at risk of failure in the near future. Even though we do not 
know the exact form of the baseline hazard λ(t) we are still able to estimate f (x) 
using only the order of failure times, rather than the actual failure times 
themselves. We can then estimate λ(t) although f (x) is sufficient for identifying 
observations that are prone to shorter times to failure. 

Now that we have a handful of loss functions for measuring predictive 
performance, the next section begins a discussion of finding the ideal f to optimize 
our selected loss function. 

4 Linear models 

In this section we will begin looking at prediction models that have a linear 
structure. Although the structure at first may seem naïve, the development is an 
important one. First, these methods have a long history and are still in widespread 
use. Second, although apparently simplistic these methods can perform 
particularly well when the data is sparse. And third, several of the most modern 
methods build upon the basic linear structure and share some of the model 
building tools. 

4.1 Linear Regression 

Section 3.1.1 introduced the squared error loss function. Now let us restrict the 
model to have the form 

xx βββββ ′=++++= dd xxxf �22110)(  (14) 

where d+1 is the dimension of the feature vector x and the first element of x is 1. 
Rather than having a completely unspecified f(x) we now only have d+1 model 
parameters to estimate. The coefficient, βj, represents a difference between two 
subjects that have the same feature vector except differ by 1 unit on feature xj. 
When fitting linear regression models with a categorical feature with k levels we 
can create k – 1 0/1 dummy variables. If variable x1 has k=3 levels then we can fit 
the model 
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Now β11 represents a difference between category 1 subjects and category 3 
subjects. 

To fit the model we simply select the vector of coefficients to minimize the 
empirical squared error loss 
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where X is the N × d+1 feature matrix and y is a column vector with the N 
outcomes. The solution to (16) is 

yXXX ′′= −1)(β̂  (17) 

solvable in a single pass through the dataset. Figure 3(a) shows the result of a 
linear least squares fit to stroke data from 1996. The jagged curve in the plot is the 
average cost at each motor score. In this simple example we have enough data at 
most values of the motor score to get reasonable estimates. The line generally 
runs through the pointwise averages and shows considerably less instability for 
the sparsely sampled stroke patients with high motor scores. The β that minimizes 
squared error loss is (30251.0, –342.6) and the resulting average squared error is 
5.88 × 107.  

Although this choice of β minimizes squared error for the 1996 data we would 
hope that such a model holds up over time. If we use the model fit to 1996 data to 
predict costs for the 1997, 1998, and 1999 data the average squared error for those 
years is 5.94 × 107, 5.90 × 107, and 6.19 × 107. In general the error on the training 
data will be an overoptimistic estimate of the performance on future observations. 
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(a) (b) 

Figure 3: Predicting cost of stroke rehabilitation from motor ability score. Least 
squares linear fit and the pointwise average fit (a) and the least absolute 
deviations linear fit and the pointwise median fit (b). 

Medical costs are particularly prone to extreme observations. Modeling the 
median rather than the mean offers a more stable model. The minimizer of 
absolute error does not have a convenient closed form expression, however, 
moderately efficient algorithms do exist (Bloomfield and Steiger, 1983). Figure 
3(b) displays the linear model that minimizes absolute prediction error along with 
pointwise median estimates that are well approximated by the line. The β that 
minimizes average absolute loss is (28014.0, –320.2) producing a linear fit with a 
gentler slope than one obtained using the squared error loss. 

4.2 Classification 

In this section we will focus on procedures for 0/1 classification problems but will 
make brief mention of the multiple class case at the end.  

4.2.1 Linear logistic regression 

Statistical methods for binary classification are usually designed to produce good 
estimates of p(x) = P(Y = 1|x) using the Bernoulli likelihood shown in (6). Linear 
logistic regression, one of the earliest techniques, assumes a particular parametric 
form for p(x),  
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As in linear regression, the prediction depends on the feature vector only through 
a linear combination of the components of x. Again this greatly reduces the 
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complexity of the model by reducing the problem to estimating only the d+1 β’s. 
The logistic function transforms the linear combination from the whole real line to 
the [0, 1] interval. Rewriting (18) we can see that this model assumes that the log-
odds are a linear function of x. 

x
x

x β ′=
− )(1

)(
log

p

p
. (19) 

Inserting (18) into the Bernoulli likelihood from (6) and taking the logarithm we 
obtain 
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To fit the model by maximum likelihood we select the � that maximizes (20). No 
closed form solution exists but we can utilize a simple Newton-Raphson 
procedure to numerically maximize the likelihood. The first and second 
derivatives of (20) are 
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where p is the vector of predicted probabilities and W is a diagonal matrix with 
diagonal equal to p(xi)(1 – p(xi)). After selecting an initial starting value for β, the 
Newton-Raphson update is 
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Note the similarity between (23) and the solution to the linear regression model in 
(17). Rather than simply having the y as in (17) we have a working response z and 
we have the weight matrix W. The Newton update, therefore, is a weighted linear 
regression with observation i having weight pi(1 – pi) where the features xi predict 
the working response zi. This algorithm is known as iteratively reweighted least 
squares (IRLS). In practice, convergence usually occurs after 3 to 4 iterations of 
IRLS. We can also begin to think about improvements including non-linear 
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predictors in (19) or using non-linear regression inside the IRLS algorithm. We 
will visit these issues shortly. Note also that the weight is largest when pi is close 
to ½, close to the equal cost decision boundary, an issue that will arise again in 
our discussion of boosting. 

Figure 4 shows a linear logistic regression model fit to the high school dropout 
dataset with two predictors. As expected the model structure forces the contours 
to be parallel. From the predicted probabilities we can apply our decision rule and 
estimate the expected cost per student. As before, assuming that failing to detect a 
dropout is 20 times more costly than failing to identify a graduate the decision 
boundary is p = 0.047, marked by the upper contour in Figure 4. All students 
above that line are classified as graduates and those below that line are classified 
as dropouts. Clearly this model puts the majority of cases as dropouts. Had we 
assumed everyone would graduate our expected cost would be 3.3. Assuming 
everyone is a dropout would cost us 0.83. But using the information in the two 
predictors our expected costs are reduced slightly to 0.81. While this is a modest 
decrease perhaps additional predictors may further reduce misclassification costs. 
On the other hand, perhaps the rigidity of the linear logistic model will prevent us 
from identifying the characteristics of the dropouts. 
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Figure 4: Probability of dropout predicted from family income and percentage of 
students at school in a free lunch program. The four lines indicate contours of 
equal probability of dropping out. The ×’s mark the dropouts and the •’s mark the 
graduates. 

