
 1

1 Chapter 6. Strategies and Methods for Prediction
Greg Ridgeway, The RAND Corporation, Statistics Group

Running title: Strategies and Methods for Prediction

Keywords:
Boosting
AdaBoost
Prediction
Naïve Bayes
Neural networks
Support vector machines
Logistic regression
Probit regression
Generalized linear models
Cox model
Survival models
Proportional hazard model
Poisson regression
Least squares
Nearest neighbor classifier
Loss function
Calibration
Brier score
iteratively reweighted least squares
linear discriminant analysis
kernel methods
splines
additive models
natural spline
basis functions
R project
Murphy decomposition
trees
CART

 2

2 Introduction to the prediction problem

Many data mining problems depend on the construction of models, equations, or
machines that are able to predict future outcomes. Although prediction is an
important component of data mining, the abundance of methods such as linear
models, neural networks, decision trees, and support vector machines can make a
seemingly simple prediction problem rather confusing. Other chapters in this
volume focus on particular methods. In this chapter we will briefly assemble these
ideas into a common framework within which we can begin to understand how all
these methods relate to one another.

In many applications we are not only interested in having accurate predictions in
the future but also in learning the relationship between the features of an
observation and the outcomes. For example, we will consider an example of
predicting at age 12 which students are likely to drop out of high school before
age 18. Certainly we wish to have an accurate assessment of dropout risk, but we
also wish to enumerate those factors that place certain students at greater risk.
Understanding the mechanism relating the student features to the outcome helps
formulate rules-of-thumb for identifying at-risk students and interventions
targeting those students. Whether our goal is prediction alone or understanding
the underlying mechanism or both, a well-structured and well-estimated
prediction model is the first step in the process.

In this chapter, we introduce the basics of prediction problems. We offer
strategies on how to relate the choice of prediction method to applications and
describe several of the frequently used prediction methods. This is far from a
complete catalog of available tools and strategies but rather, like the rest of this
handbook, it represents a starting place from which the reader could springboard
into other, more technical developments of the methods. After reading this
chapter the data miner will know the fundamental prediction concepts and be able
to think critically and creatively about solving specific prediction problems.

Throughout this chapter we will use the following notation. Generically we have a
dataset containing N observations (yi, xi) where i = 1, …, N. These observations
come from some unknown process, generating mechanism, or probability
distribution. The features, xi, often referred to as covariates, independent
variables, or inputs, may be a vector containing a mix of continuous, ordinal, and
nominal values. We wish to construct our prediction model, denoted as f (x), so
that it predicts the outcome, yi, also called the response, the output, or the target,
from the features.

 3

2.1 Guiding examples

This chapter will focus on three examples to help explain the concepts and
techniques. The applications generally focus on public policy issues but the same
methods apply to problems spanning the scientific domains.

2.1.1 Regression: Cost of stroke rehabilitation

Regression problems (some engineering literature refers to these as estimation
problems) involve the prediction of continuous outcomes. In 1997 the Balanced
Budget Act mandated that the Centers for Medicare and Medicare Services
(CMS) develop a prospective payment system for inpatient rehabilitation
facilities. This system would determine how to allocate a $4.3 billion budget to
facilities that provide care for individuals covered under Medicare, the United
States’ federal healthcare system for the elderly and disabled. Part of the
development involved building a cost model that predicts cost of rehabilitation
from patient features. From CMS billing records we obtained each patient’s age,
reason for the stay (stroke, hip fracture, etc.), and cost of care. From secondary
sources we obtained functional ability scores that measured the patients’ motor
and cognitive abilities. The prediction problem involves developing a model so
that for any future patient we can accurately predict cost of rehabilitation from the
patient’s features for accurate hospital reimbursement.

2.1.2 Classification: Detecting high school dropouts

The National Education and Longitudinal Study of 1988 (NELS:88) is an
extensive data source surveying the attitudes and behaviors of a nationally
representative sample of American adolescents. NELS:88 first surveyed its
respondents as eighth graders and has conducted three waves of follow-up
measures in 1990, 1992, and 1994. Student, family, and school level measures are
included in each wave of the survey. Offering multiple item indicators of
student’s goals, ability, past achievement, and involvement in school, NELS:88
also includes detailed data on parenting style, parent/child behavior and
interactions, religion, race/ethnicity, parents’ occupation(s) and income, along
with numerous other measures of family background. The strengths of this data
set result from its large number of cases (over 15,000 students in this chapter’s
analyses), its comprehensiveness (measuring over 6000 variables), and its
longitudinal design (allowing temporal as well as cross-sectional analyses). The
examples will utilize data from the first three survey waves, analyzing
information from the baseline grade 8 data to predict failure to complete high
school.

 4

2.1.3 Survival: Survival time of PBC patients

To show the breadth of loss functions available for consideration and the
flexibility of prediction methods we include a clinical trial example. In this
example the problem is to estimate survival time of patients suffering from
primary biliary cirrhosis of the liver (PBC). Although analyses using survival
models predict time until death or time in remission for medical treatment studies,
the models are applicable outside the domain of medicine. Applications also
include time until failure of a machine or part, time until a customer churns by
abandoning their current telecommunication provider for a competitor, and time
between when a gun is purchased and when it is confiscated or recovered at a
crime scene.

2.2 Prediction model components

Prediction methods may differ in three main ways: the loss function or
performance measure that it seeks to optimize, the structural form of the model,
and the manner of obtaining model parameter estimates from training data. When
considering a new or unfamiliar method, understanding these three basic
components can go a long way toward realizing its limitations and advantages.
Several methods may have the same structural form but differ on performance
measures or scalability due to differences in how we estimate or learn the model
from data. We will see that three established classification methods, naïve Bayes,
logistic regression, and linear discriminant analysis, all have exactly the same
structural form but differ on the loss function and parameter estimation method.
In addition, the chapter on tree models in this handbook discusses models that all
share the tree structure but may have different methods of forming splits and
estimating the number of terminal nodes from the available data.

The next section discusses the most popular loss functions in use in statistics,
machine learning, and data mining practice. Following that we give a concise
catalog of some of the structural forms used in practice. Even after selecting a loss
function and a structural form for our predictor, the main problem facing data
miners today is getting those models fit to massive datasets. We will comment on
the scalability issue as it arises but it continues to be an active area of research and
progress. Some accurate methods that were assumed to be not scalable to large
datasets now have been tuned and optimized for practical use.

3 Loss functions – what we are trying to accomplish

When developing a prediction model we usually have some performance measure
that we want our model to optimize. The loss function is a function that takes as
input a prediction model and produces a single number that indicates how well

 5

that prediction model performs. This section reviews some of the most commonly
used loss functions. The notation J(f) indicates the loss function J evaluated for
prediction model f.

3.1.1 Common regression loss functions

For regression problems the most widely used loss function is squared prediction
error, which is the expected squared difference between the true value and the
predicted value

2
,))(()(xx fyEfJ y −= (1)

where the Ey,x represents the expectation operator that averages over all (y, x)
pairs drawn from some common distribution. By minimizing (1) we assure
ourselves that, on average, new predictions will not be too far from the true
outcome. The properties of expectation indicate that the f (x) that minimizes (1) is
f (x) = E(y|x), the average outcome at each value of x. The probability distribution
that generates the (y, x) pairs is unknown and so we cannot compute (1) directly.
Instead we rely on a sample based estimate

�
=

−=
N

i
ii fy

N
fJ

1

2))((
1

)(ˆ x . (2)

Remember that it is almost always (1) that we really want to minimize but resort
to (2) to guide us to a solution. There are many f(x) that can make (2) arbitrarily
small but usually only one that minimizes (1). The model fitting process will find
an f that minimizes (2) subject to some constraints on its structural form. An
unbiased evaluation of the performance of a particular choice for f requires a
separate test dataset or some form of cross-validation. The chapter on
performance analysis and evaluation in this volume describes this process in more
detail.

Although squared error loss is the dominant loss function in most applied
regression work, decades of work on robustness have demonstrated that squared
error is highly sensitive to outliers, unusually large outcomes potentially from
data contamination and spurious measurements. Absolute prediction error

|)(|)(, xx fyEfJ y −= (3)

has its minimum when f (x) = median(y|x), the median outcome at each value of
x. For data mining applications prone to contamination the absolute prediction
error may be preferable.

 6

Other regression loss functions use variations on the above theme. For example,
Huber (1964) proposed a loss function that behaves like squared-error near 0 and
like absolute error when y – f (x) exceeds some cutoff, providing some protection
against extreme y values. Support vector machine regression methods commonly
use a loss function that is zero when y – f (x) is less than some cutoff and then
behaves like absolute error for deviations greater than the cutoff. At this point,
simply note that there is considerable flexibility in terms of specifying what it
means to have a prediction be “close” to the true value and that the different
choices result in different prediction models. The implications will follow shortly
in some examples.

3.1.2 Common classification loss functions

While regression problems focus on predicting continuous outcomes,
classification methods attempt to label observations as one of k categories. The
most common loss functions used in classification problems include
misclassification rate, expected cost, and log-likelihood. Misclassification rates
are generally the primary measure on which methods are compared. In fact, it is
generally what problem solvers are aiming to minimize when considering a
particular classification problem. In almost all problems, however, a false positive
has a different cost than a false negative. High school dropouts are thought to cost
twenty times more than graduates in terms of societal costs. The false negatives in
this case are the more expensive mistake. Let c0 be the cost of misclassifying a
true 0 case and c1 be the cost of misclassifying a 1 case. For a two class
classification problem our classifier, f (x), predicts values 0 or 1. Then the
expected cost is

))(1)(|1()())|1(1(

))(1)(1()()0()(

10

10|

xxxx

xx

x

xx

fyPcfyPcE

fyIcfyIcEEfJ y

−=+=−=

−=+==

(4)

where I(�) is the indicator function that is 1 if the expression is true and 0
otherwise. Minimizing the expression pointwise at each x we see that ideally f (x)
should equal 0 whenever c0(1 – P(y = 1|x)) > c1P(y = 1|x). Equivalently, the best
classifier is

�
�
� +<=

=
otherwise1

)/()|1(if0
)(100 cccyP

xf
x

 (5)

We actually do not need an estimate of P(y = 1|x) in order to obtain a good
decision rule. It is sufficient to have a method that determines which side of
c0/(c0+c1) the probability would fall. In fact, some excellent classifiers produce
poor estimates of P(y = 1|x). Note that if c0 = 1 and c1 = 20, as in the high school

 7

dropout problem, then any student with a dropout probability exceeding 0.047
needs special attention.

Although many classification methods advertise their ability to obtain low
misclassification costs, many classification procedures minimize cost indirectly.
Classification trees are among the few procedures that directly aim to minimize
cost. Many other procedures aim for good estimates of P(y = 1|x), which (5) as
previously mentioned shows is sufficient but not necessary for developing a
decision rule for any choice for c0 and c1. In some settings a probabilistic
prediction itself is necessary to have a complete risk assessment.

The likelihood principle, studied in detail in Berger and Wolpert (1984), implies
that any inference about parameters of interest should depend on the data only
through the likelihood function, the probability that the model would generate the
observed data. So while (4) is the loss function for minimizing misclassification
cost, when seeking good probability estimates for the two-class classification
problem we should look to the Bernoulli likelihood,

∏
=

−−=
N

i

y
i

y
i

ii pppL
1

1))(1()()(xx (6)

where p(x) = P(y = 1|x) and is what we want to estimate and study. While up to
this point we have used f(x) to denote the prediction model that we are trying to
estimate, here we use p(x) to remind ourselves that it is a probability and must be
on the interval [0,1]. Many statistical procedures are based on estimates of p(x)
that maximize the likelihood, intuitively the p(x) that makes the observed data
most likely. While before we discussed finding f(x) to minimize a loss function,
here the goal is to find a p(x) to maximize a likelihood. The log-likelihood is the
more commonly used form of this loss function and, again, we are not simply
interested in maximizing it for our finite sample but in expectation over a new
observation drawn from the same distribution that generated our dataset.

[]))(1log()1()(log

)(log)(

,

,

xxx

x

pypyE

pLEpJ

y

y

−−+=

=
 (7)

We will see in section 4.2 that logistic regression procedures are based on
maximum likelihood estimates of p(x).

The Bernoulli log-likelihood naturally extends to multiclass classification via the
multinomial log-likelihood,

 8

)(log)(),,,(,21, ikiyKy pkyIEpppLE xxx ==� , (8)

where pk(x) = P(y = k | x) and the pk(x) sum to 1. With this loss function we will
seek k functions, each of which estimates one of the class probabilities. Also,
ordinal regression methods are available when the K classes are ordered as in
preference rating scales.