4.2.2 The naïve Bayes classifier 

The naïve Bayes classifier (Hand and Yu, 2001) is, in spite of its name, a very 
powerful classifier. It is simple to program, fit to data, and is easy to interpret. 

If Y is the class variable that we would like predict using predictors x, then the 
naïve Bayes classifier has the form 
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Equation (24) is a direct application of Bayes Theorem. To transition to (25) 
requires a naïve assumption, that given the true class the features are independent. 
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For example, given that a particular child dropped out, knowing that they had 
poor grades gives no additional information about their socioeconomic status. 
This implies that dropout status is sufficient information to estimate any of the 
child’s features. The chapter on Bayesian methods diagrams the naïve Bayes 
classifier as a graphical model. Refer to the figure there to see this graphically. 

The naïve Bayes assumption gives the naïve Bayes classifier the same structural 
form as linear logistic regression described in the previous section. Letting 
p(x) = P(Y = 1 | x) we see that the naïve Bayes classifier is additive on the log 
odds, or logit, scale. 
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Note that the structural form is similar to the form used for linear logistic 
regression in (19). If all of the xj are categorical then the functional forms are 
exactly the same. Standard practice has been to discretize the continuous xj’s, 
creating histogram estimates of P(xj | Y). This creates an additive model where the 
wj components are step functions rather than linear functions of xj.  

Logistic regression assumes that P(Y = 1|x) = P(Y = 0|x)exp(��x) where the 
P(Y = 0|x) can have an arbitrary form. In some respects, naïve Bayes has a more 
restrictive assumption, specifying a distributional form for both classes, 

The estimation procedure separately estimates the components for y = 0 and y = 1 
before combining into a single classifier. This assumption has some advantages 
for large dataset applications. The assumption allows us to estimate this model in 
a single pass through the dataset and missing xj values can be ignored. In the next 
section we will look at a third linear classifier with yet another set of associated 
assumptions. 

4.2.3 Linear discriminant analysis 

Fisher (1936) proposed linear discriminant analysis (LDA) for classification 
problems. As with the naïve Bayes classifier, LDA uses Bayes theorem to reverse 
the conditional probability (24) and makes an assumption about the distribution of 
the features with in each class. Rather than assume conditional independence as in 
(25), LDA assumes that P(x | Y = y) is a multivariate normal density where all the 
classes share a common covariance matrix. With these two assumptions the log-
odds again has a form that is linear in x.  Unlike logistic regression and naïve 
Bayes, LDA is very sensitive to outliers in x and in general performs quite poorly. 
Figure 5 shows an LDA fit to simulated data. When the features are truly 
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multivariate normal as in Figure 5(a) both LDA and logistic regression produce 
approximately the same decision boundary. When one class is contaminated with 
outliers the decision boundary can move substantially and perform worse than 
logistic regression Figure 5(b). 

  
 

(a) (b) 

Figure 5: LDA decision boundaries where x is multivariate normal with each class 
(a) and when one class is contaminated with outliers (b). The heavy line is the 
LDA boundary and the lighter line is the logistic regression boundary. 

In the last 70 years discriminant analysis, like other methods, has undergone 
considerable modernization. Although the simple form described here tends to 
perform poorly, LDA’s descendants can perform quite well. They generally relax 
the normal distribution assumption and allow the classes to have separate 
distributions each of which we can model with a more flexible density estimator. 
See Hastie et al (1994) and Ridgeway (2002) for examples of these extensions. 

4.3 Generalized linear model 

In this section we briefly mention the connection to a large class of regression 
models that one can understand as variations on the linear logistic regression 
development. Section 4.2.1 showed a particular transformation of f(x) onto the 
probability scale using the logistic transform (18) and then used the Bernoulli 
likelihood to determine the best fitting linear model. Statisticians often prefer the 
logistic transform as the link function, the function relating the probability to f(x), 
mostly because it allows interpretation of model coefficients as log odds-ratios. 
Economists, on the other hand, have tended to use probit regression differing 
from logistic regression by its use of the inverse Gaussian cumulative distribution 
as the link function, p(x) = Φ–1(f(x)). There is considerable flexibility in choosing 
the link function although the logit and probit are by far the most common. 
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Besides the choice of link function for logistic regression, we can vary the 
likelihood itself to capture an enormous class of useful prediction problems. The 
Bernoulli distribution is particular to 0/1 outcomes. The Poisson distribution is 
often used to model outcomes involving counts (items purchased, cigarettes 
smoked, etc.) and has the form 
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where λ(x) represents the expected count for an observation with features x. 
Oftentimes an observation will have a time measurement in addition, such as time 
as a customer or time since released from treatment. In such instances researchers 
commonly parameterize the Poisson model as 
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so that λ(x) represents a rate of occurrences. Using the log link function, 
log λ(x) = β′x, we are assured that the rate will always be positive. For this reason 
Poisson regression is often referred to as log-linear modeling. If we have N 
independent observations (yi, xi, ti) then we can write down the log-likelihood as 
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Except for the last two terms that do not involve β, (30) closely resembles (20). 
Inside the sum in both cases we have the outcome, y, times the linear predictor 
minus a term which has the expected value of y as its derivative. Fitting the 
Poisson model also involves a few iterations of a simple IRLS algorithm. 

The Bernoulli and Poisson prediction methods are special cases of the class of 
generalized linear models (GLM). After selecting the variables for the linear 
predictor, the distribution of the response, and a link function, the GLM 
framework packages together a likelihood based loss function and an IRLS 
algorithm for fitting the models. Even the linear least squares model from section 
4.1 falls into this framework with a Gaussian distribution for the response and an 
identity link function. Simply replace the Poisson distribution in (29) with the 
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Gaussian distribution. Then setting the derivative of the log-likelihood equal to 0 
and solving for � produces exactly the least squares solution we saw earlier. 