Using the Bernoulli log-likelihood as a loss function focuses on obtaining good
probability estimates but it is unclear what “good” means in this context.
Meteorologists especially have been studying accurate probability assessments,
decomposing prediction accuracy into discrimination and calibration components.
Discrimination, which generally gets the most attention, is the ability to separate
the classes while calibration is the ability to assign meaningful probabilities to
events. When we are dealing with a binary outcome (y is either 0 or 1) the Brier
score (Brier 1950) shown in (9) offers an interesting assessment of probabilistic
assignments.

2
,))(()(xx pyEpJ y −= (9)

The Brier score is small when our probability estimate is small and y = 0 and
when our probability estimate is near 1 when in fact y = 1. Clearly the Brier score
is minimized when we have perfect forecasts. Yates (1982) discusses the Murphy
decomposition of the empirical Brier score exposing different aspects of
prediction quality.

���
===

−+−−−=−
K

k
kkk

K

k
kk

N

i
ii ypn

N
yyn

N
yypy

N 1

2

1

2

1

2)(
1

)(
1

)1())((
1

x

 = uncontrollable variation + resolution + calibration

(10)

The first term is the variance of the outcome. It is only small when the yi’s are all
0 or all 1, something over which we have no control. The variance term also
represents the best we can do. In the second term the nk represents the number of
observations that are given the probabilistic prediction pk and ky is the average of

the outcomes given the prediction pk. This resolution term is large (very negative)
when we are able to discriminate the 0 outcomes from the 1s. In that situation the
average outcome given prediction pk is far from the baseline rate, near 0 or 1. The
last term measures calibration, the ability to assign meaningful probabilities to the
outcomes.

To understand calibration let us again turn to the high school dropout problem.
Assume we have a probabilistic prediction model. A new set of students arrives

 9

on which we assess the dropout risk. If the model is well calibrated then among
the collection of students to which the model assigned a dropout probability of,
for example, 0.3, 30% would actually dropout. Figure 1 shows a smoothed
calibration plot for a boosted classification model (section 5.6) for the high school
dropout example. The 45º line is the perfectly calibrated predictor. The tick marks
along the bottom of the figure mark the deciles of the estimated probabilities,
most of which are below 0.1. Note that for all the students with an estimated
dropout probability around 0.3, 36% of them actually dropped out.

Estimated probability, pj

Actual
probability

jy

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 1: Calibration plot for the high school dropout example

We learn from the Murphy decomposition that when measuring classification
performance with the Brier score that both discrimination and calibration are
important. In practice we will have to decide which attributes are most important
for the problem at hand. Good classification accuracy alone at times may be
insufficient.

Classification is conceptually quite simple. We want to put the right labels on
observations. But that conceptual simplicity is not easily translated into a loss
function without additional information on the goals we seek. Choosing to
minimize cost or opting to go for the best probability estimates leads to different
choices for loss functions and, therefore, prediction methods. One of the early
strategic steps in a classification problem is defining the goals and usually that
translates into a natural choice for the loss function.

 10

So far we have presented three candidates for the loss function but others have
been proposed. Figure 2 shows the similarities and differences among the various
classification loss functions. First consider relabeling the two classes as –1 and 1,
y´ = ½(y+1), which simplifies the comparison. Therefore, when y´f(x) is positive
the observation is correctly classified. The curve labeled M in Figure 2 reflects
this. Note that all of the loss functions are bounds for the misclassification loss
function. Also shown in bolder lines are the loss functions for support vector
machines (section 5.5) and AdaBoost (section 5.6). The different loss functions
determine how much we penalize our predictor for certain mistakes. The Brier
score strongly penalizes mistakes but is the only loss function that also penalizes
overconfidence in predictions, indicated by the upswing in the Brier loss for
y´f(x) > 1.

y´f(x)

Lo
ss

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0
1

2
3

4 B

L

S

M

A

S
A

Brier score

2)1)((−xyfE

AdaBoost

))(exp(xyfE −

SVM

))(1,0max(xyfE −

Logistic

)1log()(xyfeE −+

M isclassification

)0)((<xyfIE

Figure 2: Classification loss functions

3.1.3 Cox loss function for survival data

The last specific loss function discussed here is often used for survival data. We
include it here partially for those interested in lifetime data but also to
demonstrate creative developments of loss functions for specific problems.
Survival analysis continues to be a thriving area in biostatistics and this section
focuses on a small part, the Cox model for proportional hazards regression.

For each observation we observe the subject features, xi, the time the subject was
last observed, ti, and a 0/1 indicator whether the subject failed at time ti, δi. If we
know the exact failure time for all observations, that is δi = 1 for all i, then we can

 11

turn to some of the standard loss functions from section 3.1.1. When we have
many observations that have not failed, such as customers who have not switched
their long distance carrier yet, we would lose information if we did not include
these observations in the estimation process. To make this more concrete,
customer A in South Dakota with no previously filed complaints has used long
distance company X for 100 days and remains a customer. The observation for
this customer would be

(x = {State=SD, Complaint=0}, � = 0, t = 100).

Since customer A remains a customer at day 100 they have not yet “failed” and so
� = 0. Customer B, on the other hand, is from North Dakota, has filed 3
complaints, and on day 65 of service switches long distance carriers. The
observation record for this customer would be

(x = {State=ND, Complaint=3}, � = 1, t = 65).

So from a dataset of observations (xi , �i, ti), for i in 1, …, N, we want to construct
a model to predict actual failure time ti from xi.

The proportional hazards model assumes that the hazard function, the
instantaneous probability that a subject with feature x fails in the next small
interval of time given survival up to time t, is

))(exp()(),(xx ftth λ= (11)

where λ(t) is the baseline hazard. This model assumes that the relevance of a
particular feature does not change over time. If we can estimate f (x) then we can
determine those indicators that accelerate the rate of failure and those
observations that have an accelerated risk of failure. Given that an observation in
the dataset with N observations failed at time t´ the probability that it was
observation i is

� =
′′≥

′′≥
N

j jj

ii

ftttI

ftttI

1
))(exp()()(

))(exp()()(

x

x

λ
λ

. (12)

Conveniently, the baseline hazard, �(t), cancels in (12). We can then write down
the likelihood that the first observed failure would have failed at its failure time
and the second observed failure would have failed at its failure time and so on.

 12

∏
�=

=
�
�

�

�

�
�

	

≥

N

i

i

N

j jij

i

fttI

f

1
1

))(exp()(

))(exp(
δ

x

x
 (13)

If we can find an f (x) that makes the Cox partial likelihood (13) large, this
indicates that f (x) can put the N observations approximately in order of when they
will fail. Subsequently we can use this f (x) to determine which subjects that have
not failed yet are most at risk of failure in the near future. Even though we do not
know the exact form of the baseline hazard λ(t) we are still able to estimate f (x)
using only the order of failure times, rather than the actual failure times
themselves. We can then estimate λ(t) although f (x) is sufficient for identifying
observations that are prone to shorter times to failure.

Now that we have a handful of loss functions for measuring predictive
performance, the next section begins a discussion of finding the ideal f to optimize
our selected loss function.

4 Linear models

In this section we will begin looking at prediction models that have a linear
structure. Although the structure at first may seem naïve, the development is an
important one. First, these methods have a long history and are still in widespread
use. Second, although apparently simplistic these methods can perform
particularly well when the data is sparse. And third, several of the most modern
methods build upon the basic linear structure and share some of the model
building tools.

4.1 Linear Regression

Section 3.1.1 introduced the squared error loss function. Now let us restrict the
model to have the form

xx βββββ ′=++++= dd xxxf �22110)((14)

where d+1 is the dimension of the feature vector x and the first element of x is 1.
Rather than having a completely unspecified f(x) we now only have d+1 model
parameters to estimate. The coefficient, βj, represents a difference between two
subjects that have the same feature vector except differ by 1 unit on feature xj.
When fitting linear regression models with a categorical feature with k levels we
can create k – 1 0/1 dummy variables. If variable x1 has k=3 levels then we can fit
the model

 13

dd xxxIxIf βββββ +++=+=+= �221121110)2()1()(x . (15)

Now β11 represents a difference between category 1 subjects and category 3
subjects.

To fit the model we simply select the vector of coefficients to minimize the
empirical squared error loss

)()(
1

minarg)(
1

minargˆ
1

2 ββββ
ββ

XyXyx −′−=′−= �
= N

y
N

N

i
ii (16)

where X is the N × d+1 feature matrix and y is a column vector with the N
outcomes. The solution to (16) is

yXXX ′′= −1)(β̂ (17)

solvable in a single pass through the dataset. Figure 3(a) shows the result of a
linear least squares fit to stroke data from 1996. The jagged curve in the plot is the
average cost at each motor score. In this simple example we have enough data at
most values of the motor score to get reasonable estimates. The line generally
runs through the pointwise averages and shows considerably less instability for
the sparsely sampled stroke patients with high motor scores. The β that minimizes
squared error loss is (30251.0, –342.6) and the resulting average squared error is
5.88 × 107.

Although this choice of β minimizes squared error for the 1996 data we would
hope that such a model holds up over time. If we use the model fit to 1996 data to
predict costs for the 1997, 1998, and 1999 data the average squared error for those
years is 5.94 × 107, 5.90 × 107, and 6.19 × 107. In general the error on the training
data will be an overoptimistic estimate of the performance on future observations.

 14

Motor score

w
ag

e-
ad

ju
st

ed
 c

os
t

20 40 60 80

0
20

00
0

40
00

0
60

00
0

Motor score

w
ag

e-
ad

ju
st

ed
 c

os
t

20 40 60 80

0
20

00
0

40
00

0
60

00
0

(a) (b)

Figure 3: Predicting cost of stroke rehabilitation from motor ability score. Least
squares linear fit and the pointwise average fit (a) and the least absolute
deviations linear fit and the pointwise median fit (b).

Medical costs are particularly prone to extreme observations. Modeling the
median rather than the mean offers a more stable model. The minimizer of
absolute error does not have a convenient closed form expression, however,
moderately efficient algorithms do exist (Bloomfield and Steiger, 1983). Figure
3(b) displays the linear model that minimizes absolute prediction error along with
pointwise median estimates that are well approximated by the line. The β that
minimizes average absolute loss is (28014.0, –320.2) producing a linear fit with a
gentler slope than one obtained using the squared error loss.

4.2 Classification

In this section we will focus on procedures for 0/1 classification problems but will
make brief mention of the multiple class case at the end.

4.2.1 Linear logistic regression

Statistical methods for binary classification are usually designed to produce good
estimates of p(x) = P(Y = 1|x) using the Bernoulli likelihood shown in (6). Linear
logistic regression, one of the earliest techniques, assumes a particular parametric
form for p(x),

xx
x

x β ′=
−+

=)(where,
))(exp(1

1
)(f

f
p . (18)

As in linear regression, the prediction depends on the feature vector only through
a linear combination of the components of x. Again this greatly reduces the

 15

complexity of the model by reducing the problem to estimating only the d+1 β’s.
The logistic function transforms the linear combination from the whole real line to
the [0, 1] interval. Rewriting (18) we can see that this model assumes that the log-
odds are a linear function of x.

x
x

x β ′=
−)(1

)(
log

p

p
. (19)

Inserting (18) into the Bernoulli likelihood from (6) and taking the logarithm we
obtain

�
=

′+−′=
N

i
iiiyL

1

))exp(1log()(xx βββ . (20)

To fit the model by maximum likelihood we select the � that maximizes (20). No
closed form solution exists but we can utilize a simple Newton-Raphson
procedure to numerically maximize the likelihood. The first and second
derivatives of (20) are

)(
)exp(1

1)(

1

pyX
x

x −′=��
�

��
�

�

′+
−=

∂
∂

�
=

N

i i
ii y

L

ββ
β

 (21)

WXX
xx

xx ′−=��
�

��
�

�

′+
−

′+
′−=

∂
∂

�
=

N

i ii
ii

L

1
2

2

)exp(1

1
1

)exp(1

1)(

βββ
β

 (22)

where p is the vector of predicted probabilities and W is a diagonal matrix with
diagonal equal to p(xi)(1 – p(xi)). After selecting an initial starting value for β, the
Newton-Raphson update is

.)(

))(()(

)()(

1

11

1

WzXWXX

pyWXWXWXX

pyXWXX

′′=
−−′′=

−′′−←

−

−−

−

β
ββ

(23)

Note the similarity between (23) and the solution to the linear regression model in
(17). Rather than simply having the y as in (17) we have a working response z and
we have the weight matrix W. The Newton update, therefore, is a weighted linear
regression with observation i having weight pi(1 – pi) where the features xi predict
the working response zi. This algorithm is known as iteratively reweighted least
squares (IRLS). In practice, convergence usually occurs after 3 to 4 iterations of
IRLS. We can also begin to think about improvements including non-linear

 16

predictors in (19) or using non-linear regression inside the IRLS algorithm. We
will visit these issues shortly. Note also that the weight is largest when pi is close
to ½, close to the equal cost decision boundary, an issue that will arise again in
our discussion of boosting.