Other useful GLMs include multinomial logistic regression for multiclass 
classification, Gamma regression for skewed outcome distributions (like cost), 
and negative binomial regression for count data with extra-Poisson variation. 

McCullagh and Nelder (1989) provide a complete guide to the basics of the GLM. 
Greene (1999) also discusses these methods with respect to econometrics. 
Although the development of the GLM in this section is brief, this overview 
should give the impression that one has considerable flexibility in determining 
how to model the outcome variable. For continuous, binary, and count outcomes 
the GLM framework is one good starting place. The linear part is easily 
replaceable with any other functional form as we will see in the next section. 

5 Non-linear models 

In spite of their computational simplicity, stability, and interpretability, linear 
models have an obvious potential weakness. The actual process may not be linear 
and such an assumption introduces uncorrectable bias into the predictions. When 
data is sparse or the dimension of x is large, linear models often capture much of 
the information in the data as shown in Figure 6(a). There the linear model seems 
to capture much of the information. Detecting non-linear features requires more 
data with a low signal-to-noise ratio. Data mining applications inherently involve 
large datasets and so the general trend is almost always to use non-linear methods, 
implying that most data miners feel that their data is closer to the situation in 
Figure 6(b). Although the same mechanism generated both datasets, the increase 
in data in Figure 6(b) makes the linear model less appealing. Problems with a 
large number of features require caution. Such situations will more closely 
resemble Figure 6(a). Non-linear models run a much greater risk of being overfit 
to the training dataset and the chapter on performance analysis and evaluation in 
this handbook requires careful attention.  
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Figure 6: Utility of linear and non-linear models 

This section explores a few of the popular non-linear prediction methods. These 
methods generalize the previous discussion by allowing f(x) to take on a more 
flexible form.  

5.1 Nearest neighbor and kernel methods 

The k nearest neighbor (knn) prediction model simply stores the entire dataset. As 
the name implies, to predict for a new observation the predictor finds the k 
observations in the training data with feature vectors close to the one for which 
we wish to predict the outcome. The prediction depends on the loss function and 
in general is 

)(minarg)( )( θ
θ

xx NJf =  (31) 

where θ is a constant and JN(k, x) represents the loss function computed for only the 
k closest observations in a neighborhood near x. For example, the knn predictor 
for squared error loss is 
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the average of the outcomes for the k observations nearest to x. The knn classifier 
works similarly. It collects the k nearest observations and predicts the class that 
minimizes cost, the most popular class in the case of equal misclassification costs. 
Although the method may seem naïve it is often competitive with other, more 
sophisticated prediction methods. Figure 7 shows the knn classifier predicting 
high school dropout probability from family income and where k = 100. The 
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features were rescaled for the distance calculations so that they both had unit 
variance. The heavy contour line marks the decision boundary between predicting 
a dropout and predicting a graduate. Only the students from the wealthier families 
in schools with few students on a free lunch program will not be classified as a 
dropout risk. 
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Figure 7: The 100 nearest neighbor classifier for the high school dropout data. 
The darker regions of the figure represent greater dropout risk. The lightest 
regions of the figure indicate a near 0 dropout risk. 

Where the linear model is rigid the knn predictor is extremely flexible as Figure 7 
clearly demonstrates. Compare Figure 7 to Figure 4. That flexibility can be 
abused by allowing k to be too small. Recalling the discussion from section 3.1.2, 
knn tends to offer poor probability estimates but nevertheless tends to be quite 
good at minimizing misclassification cost. We can look at how different choices 
for k affect prospective predictive performance as shown in Figure 8. Assuming 
that failure to identify a dropout is 20 times more costly than failure to identify a 
graduate, we can compute the average cost per student for our decision rule. 
Minimizing the expected cost heavily depends on careful selection of k. If we 
classify every student as a graduate the expected cost is 3.3, about what we see 
with the 1-nearest neighbor classifier. Classifying all students as dropouts, the 
decision rule when k gets very large, produces an expected cost of 0.83 shown as 
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the horizontal line in Figure 8. The minimum expected cost, 0.75, occurs when 
k = 90. The 90 nearest neighbor classifier puts 83% of the students at a greater 
than 4.7% chance of dropout. The linear logistics regression model has an 
expected cost of 0.81 and classified 90% of the students as dropouts. 
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Figure 8: Predictive performance for different values of k. Expected cost uses 
probability of dropout exceeding 4.7% as the decision boundary  

As N gets arbitrarily large and k grows at a certain rate (much slower than N) this 
predictor will converge to the true optimal predictor, a property known as Bayes 
risk consistency. However, the performance of the predictor for datasets of 
practical size depends heavily on k, the metric used to determine which 
observations are close, and the dimension of the feature vector. 

A natural generalization of the knn predictor f(x) involves having every 
observation contribute its outcome to the prediction weighted by its distance to x. 
Returning again to squared error 
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a weighted average of the outcomes where wi = K(xi, x), a function that decreases 
as xi moves further from x. The knn predictor is a special case of (33), when 
K(xi, x) takes value 0 or 1 depending on whether xi is among the k closest 
observations. First considering the case with a single continuous predictor, let 
K(xi, x) be the Gaussian density 
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with mean equal to x and standard deviation σ, known as the bandwidth for the 
kernel regression model. Figure 9 shows stroke rehabilitation cost models using 
two kernel regression estimates with different bandwidth settings and the linear 
model from Figure 3. The cost axis is rescaled from Figure 3 to reveal details of 
the model differences. As the bandwidth gets small the kernel regressor resembles 
the pointwise average estimate shown in Figure 3 and exhibits a lot of variance in 
regions where there are fewer data points. The larger bandwidth is smoother and 
shows a lot of stability even in the extreme motor scores. Although all the 
methods align for the most common motor scores, the linear model reveals its 
bias in the extreme motor score values. In many prediction problems, data often 
show the presence of saturation effects (at some point additional improvements in 
motor ability do not decrease cost) and threshold effects (decreases in cost do not 
begin until motor exceeds some threshold). Note that if we only observe patients 
in motor score in the 30 to 60 range, the linear model would work extremely well 
and we would have little reason to consider other models. Other prediction 
methods can easily outperform linear models when a substantial portion of the 
dataset lies to the right of the saturation point and to the left of the threshold point. 
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Figure 9: A kernel regression prediction model  

Kernel regression methods generalize to multivariate feature vectors and the 
reader is referred to Hastie et al (2001) for more details. Support vector machines, 
discussed in section 5.5, are in fact a particular kind of kernel regression method.  
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The primary disadvantage of the knn predictor and naïve implementations of 
kernel methods for data mining applications is the need to store the entire dataset 
and the expense of searching for nearest neighbors or computing kernels in order 
to make a prediction for a single new observation. Some algorithms exist for 
trimming down the storage needs for these models. However, they still generally 
receive little attention as competitive data mining procedures in spite of their 
utility for non-linear modeling. 

For the data miner interested in prediction methods, nearest neighbor and kernel 
methods have instructional value. The heuristic is that when predicting an 
outcome at x we borrow information from those points in the dataset that are close 
to x. We trust that the underlying function is fairly smooth so that nearness in 
terms of x implies similar outcomes. The linear models discussed in section 4 
share this idea but assume the rigid functional form to interpolate between points. 
Remember that all prediction methods that are minimizing the same loss function 
differ only in how they interpolate between the points in the dataset. In some 
fashion they combine the outcomes from points in a neighborhood near x. How a 
method selects that neighborhood and how it combines the outcomes will 
determine its scalability, its interpretability, and its predictive performance. 

5.2 Tree models 

The chapter on tree models in this handbook extensively discusses the use of tree 
structured prediction methods. Tree structured predictors usually assume that f(x) 
is a piecewise constant function where splits on the individual feature axes define 
the pieces. The terminal node of the tree defines the neighborhood and the 
constant that minimizes the loss function within the terminal node becomes the 
node prediction. 
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Figure 10: CART for cost of stroke rehabilitation. The two diamonds refer to the 
hypothetical patients discussed in the text. The inward ticks on the axes mark the 
deciles of the distribution of the motor and cognitive scales. 

The advantages of tree predictors for data mining is that fast algorithms exist to 
construct them from data, prediction for new observations is quick, the method 
handles all types of input variables, and the model is storable in a compact form. 
This differs sharply from the nearest neighbor methods. However, as linear 
models can be criticized for their rigid functional form, the constant within-node 
prediction is rigid in a different way. Figure 10 shows how CART partitions 
stroke patients by motor and cognitive score into groups with relatively 
homogeneous cost. Note that in Figure 10 the model predicts that the patient with 
a motor score of 27 and the patient with a motor score of 28 (marked with 
diamonds in the figure) have costs that differ by $2,510, the difference in the 
predicted cost from each region. We really do not believe that cost varies so 
abruptly. Such biases around the partition edges can reduce prediction accuracy. 

Like the nearest neighbor predictor, tree structured procedures are generally 
Bayes risk consistent (Gordon and Olshen, 1984). That is, as the dataset grows 
and the number of terminal nodes grows at a certain rate, the model converges to 
the minimizer of the population loss function. Although this is an interesting 
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mathematical fact it should be taken as a caution rather than a benefit. Trees can 
have a lot of variability in addition to edge biases.  

Although trees are often appreciated for their apparent interpretability one should 
use caution due to their instability. To demonstrate we randomly split the high 
school dropout data into two parts and fit a CART classification tree to each. 
Figure 11 shows the resulting models. The two trees give very different 
perspectives concerning what is important in determining the risk of dropout. 
When several variables are correlated with each other and the outcome, the tree 
must select a single variable for the splitting variable, hiding the importance of 
other interesting inputs. Again, it is easy to be fooled by the trees transparent 
functional form and overlook important variables not included in the tree. 

 Grade composite >= 2.55 

Behavior problems = No 

Held back in 7th grade = No 

Parents aspirations >= 9.5 

Grade composite >= 1.55 

SES >= -0.766 

0 

0 

0 1 0 1 

1 

 

 Discipline problem = No 

Parental aspirations >= 9.5 

school changes < 3.5 

School % minority >= 5 

school changes < 1.5 

Urbanicity >=1.5 

Held back in 6th grade = No 

Self-esteem < 0.525 

0 

0 

0 1 

0 1 

1 

1 

1 

 

Figure 11: CART fit to two random splits of the high school dropout dataset. 

5.3 Smoothing, basis expansions, and additive models 

One disadvantage of tree models is that they produce discontinuous predictions 
and the main disadvantage of the linear models is that they enforce strict 
smoothness everywhere. This section considers methods between these two 
extremes. 

Splines utilize piecewise polynomials (usually linear or cubic) to model f(x). 
Remember that trees use piecewise constants and that linear models use a single 
linear equation. Splines are, therefore, one further step in this progression. As 
with trees, spline methods need to select split points, known as knots in spline 
terminology. Between the knots we fit a polynomial of our choice to minimize our 
loss function. Natural cubic splines are among the most popular. Between each 
knot these splines fit cubic polynomials but fit linear models in the range outside 
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the first and last knots. In addition they enforce continuity of f (x), f ′(x), and f ′′(x) 
at every knot. Figure 12 shows two examples of natural splines with differing 
numbers of knots. One can fit fairly flexible curves, including saturation and 
threshold effects previously mentioned, with only a handful of knots. 

 

linear 

cubic 

 
 

Figure 12: Natural splines with 4 and 20 knots on simulated data. The knots, 
shown as solid points, are placed at equally spaced quantiles of the x variable. 

The motivation for splines given earlier is that they seem a natural generalization 
of piecewise constant and linear models. Natural splines also arise in a curious 
way from a redefined loss function. Rather than simply minimize squared 
prediction error, consider minimizing it subject to a penalty on the magnitude of 
the function’s second derivative. 
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If λ, known as the smoothing parameter, is 0 then the function can be arbitrarily 
jagged and interpolate the data. The best model when λ is large has f ′′(x) = 0 
everywhere, the ordinary linear model. However, when λ takes on other, 
moderate values, the function that minimizes (35) smoothly fits the data. It turns 
out that the minimizer of (35) over a very rich class of functions is unique and is a 
natural spline! The minimizing natural spline has knots at every observed xi but 
the coefficients of each cubic are further restricted by an amount that depends on 
�. We can use cross-validation to select �. 