Figure 4 shows a linear logistic regression model fit to the high school dropout
dataset with two predictors. As expected the model structure forces the contours
to be parallel. From the predicted probabilities we can apply our decision rule and
estimate the expected cost per student. As before, assuming that failing to detect a
dropout is 20 times more costly than failing to identify a graduate the decision
boundary is p = 0.047, marked by the upper contour in Figure 4. All students
above that line are classified as graduates and those below that line are classified
as dropouts. Clearly this model puts the majority of cases as dropouts. Had we
assumed everyone would graduate our expected cost would be 3.3. Assuming
everyone is a dropout would cost us 0.83. But using the information in the two
predictors our expected costs are reduced slightly to 0.81. While this is a modest
decrease perhaps additional predictors may further reduce misclassification costs.
On the other hand, perhaps the rigidity of the linear logistic model will prevent us
from identifying the characteristics of the dropouts.

 17

Percent students in free lunch program

F
am

ily
 in

co
m

e

0 20 40 60 80 100

0
50

00
0

10
00

00

15
00

00

20
00

00

 0.047

 0.10

 0.15
 0.20

Figure 4: Probability of dropout predicted from family income and percentage of
students at school in a free lunch program. The four lines indicate contours of
equal probability of dropping out. The ×’s mark the dropouts and the •’s mark the
graduates.

4.2.2 The naïve Bayes classifier

The naïve Bayes classifier (Hand and Yu, 2001) is, in spite of its name, a very
powerful classifier. It is simple to program, fit to data, and is easy to interpret.

If Y is the class variable that we would like predict using predictors x, then the
naïve Bayes classifier has the form

∏
=

===

==∝=
d

j
j yYxPyYP

yYPyYPyYP

1

)|()(

)|()()|(xx

(24)

(25)

Equation (24) is a direct application of Bayes Theorem. To transition to (25)
requires a naïve assumption, that given the true class the features are independent.

 18

For example, given that a particular child dropped out, knowing that they had
poor grades gives no additional information about their socioeconomic status.
This implies that dropout status is sufficient information to estimate any of the
child’s features. The chapter on Bayesian methods diagrams the naïve Bayes
classifier as a graphical model. Refer to the figure there to see this graphically.

The naïve Bayes assumption gives the naïve Bayes classifier the same structural
form as linear logistic regression described in the previous section. Letting
p(x) = P(Y = 1 | x) we see that the naïve Bayes classifier is additive on the log
odds, or logit, scale.

)()()(

)0|(

)1|(
log

)0(

)1(
log

)(1

)(
log

22110

1

dd

d

j j

j

xwxwxww

YxP

YxP

YP

YP

p

p

++++=

=
=

+
=
==

− �
=

�

x
x

 (26)

Note that the structural form is similar to the form used for linear logistic
regression in (19). If all of the xj are categorical then the functional forms are
exactly the same. Standard practice has been to discretize the continuous xj’s,
creating histogram estimates of P(xj | Y). This creates an additive model where the
wj components are step functions rather than linear functions of xj.

Logistic regression assumes that P(Y = 1|x) = P(Y = 0|x)exp(��x) where the
P(Y = 0|x) can have an arbitrary form. In some respects, naïve Bayes has a more
restrictive assumption, specifying a distributional form for both classes,

The estimation procedure separately estimates the components for y = 0 and y = 1
before combining into a single classifier. This assumption has some advantages
for large dataset applications. The assumption allows us to estimate this model in
a single pass through the dataset and missing xj values can be ignored. In the next
section we will look at a third linear classifier with yet another set of associated
assumptions.

4.2.3 Linear discriminant analysis

Fisher (1936) proposed linear discriminant analysis (LDA) for classification
problems. As with the naïve Bayes classifier, LDA uses Bayes theorem to reverse
the conditional probability (24) and makes an assumption about the distribution of
the features with in each class. Rather than assume conditional independence as in
(25), LDA assumes that P(x | Y = y) is a multivariate normal density where all the
classes share a common covariance matrix. With these two assumptions the log-
odds again has a form that is linear in x. Unlike logistic regression and naïve
Bayes, LDA is very sensitive to outliers in x and in general performs quite poorly.
Figure 5 shows an LDA fit to simulated data. When the features are truly

 19

multivariate normal as in Figure 5(a) both LDA and logistic regression produce
approximately the same decision boundary. When one class is contaminated with
outliers the decision boundary can move substantially and perform worse than
logistic regression Figure 5(b).

(a) (b)

Figure 5: LDA decision boundaries where x is multivariate normal with each class
(a) and when one class is contaminated with outliers (b). The heavy line is the
LDA boundary and the lighter line is the logistic regression boundary.

In the last 70 years discriminant analysis, like other methods, has undergone
considerable modernization. Although the simple form described here tends to
perform poorly, LDA’s descendants can perform quite well. They generally relax
the normal distribution assumption and allow the classes to have separate
distributions each of which we can model with a more flexible density estimator.
See Hastie et al (1994) and Ridgeway (2002) for examples of these extensions.

4.3 Generalized linear model

In this section we briefly mention the connection to a large class of regression
models that one can understand as variations on the linear logistic regression
development. Section 4.2.1 showed a particular transformation of f(x) onto the
probability scale using the logistic transform (18) and then used the Bernoulli
likelihood to determine the best fitting linear model. Statisticians often prefer the
logistic transform as the link function, the function relating the probability to f(x),
mostly because it allows interpretation of model coefficients as log odds-ratios.
Economists, on the other hand, have tended to use probit regression differing
from logistic regression by its use of the inverse Gaussian cumulative distribution
as the link function, p(x) = Φ–1(f(x)). There is considerable flexibility in choosing
the link function although the logit and probit are by far the most common.

 20

Besides the choice of link function for logistic regression, we can vary the
likelihood itself to capture an enormous class of useful prediction problems. The
Bernoulli distribution is particular to 0/1 outcomes. The Poisson distribution is
often used to model outcomes involving counts (items purchased, cigarettes
smoked, etc.) and has the form

!