A discussion on the details for fitting natural splines comes later, but as discussed 
so far, they can be computationally expensive for use with massive datasets. An 
easy adaptation is to reduce the number of knots as originally shown. Rather than 
placing knots at every data point, 5 to 20 knots are likely sufficient for many 
univariate applications. A potential downside of splines is that they are not 
invariant to transformations in the x variable. If instead of using x we use log x as 



 30 

the feature we will obtain a different natural spline for the same λ. While tree 
models are invariant to transformations in x, for smooth models one needs to think 
more carefully about the scale used for x. In section 5.6 we will see that boosted 
trees allow fairly smooth predictions but are also invariant to transformations of 
the features. 

The above natural spline discussion focused on problems with a single feature. So 
far, for problems involving more than one feature we have considered only 
models that are linear in x or are local averages in neighborhoods of x. Basis 
expansions represent yet another broad class of models. Assume that the best 
predictor f (x) is well approximated by a sum of basis functions. 

�
=

=
K

k
kk gf

1

)()( xx β  (36) 

The basis functions in the collection, gk(x), are often simple functions that can be 
combined to describe more complex functions. 

Many of the models we have previously discussed fall into this framework. Note 
that if gk(x) = xk–1, with x0 = 1, then (36) reduces to the linear model previously 
discussed. Trees can also be recast as a basis expansion where gk(x) = I(x ∈ Nk) 
where Nk is a defined by upper and lower limits on certain components of x, such 
as the 12 partitions shown in Figure 10. Tree learning algorithms vary on how 
they select the number of basis functions and the form of Nk. One can naturally 
imagine other choices for the basis functions. 

A univariate cubic spline with K knots c1, …, cK is decomposable into K+4 basis 
functions 
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where (x)+ = max(0, x). The cubic spline maintains a cubic fit before c1 and after 
cK where the natural spline uses a linear fit. To fit these models we can utilize all 
the methods developed for fitting linear models. Note that if we have K=2 knots 
our predictor looks like 
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precisely a linear model with five features. With a little effort we can see that (38) 
is a continuous piecewise cubic function with continuous first and second 
derivatives at the knots. Since (38) is simply a linear model we can use (17) to fit 
the cubic spline. 
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Fitting cubic splines using the basis functions shown in (37) requires O(NK2+K3) 
operations. Other sets of basis functions for cubic and natural splines are more 
efficient. In particular, B-splines, have computational properties that allow the 
models to be fit in O(N log N+K) operations.  

General multivariate extensions to natural splines exist, known as thin-plate 
splines, but have not been developed to the computationally efficiency needs of 
data mining yet. Additive models, on the other hand, can take advantage of 
smoothing methods to create particularly powerful methods for exploratory 
analysis as well as prediction. Additive models use the basis functions 
gk(x) = gk(xk) so that each basis function is a function of only one of the features. 
In this way we can generalize from the simple linear model while maintaining a 
fairly simple, stable model. 

For the cost of rehabilitation data we can fit a regression model where the 
predictor has the form 

)cognitive()motor()( 210 ggf ++= βx  (39) 

requiring that g1 and g2 are smooth functions of their arguments by modeling 
them as natural splines. Additive models are generally not Bayes risk consistent in 
most applications. That is, as the dataset grows they cannot capture true 
interaction effects. However, they can often outperform other methods in practice 
especially when the data is noisy. In addition plotting the gk(xk) can give much 
insight into the contribution of the individual features to the outcome. Figure 13 
shows the additive model fit to the cost of stroke rehabilitation data. Compare the 
contours with Figure 10. The marginal plots in the figure show the estimates of g1 
and g2 and are scaled equivalently. From the marginals alone we can see that the 
motor score is really driving the cost. The cognitive score has some information 
and seems to indicate that costs are slightly lower for patients at the extremes of 
the cognitive scale. 
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Figure 13: The estimates of g1 and g2 for cost of rehabilitation. The curves plotted 
in the margin are g1(motor) and g2(cognitive). 

The backfitting algorithm is the common method of fitting additive models of this 
form. The constant β0 is fixed at the mean of the yi’s and the iterative algorithm 
begins by fitting the univariate natural spline to predict y from motor score. Then 
the algorithm builds a natural spline to fit the cognitive score to the residuals left 
over from the motor score component. The motor score component is refit and the 
process iterates until convergence. This algorithm is fast as it generally involves 
only a few iterations, each of which uses an efficient B-spline implementation. 

Hastie and Tibshirani (1990) provides more details on additive models including 
extensions to the GLMs from section 4.3. The interested reader might also look 
into multivariate adaptive regression splines (MARS) (Friedman, 1991). Just as 
CART implements a greedy search to construct a tree, MARS greedily constructs 
a model by introducing features into the prediction model (usually) through linear 
splines. It selects the variable and the spline transformation that offers the greatest 
decrease in prediction error through an exhaustive search similar to CART. The 
result is a modeling framework that allows some variables to enter as main effects 
(CART is only one big interaction term) and others to be interacted with one 
another. Many variations on this theme are possible. 
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5.4 Neural networks  

While the neural network chapter in this handbook discusses these models in 
much greater detail, the brief discussion here casts them into the framework 
developed in this chapter. Like all the methods discussed so far there are 
variations in the functional form of the neural network predictors and the 
algorithms for fitting them. Generally, however, the single hidden layer neural 
network can be expressed in terms of a basis expansion 
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where s(z) = 1/(1+e–z), the logistic transformation. The K basis functions are 
known as the hidden units and the number of them is often fixed but may be 
selected by cross-validation. 

For univariate classification problems neural networks model P(Y = 1|x) like the 
logistic regression model (18). For M-class classification problems we create a 
multivariate outcome for each observation, yi, where the mth value takes on the 
value 1 if the observation is in class m. Maintaining a common set of αk’s as in 
(40), we allow each dimension of y to have a different βkm and the prediction as 

�
�

=′ ′=
==′=

M

m m

m
K

k
kkmm

f

f
mYPsf

1
1 )(exp

)(exp
)|(   and   )()(

x

x
xxx αβ . (41) 

See the neural network chapter concerning methods for estimating the parameters 
of neural networks. Their inclusion in this section is to show that they share the 
same building blocks as all the other methods. Neural networks make specific 
choices for their basis functions but then can be used to minimize any loss 
function that we adopt for an application. The term universal approximator has 
been used for neural networks to mean that they can approximate any regression 
function. As the dataset grows and K is allowed to grow they are Bayes risk 
consistent (Barron, 1991). These are properties also shared by trees, nearest 
neighbors, and thin-plate splines. However, neural networks have the curious 
mathematical property that the rate at which the estimated predictor converges to 
the best predictor does not depend on the dimension number of features (Barron 
1993). 

5.5 Support vector machines 

Several of the previous classification examples focused on obtaining good 
estimates of P(Y = 1 | x) and then perhaps applying (5) to get a cost minimizing 
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decision rule. The support vector machine (SVM) in its basic form aims directly 
for the decision boundary. 

We begin with an example of a linearly separable dataset shown in Figure 14. 
There are two continuous features and the class labels are y = +1 or y = –1 marked 
by clear and solid dots respectively. Many lines can separate the two classes. 
SVMs select the line that maximizes the margin, the space between the decision 
boundary and the closest points from each of the classes. With separable classes 
we can find a separating line having the form w′x + b = 0 such that 

1+≥+′ bixw  when yi = +1 

1−≤+′ bixw  when yi = –1. 

(42) 

 

(43) 

We can rescale w and b so that for some point(s) equality holds in (42) and in 
(43). A little geometry shows that the two planes defined by w′xi + b = 1 and 
w′xi + b = –1 are parallel, have no points between them, and are separated by a 
distance of d where 
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Putting these steps together, fitting the SVM corresponds to maximizing the 
margin (44) subject to the constraints (42) and (43) solvable as a quadratic 
optimization problem. 



 35 

 

Support 
vectors 

w′xi + b = +1 w′xi + b = –1 

margin 

x1 

x 2
 

 
Figure 14: Geometry of the linear SVM. x1 and x2 represent two arbitrary 
continuous features 

In the more practical case when the classes are not completely separable, SVMs 
still maximize the margin but allow for a limited number of observations to be on 
the wrong side of the decision boundary. We can introduce slack variables, �i � 0, 
into the constraints (42) and (43) as 

ii b ξ−≥+′ 1xw  when yi = +1 (45) 

ii b ξ+−≤+′ 1xw  when yi = –1. (46) 

B
N

i i ≤� =1
ξ  (47) 

Again SVMs maximize the margin subject to (45) and (46) but also penalize the 
sum of the �i (47), restricting the budget we have for observations being to far 
from the decision boundary. The details of the fitting algorithm are fairly tedious 
but two important ideas come in their development. To fill in the details not 
covered here see the excellent SVM tutorial in Burges (1998). The SVM 
optimization problem can be recast in its Wolfe dual form as  
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along with several constraints on the �i’s relating to the observed data and the �i. 
The solution for the prediction rule is 
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Usually most of the �i’s turn out to be 0. Those observations corresponding to a 
positive �i are called the support vectors. Conveniently the prediction rule 
depends only on the support vectors. In Figure 14 there were only three support 
vectors.  

As with the linear models described in section 4, SVMs are easily extended by 
expanding the set of features used in forming the decision boundary. We could 
assume that the decision boundary has a basis expansion form like (36). An 
interesting feature of the SVM is that the features only enter the fitting stage (48) 
and the prediction stage (49) through the inner product of the features, xi�x. Rather 
than having to specify the set of basis functions explicitly, only the inner product 
of the basis functions needs definition. The common replacements for xi�x are 

radial basis ( )cK ii /exp),(
2

xxxx −=   

polynomial c
iiK )1(),( xxxx ′+=  (50) 

neural network )tanh(),( 21 ccK ii +′= xxxx .  

These choices for the kernel are flexible and quick to compute. Therefore, to use 
SVMs for prediction one needs to select a kernel, the kernel tuning parameters, 
and the roughness of the decision boundary determined by B from (47). 

To make the comparison of SVMs with other classifications we can reformulate 
the optimization problem (45)-(47) as a loss function shown in (51). 
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Revisit Figure 2 to compare this to the other classification loss functions. The first 
part of the SVM loss function encourages yi and f(xi) to agree on the sign. When 
they disagree the penalty increases linearly in the magnitude of f(xi). The second 
component penalizes the magnitude of the linear coefficients, equivalently 
controlling the margin. As with the smoothing splines (35), � is a user specified 
smoothing parameter. SVMs, therefore, are characterized as using (51) as the loss 
function, having structural form (49) that may be generalized with a kernel choice 
from (50), and utilizing quadratic programming to fit the models to data. 
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5.6 Boosting 

Although boosting has a technical definition in terms of computational learning 
theory, it has been more generally applied to methods that use a flexible gradient 
ascent approach to fit a prediction model. Schapire and Singer (1998) introduced 
the Real AdaBoost algorithm for classification problems, one of the most 
commonly used forms of boosting. Friedman et al (2000) decomposed this 
algorithm into its basic components: the loss function, the functional form, and 
the estimation procedure. 

First consider the classification problem for which y takes on values +1 or –1. The 
Real AdaBoost loss function is 

))(exp()( | xx yfEfJ y −= . (52) 

If y and f(x) frequently agree on the sign then (52) will be small. Furthermore, the 
AdaBoost loss function is an upper bound to the misclassification rate as shown in 
Figure 2. So intuitively, if on average y and f(x) frequently agree on the sign then 
(52) is small and the misclassification rate will be small. 

Boosting’s main innovation comes when we look at how it estimates f(x). Assume 
that f0(x) is our current guess for the best predictor. To improve upon our current 
guess we can consider adding a new function, g(x), to “fix” it. Of course we want 
to choose the g(x) that helps us to decrease the loss function (53) the most. 