))(exp()(
)|(

y
yYP

y xx
x

λλ −== (27)

where λ(x) represents the expected count for an observation with features x.
Oftentimes an observation will have a time measurement in addition, such as time
as a customer or time since released from treatment. In such instances researchers
commonly parameterize the Poisson model as

!

))(exp())((
),|(

y

tt
tyYP

y xx
x

λλ −== (28)

so that λ(x) represents a rate of occurrences. Using the log link function,
log λ(x) = β′x, we are assured that the rate will always be positive. For this reason
Poisson regression is often referred to as log-linear modeling. If we have N
independent observations (yi, xi, ti) then we can write down the log-likelihood as

)(log βL ∏
=

−=
N

i i

ii
y

ii

y

tt i

1 !

))(exp())((
log

xx λλ
 (29)

�

=
−+′−′=

N

i
iiiiiii ytyty

1

!loglog)exp(xx ββ (30)

Except for the last two terms that do not involve β, (30) closely resembles (20).
Inside the sum in both cases we have the outcome, y, times the linear predictor
minus a term which has the expected value of y as its derivative. Fitting the
Poisson model also involves a few iterations of a simple IRLS algorithm.

The Bernoulli and Poisson prediction methods are special cases of the class of
generalized linear models (GLM). After selecting the variables for the linear
predictor, the distribution of the response, and a link function, the GLM
framework packages together a likelihood based loss function and an IRLS
algorithm for fitting the models. Even the linear least squares model from section
4.1 falls into this framework with a Gaussian distribution for the response and an
identity link function. Simply replace the Poisson distribution in (29) with the

 21

Gaussian distribution. Then setting the derivative of the log-likelihood equal to 0
and solving for � produces exactly the least squares solution we saw earlier.

Other useful GLMs include multinomial logistic regression for multiclass
classification, Gamma regression for skewed outcome distributions (like cost),
and negative binomial regression for count data with extra-Poisson variation.

McCullagh and Nelder (1989) provide a complete guide to the basics of the GLM.
Greene (1999) also discusses these methods with respect to econometrics.
Although the development of the GLM in this section is brief, this overview
should give the impression that one has considerable flexibility in determining
how to model the outcome variable. For continuous, binary, and count outcomes
the GLM framework is one good starting place. The linear part is easily
replaceable with any other functional form as we will see in the next section.

5 Non-linear models

In spite of their computational simplicity, stability, and interpretability, linear
models have an obvious potential weakness. The actual process may not be linear
and such an assumption introduces uncorrectable bias into the predictions. When
data is sparse or the dimension of x is large, linear models often capture much of
the information in the data as shown in Figure 6(a). There the linear model seems
to capture much of the information. Detecting non-linear features requires more
data with a low signal-to-noise ratio. Data mining applications inherently involve
large datasets and so the general trend is almost always to use non-linear methods,
implying that most data miners feel that their data is closer to the situation in
Figure 6(b). Although the same mechanism generated both datasets, the increase
in data in Figure 6(b) makes the linear model less appealing. Problems with a
large number of features require caution. Such situations will more closely
resemble Figure 6(a). Non-linear models run a much greater risk of being overfit
to the training dataset and the chapter on performance analysis and evaluation in
this handbook requires careful attention.

 22

x

y

x

y

(a) (b)

Figure 6: Utility of linear and non-linear models

This section explores a few of the popular non-linear prediction methods. These
methods generalize the previous discussion by allowing f(x) to take on a more
flexible form.

5.1 Nearest neighbor and kernel methods

The k nearest neighbor (knn) prediction model simply stores the entire dataset. As
the name implies, to predict for a new observation the predictor finds the k
observations in the training data with feature vectors close to the one for which
we wish to predict the outcome. The prediction depends on the loss function and
in general is

)(minarg)()(θ
θ

xx NJf = (31)

where θ is a constant and JN(k, x) represents the loss function computed for only the
k closest observations in a neighborhood near x. For example, the knn predictor
for squared error loss is

��
∈∈

=−=
),(),(

2 1
)(

1
minarg)(

xx

x
kNi

i
kNi

i y
k

y
k

f θ
θ

 (32)

the average of the outcomes for the k observations nearest to x. The knn classifier
works similarly. It collects the k nearest observations and predicts the class that
minimizes cost, the most popular class in the case of equal misclassification costs.
Although the method may seem naïve it is often competitive with other, more
sophisticated prediction methods. Figure 7 shows the knn classifier predicting
high school dropout probability from family income and where k = 100. The

 23

features were rescaled for the distance calculations so that they both had unit
variance. The heavy contour line marks the decision boundary between predicting
a dropout and predicting a graduate. Only the students from the wealthier families
in schools with few students on a free lunch program will not be classified as a
dropout risk.

Percent students in free lunch program

F
am

ily
 in

co
m

e

0 20 40 60 80 100

0
50

00
0

10
00

00

15
00

00

20
00

00

0.047

0.2

0.1

0.047

0.2

0.047

0.1

Figure 7: The 100 nearest neighbor classifier for the high school dropout data.
The darker regions of the figure represent greater dropout risk. The lightest
regions of the figure indicate a near 0 dropout risk.

Where the linear model is rigid the knn predictor is extremely flexible as Figure 7
clearly demonstrates. Compare Figure 7 to Figure 4. That flexibility can be
abused by allowing k to be too small. Recalling the discussion from section 3.1.2,
knn tends to offer poor probability estimates but nevertheless tends to be quite
good at minimizing misclassification cost. We can look at how different choices
for k affect prospective predictive performance as shown in Figure 8. Assuming
that failure to identify a dropout is 20 times more costly than failure to identify a
graduate, we can compute the average cost per student for our decision rule.
Minimizing the expected cost heavily depends on careful selection of k. If we
classify every student as a graduate the expected cost is 3.3, about what we see
with the 1-nearest neighbor classifier. Classifying all students as dropouts, the
decision rule when k gets very large, produces an expected cost of 0.83 shown as

 24

the horizontal line in Figure 8. The minimum expected cost, 0.75, occurs when
k = 90. The 90 nearest neighbor classifier puts 83% of the students at a greater
than 4.7% chance of dropout. The linear logistics regression model has an
expected cost of 0.81 and classified 90% of the students as dropouts.

Number of neighbors

E
xp

ec
te

d
co

st

0 200 400 600 800 1000

1.
5

2.
0

2.
5

0.
83

90

0.75

Figure 8: Predictive performance for different values of k. Expected cost uses
probability of dropout exceeding 4.7% as the decision boundary

As N gets arbitrarily large and k grows at a certain rate (much slower than N) this
predictor will converge to the true optimal predictor, a property known as Bayes
risk consistency. However, the performance of the predictor for datasets of
practical size depends heavily on k, the metric used to determine which
observations are close, and the dimension of the feature vector.

A natural generalization of the knn predictor f(x) involves having every
observation contribute its outcome to the prediction weighted by its distance to x.
Returning again to squared error

���
===

=−=
N

i
i

N

i
ii

N

i
ii wywyK

N
f

111

2))(,(
1

minarg)(θ
θ

xxx (33)

a weighted average of the outcomes where wi = K(xi, x), a function that decreases
as xi moves further from x. The knn predictor is a special case of (33), when
K(xi, x) takes value 0 or 1 depending on whether xi is among the k closest
observations. First considering the case with a single continuous predictor, let
K(xi, x) be the Gaussian density

 25

()2
2
1)/)((exp),(σxxxxK ii −−= (34)

with mean equal to x and standard deviation σ, known as the bandwidth for the
kernel regression model. Figure 9 shows stroke rehabilitation cost models using
two kernel regression estimates with different bandwidth settings and the linear
model from Figure 3. The cost axis is rescaled from Figure 3 to reveal details of
the model differences. As the bandwidth gets small the kernel regressor resembles
the pointwise average estimate shown in Figure 3 and exhibits a lot of variance in
regions where there are fewer data points. The larger bandwidth is smoother and
shows a lot of stability even in the extreme motor scores. Although all the
methods align for the most common motor scores, the linear model reveals its
bias in the extreme motor score values. In many prediction problems, data often
show the presence of saturation effects (at some point additional improvements in
motor ability do not decrease cost) and threshold effects (decreases in cost do not
begin until motor exceeds some threshold). Note that if we only observe patients
in motor score in the 30 to 60 range, the linear model would work extremely well
and we would have little reason to consider other models. Other prediction
methods can easily outperform linear models when a substantial portion of the
dataset lies to the right of the saturation point and to the left of the threshold point.

Motor score

W
ag

e
ad

ju
st

ed
 c

os
t

20 40 60 80

0
50

00

10
00

0
15

00
0

20
00

0
25

00
0

Linear model

Kernel, � = ½

Kernel, � = 10

Figure 9: A kernel regression prediction model

Kernel regression methods generalize to multivariate feature vectors and the
reader is referred to Hastie et al (2001) for more details. Support vector machines,
discussed in section 5.5, are in fact a particular kind of kernel regression method.

 26

The primary disadvantage of the knn predictor and naïve implementations of
kernel methods for data mining applications is the need to store the entire dataset
and the expense of searching for nearest neighbors or computing kernels in order
to make a prediction for a single new observation. Some algorithms exist for
trimming down the storage needs for these models. However, they still generally
receive little attention as competitive data mining procedures in spite of their
utility for non-linear modeling.

For the data miner interested in prediction methods, nearest neighbor and kernel
methods have instructional value. The heuristic is that when predicting an
outcome at x we borrow information from those points in the dataset that are close
to x. We trust that the underlying function is fairly smooth so that nearness in
terms of x implies similar outcomes. The linear models discussed in section 4
share this idea but assume the rigid functional form to interpolate between points.
Remember that all prediction methods that are minimizing the same loss function
differ only in how they interpolate between the points in the dataset. In some
fashion they combine the outcomes from points in a neighborhood near x. How a
method selects that neighborhood and how it combines the outcomes will
determine its scalability, its interpretability, and its predictive performance.

5.2 Tree models

The chapter on tree models in this handbook extensively discusses the use of tree
structured prediction methods. Tree structured predictors usually assume that f(x)
is a piecewise constant function where splits on the individual feature axes define
the pieces. The terminal node of the tree defines the neighborhood and the
constant that minimizes the loss function within the terminal node becomes the
node prediction.

 27

20 40 60 80
Motor score

5
10

15

20

25

30

35

C

og
ni

tiv
e

sc
or

e $22,610

$2
0,

10
0

$1
7,

88
0

$1
6,

42
0

$1
4,

74
0

$1
2,

87
0

$1
1,

72
0

$1
0,

14
0

$9
,8

57

$8
,2

52

$8,461

$6,983

Figure 10: CART for cost of stroke rehabilitation. The two diamonds refer to the
hypothetical patients discussed in the text. The inward ticks on the axes mark the
deciles of the distribution of the motor and cognitive scales.

The advantages of tree predictors for data mining is that fast algorithms exist to
construct them from data, prediction for new observations is quick, the method
handles all types of input variables, and the model is storable in a compact form.
This differs sharply from the nearest neighbor methods. However, as linear
models can be criticized for their rigid functional form, the constant within-node
prediction is rigid in a different way. Figure 10 shows how CART partitions
stroke patients by motor and cognitive score into groups with relatively
homogeneous cost. Note that in Figure 10 the model predicts that the patient with
a motor score of 27 and the patient with a motor score of 28 (marked with
diamonds in the figure) have costs that differ by $2,510, the difference in the
predicted cost from each region. We really do not believe that cost varies so
abruptly. Such biases around the partition edges can reduce prediction accuracy.

Like the nearest neighbor predictor, tree structured procedures are generally
Bayes risk consistent (Gordon and Olshen, 1984). That is, as the dataset grows
and the number of terminal nodes grows at a certain rate, the model converges to
the minimizer of the population loss function. Although this is an interesting

 28

mathematical fact it should be taken as a caution rather than a benefit. Trees can
have a lot of variability in addition to edge biases.

Although trees are often appreciated for their apparent interpretability one should
use caution due to their instability. To demonstrate we randomly split the high
school dropout data into two parts and fit a CART classification tree to each.
Figure 11 shows the resulting models. The two trees give very different
perspectives concerning what is important in determining the risk of dropout.
When several variables are correlated with each other and the outcome, the tree
must select a single variable for the splitting variable, hiding the importance of
other interesting inputs. Again, it is easy to be fooled by the trees transparent
functional form and overlook important variables not included in the tree.

 Grade composite >= 2.55

Behavior problems = No

Held back in 7th grade = No

Parents aspirations >= 9.5

Grade composite >= 1.55

SES >= -0.766

0

0

0 1 0 1

1

 Discipline problem = No

Parental aspirations >= 9.5

school changes < 3.5

School % minority >= 5

school changes < 1.5

Urbanicity >=1.5

Held back in 6th grade = No

Self-esteem < 0.525

0

0

0 1

0 1

1

1

1

Figure 11: CART fit to two random splits of the high school dropout dataset.