( )))()((exp)( 0| xxx gfyEfJ y +−= . (53) 

Setting the derivative of (53) with respect to g(x) equal to zero gives us the 
“direction” in which f0(x) needs the most improvement, 
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Where Pw(y | x) is a weighted probability estimate with weight exp(–yf0(x)). The 
brief derivation here deals with expectations but this is easily translated into data 
applications.  

Begin with a naïve guess for f0(x), perhaps a constant, c. 

For t in 1,…,T do the following 

1. Assign weights to the observations, wi = exp(–yft–1(xi)). 
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2. Obtain an estimate for Pw(y = 1 | x) using any prediction model that can 
handle weights and puts out a probabilistic prediction. Classification trees 
are by far the most popular.  

3. Form gt(x) as in (54) and lastly 
4. Update the current guess as ft(x) � ft –1(x) + gt(x). 

For a new observation x the model predicts that y = sign( fT (x)). 

It is helpful at this point to note some similarities with the linear logistic 
regression discussion in section 4.2.1. Like AdaBoost, the IRLS algorithm for 
linear logistic regression repeatedly fits weighted regression models to the dataset 
to obtain the best fit. In that situation the model is restricted to have a linear form 
and so the updates get directly absorbed into the current guess for �. In addition 
the IRLS weights were pi(1 – pi), which are largest when pi = ½, the point at 
which the equal cost decision rule is most in question. This behavior is replicated 
in the AdaBoost weights. Those weights are largest when y and f0(x) greatly 
disagree, perhaps the more difficult observations to classify.  

Having discussed the loss function and estimation process, the last component is 
the predictor’s form. This depends much on the base classifier selected for the 
Pw(y = 1 | x) estimate. If we use the naïve Bayes classifier AdaBoost leaves it 
unchanged from the linear form (approximately so for the earlier Discrete 
AdaBoost algorithm, Ridgeway et al 1998). If we use stumps, decision trees with 
only a single split, the final model falls into the class of additive models of the 
form (39). To see this, note that the model that AdaBoost produces has a basis 
expansion form 

)()()()()( 121 xxxxx TTT ggggcf +++++= −� . (55) 

In the additive model discussion the basis functions were decided upon ahead of 
time then fit simultaneously to the data. Boosting selects the basis functions in 
(55) greedily rather than simultaneously. If we use stumps then each gt(x) is a 
function of one feature alone. We can then collect all those gt(x)’s that split on 
variable j into a single component. 
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A two split decision tree for the base classifier results in an additive model with 
each term potentially being a function of two features. Therefore the depth of the 
tree allows us to select the complexity of the feature interactions.  

For data mining applications decision trees turn out to be an excellent choice for 
the base model. Trees seamlessly handle continuous, ordinal, nominal, and 
missing data. The other methods that this chapter discusses do not necessarily 
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handle such a mix of data types easily. Trees are also invariant to one-to-one 
transformations of the features, using only the order information to determine the 
optimal partitions. For example, whether we use income or log(income) as a 
feature the tree will have the same form and produce the same predictions either 
way. The split points will be on the corresponding scale but all else will be the 
same. The performance of other methods can be particularly sensitive to feature 
transformations. This invariance in turn adds a bit of robustness to the boosted 
tree model. 

Generalizations of the AdaBoost algorithm amount to selecting a different loss 
function, applying the same estimation procedure, and perhaps examining 
different base classifiers. Boosting can be generalized to all of the other loss 
functions discussed in section 3. Friedman (2001) gives a general framework for 
developing boosting algorithms, deriving specific algorithms for least squares, 
robust, and logistic regression. 

To demonstrate the flexibility of boosting, consider the Cox loss function from 
section 0 for survival data (see also Ridgeway 1999). We will apply the boosting 
ideas to maximize the log-partial likelihood, the logarithm of (13). 
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As with AdaBoost we can find a function to add to f(xi) to improve the model. 
The derivative of (57) pointwise with respect to f(xi) indicates the direction that 
will adjust f(xi) to increase the likelihood. The derivative equals 
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This means that for some step size, �, if all the f(xi) in (57) were replaced with 
f(xi) + �zi then the likelihood would increase. In the AdaBoost algorithm � is 
exactly 1 but more generally we need to set it. Generally, zi has information 
indicating how to adjust the current guess for f(x). To pull in the features we fit a 
regression tree, g(x), predicting zi from xi. If g(x) can capture the gradient 
information from zi a good update is f(x) � f(x) + �g(x), where � can be selected 
with a line search. 

To examine the performance of boosting Cox’s proportional hazards model, we 
turn to a clinical trial for testing the drug DPCA for the treatment of primary 
biliary cirrhosis of the liver (PBC). This dataset has been the subject of several 
modern data analyses (Dickson et al 1989, Fleming et al 1991, Raftery et al 
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1996). The data consist of 310 patients with complete observations on the 
predictors. Of these, 124 patients died during the study and the remaining 186 
were censored observations. Of the eight features Raftery et al (1996) considered, 
we selected the six continuous features for use in the model. 

 

iteration 

pa
rt

ia
l l

og
-li

ke
lih

oo
d 

0 20000 40000 60000 

-2
80

 
-2

70
 

-2
60

 
-2

50
 

-2
40

 

 

Figure 15: Partial log-likelihood for PBC data. The upward trending curve 
indicates the boosted trees performance on test data. The horizontal line indicates 
the partial likelihood from the linear Cox model. 

We tested this method by comparing the out-of-sample predictive performance of 
the linear Cox model to the boosted Cox model using regression stumps as gt(x), 
the base regressor. To judge the out-of-sample predictive performance of the two 
models, we trained each on half of the observations, reserving the rest for a test 
set. Figure 15 shows the value of the validation log-likelihood as the algorithm 
proceeds. To obtain a very smooth prediction surface we shrunk the � by a factor 
of 1000, making each adjustment very slight and requiring many more iterations. 
We see that after 40,000 iterations the boosted estimate has surpassed the linear 
Cox model. Furthermore, for the next 30,000 iterations the boosted version 
continues to improve, although at a diminishing rate of return. Even though the 
model fitting used many iterations, it takes about a minute to complete the 
iterations on this small dataset. 
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Figure 16: Boosted estimates of the main effects of the PBC data. The curves are 
the boosted estimates of the functions and the superimposed lines are the 
estimates from the linear model. 

Since the base regressors were one-split decision trees, we can investigate the 
estimates of the main additive effects as in (56). Figure 16 shows the boosted 
estimates of four of those effects along with those based on the linear model. 
Every variable shows evidence of either a threshold effect, a saturation effect, or 
both. In the region where most of the data points are concentrated, for most of the 
variables (except bilirubin) the underlying regressor is nearly linear. For this 
reason we would expect the linear model to perform reasonably well. However, 
for a patient with a more extreme value for any of the variables the boosted model 
is far superior. When effects depart substantially from linearity, as in the PBC 
dataset, accurate survival prediction for all patients depends on a non-linear 
estimation procedure like boosting. 

6 Availability of software 

This section returns to the methods reviewed in this chapter indicating what 
software tools are available. Many of the available tools come in the form of add-
ons to other packages, such as S-plus, Gauss, or Matlab. In general, a simple web 
search for the method will likely turn up everything from original source code, to 
Matlab scripts, to full stand-alone commercial versions. The R project 
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(www.r-project.org) is a great place to start for statistical algorithms. It is a free, 
full-featured statistical package maintained by many in the statistical community 
and is often the place where the latest statistical algorithms first appear. Weka 
(http://www.cs.waikato.ac.nz/ml/weka/) is another well integrated, ever 
improving, package that implements many algorithms popular in the machine 
learning community. There are stand-alone packages that implement individual 
algorithms but they often lack convenient methods for managing the datasets. 

Generalized linear models - All standard statistical packages, SAS, SPSS, Stata, 
S-plus, R, etc, include GLM procedures as well as the Cox model and other 
survival models. 

Generalized additive models - Original source code is available from StatLib 
(lib.stat.cmu.edu/general). The standard S-plus (gam()) and R distributions 
(mgcv library) come with GAM. SAS as of version 8.2 has PROC GAM. 

K Nearest Neighbors - Available in R (knn() in the class library) and Weka 
(weka.classifiers.IBk). 

Tree structured models - Salford Systems (www.salford-systems.com) 
maintains and develops the official implementation of CART. Rpart, developed at 
the Mayo clinic, is part of the standard R distribution and is full-featured 
including surrogate splitting for missing values. S-plus (tree()) and SPSS 
(AnswerTree) include tree structured modeling but do not implement all the 
features of the CART algorithm. Also look for implementations of Quinlan’s C4.5 
and C5.0 on the web. 

MARS - Salford Systems maintains and develops MARS. There are various other 
implementations, usually add-ons for other packages such as S-plus or Gauss. 

Support vector machines - Many research packages are now available. SVM-
Light is one of the most popular, freely available at svmlight.joachims.org.  

Neural networks - There are many variants on neural networks and at least as 
many programs out there. Matlab users may want to look at Netlab 
(www.ncrg.aston.ac.uk/netlab) to become more familiar with the technique. For a 
large catalog of free and commercial packages visit 
www.emsl.pnl.gov:2080/proj/neuron/neural.  

Naïve Bayes - Available in Weka. Also Bayda exclusively implements naïve 
Bayes (www.cs.helsinki.fi/research/cosco/Projects/NONE/SW)  

Boosting - To accompany his Gradient Boosting paper, Friedman has an R add-
on for the LogitBoost algorithm, least squares, and robust regression methods. 
(www-stat.stanford.edu/~jhf). Boosting methods for AdaBoost and other loss 
functions including Poisson regression and the Cox model are available at 
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www.i-pensieri.com/gregr/gbm.shtml as an R add-on, additional functionality 
forthcoming. Weka can apply the AdaBoost algorithm to any of its standard 
classifiers 

7 Summary 

For prediction problems the process begins by choosing a loss function, then 
selecting the type of predictor, and lastly determining how best to fit the model to 
potentially massive datasets. Of course, this ordering is ideal, but in practice we 
may find that computational complexity or a policy constraint prevents us from 
modeling exactly how we had hoped. As section 5.6 showed algorithms designed 
to minimize particular loss functions can be slightly modified to minimize other 
loss functions that we might prefer. Indeed, SVMs have been used to maximize 
the logistic log-likelihood and k-nearest neighbors has been used for to minimize 
squared error loss. So while this chapter focused only on particular combinations 
commonly used in practice, data analysts can and should think creatively to match 
loss, model structure, and fitting algorithm to the problem at hand. 

In public policy problems as well as business and scientific applications, 
interpretability is frequently a constraint. At times the SVM or the boosted tree 
model might predict the outcome better than the more easily interpreted models. 
However, applications often require a model fit that can be translated into 
humanly understandable relationships between the features and the outcome. 
When a model like the linear model adequately approximates the optimal 
predictor, interpretation is not in doubt. One should use great caution when trying 
to interpret an apparently interpretable model when more complex models exist 
that substantially outperform it. Clearly, we should be careful when creating 
policies and actions based on interpreting models that do not fit the data well. See 
Breiman (2001) and the accompanying discussion for both sides of this debate. As 
noted in section 5.2 interpreting the apparently interpretable decision tree actually 
requires a fair bit of care. Research continues to develop in the area of converting 
the competitive “black box” models into interpretable patterns. Friedman (2001), 
for example, makes substantial gains in turning complex boosted regression 
models into understandable relationships between features and outcomes. 

While interpretability potentially is an issue, scalability is the main problem 
facing data miners. The simplest models such as the linear models can be fit to 
data in a small number of passes through the data, sometimes only once. But the 
benefit of having large datasets is the ability to model complex, non-linear, deeply 
interacted functions. As discussed in the tree model chapter, researchers have 
made substantial progress in creating scalable algorithms for decision trees. 
Research has also shown that subsampling within boosting iterations not only 
decreases the computational complexity but also incidentally improves predictive 
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performance. Computational advances are making SVMs potentially applicable to 
large data mining problems. Watch for continued advances in each of these areas 
over the next few years. 
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