5.3 Smoothing, basis expansions, and additive models

One disadvantage of tree models is that they produce discontinuous predictions
and the main disadvantage of the linear models is that they enforce strict
smoothness everywhere. This section considers methods between these two
extremes.

Splines utilize piecewise polynomials (usually linear or cubic) to model f(x).
Remember that trees use piecewise constants and that linear models use a single
linear equation. Splines are, therefore, one further step in this progression. As
with trees, spline methods need to select split points, known as knots in spline
terminology. Between the knots we fit a polynomial of our choice to minimize our
loss function. Natural cubic splines are among the most popular. Between each
knot these splines fit cubic polynomials but fit linear models in the range outside

 29

the first and last knots. In addition they enforce continuity of f (x), f ′(x), and f ′′(x)
at every knot. Figure 12 shows two examples of natural splines with differing
numbers of knots. One can fit fairly flexible curves, including saturation and
threshold effects previously mentioned, with only a handful of knots.

linear

cubic

Figure 12: Natural splines with 4 and 20 knots on simulated data. The knots,
shown as solid points, are placed at equally spaced quantiles of the x variable.

The motivation for splines given earlier is that they seem a natural generalization
of piecewise constant and linear models. Natural splines also arise in a curious
way from a redefined loss function. Rather than simply minimize squared
prediction error, consider minimizing it subject to a penalty on the magnitude of
the function’s second derivative.

��
∞

∞−
=

′′+−= dxxfxfy
N

fJ
N

i
ii

2

1

2)())((
1

)(ˆ λ (35)

If λ, known as the smoothing parameter, is 0 then the function can be arbitrarily
jagged and interpolate the data. The best model when λ is large has f ′′(x) = 0
everywhere, the ordinary linear model. However, when λ takes on other,
moderate values, the function that minimizes (35) smoothly fits the data. It turns
out that the minimizer of (35) over a very rich class of functions is unique and is a
natural spline! The minimizing natural spline has knots at every observed xi but
the coefficients of each cubic are further restricted by an amount that depends on
�. We can use cross-validation to select �.

A discussion on the details for fitting natural splines comes later, but as discussed
so far, they can be computationally expensive for use with massive datasets. An
easy adaptation is to reduce the number of knots as originally shown. Rather than
placing knots at every data point, 5 to 20 knots are likely sufficient for many
univariate applications. A potential downside of splines is that they are not
invariant to transformations in the x variable. If instead of using x we use log x as

 30

the feature we will obtain a different natural spline for the same λ. While tree
models are invariant to transformations in x, for smooth models one needs to think
more carefully about the scale used for x. In section 5.6 we will see that boosted
trees allow fairly smooth predictions but are also invariant to transformations of
the features.

The above natural spline discussion focused on problems with a single feature. So
far, for problems involving more than one feature we have considered only
models that are linear in x or are local averages in neighborhoods of x. Basis
expansions represent yet another broad class of models. Assume that the best
predictor f (x) is well approximated by a sum of basis functions.

�
=

=
K

k
kk gf

1

)()(xx β (36)

The basis functions in the collection, gk(x), are often simple functions that can be
combined to describe more complex functions.

Many of the models we have previously discussed fall into this framework. Note
that if gk(x) = xk–1, with x0 = 1, then (36) reduces to the linear model previously
discussed. Trees can also be recast as a basis expansion where gk(x) = I(x ∈ Nk)
where Nk is a defined by upper and lower limits on certain components of x, such
as the 12 partitions shown in Figure 10. Tree learning algorithms vary on how
they select the number of basis functions and the form of Nk. One can naturally
imagine other choices for the basis functions.

A univariate cubic spline with K knots c1, …, cK is decomposable into K+4 basis
functions

3
4

3
4

2
321)()()()()(1)(++ −===== kk cxxgxxgxxgxxgxg (37)

where (x)+ = max(0, x). The cubic spline maintains a cubic fit before c1 and after
cK where the natural spline uses a linear fit. To fit these models we can utilize all
the methods developed for fitting linear models. Note that if we have K=2 knots
our predictor looks like

3
26

3
15

3
4

2
321)()()(++ −+−++++= cxcxxxxxf ββββββ (38)

precisely a linear model with five features. With a little effort we can see that (38)
is a continuous piecewise cubic function with continuous first and second
derivatives at the knots. Since (38) is simply a linear model we can use (17) to fit
the cubic spline.

 31

Fitting cubic splines using the basis functions shown in (37) requires O(NK2+K3)
operations. Other sets of basis functions for cubic and natural splines are more
efficient. In particular, B-splines, have computational properties that allow the
models to be fit in O(N log N+K) operations.

General multivariate extensions to natural splines exist, known as thin-plate
splines, but have not been developed to the computationally efficiency needs of
data mining yet. Additive models, on the other hand, can take advantage of
smoothing methods to create particularly powerful methods for exploratory
analysis as well as prediction. Additive models use the basis functions
gk(x) = gk(xk) so that each basis function is a function of only one of the features.
In this way we can generalize from the simple linear model while maintaining a
fairly simple, stable model.

For the cost of rehabilitation data we can fit a regression model where the
predictor has the form

)cognitive()motor()(210 ggf ++= βx (39)

requiring that g1 and g2 are smooth functions of their arguments by modeling
them as natural splines. Additive models are generally not Bayes risk consistent in
most applications. That is, as the dataset grows they cannot capture true
interaction effects. However, they can often outperform other methods in practice
especially when the data is noisy. In addition plotting the gk(xk) can give much
insight into the contribution of the individual features to the outcome. Figure 13
shows the additive model fit to the cost of stroke rehabilitation data. Compare the
contours with Figure 10. The marginal plots in the figure show the estimates of g1
and g2 and are scaled equivalently. From the marginals alone we can see that the
motor score is really driving the cost. The cognitive score has some information
and seems to indicate that costs are slightly lower for patients at the extremes of
the cognitive scale.

 32

Motor score

C
og

ni
tiv

e
sc

or
e

20 40 60 80

5
10

15

20

25

30

35

5000

5000 10000
15000 20000

25000

Figure 13: The estimates of g1 and g2 for cost of rehabilitation. The curves plotted
in the margin are g1(motor) and g2(cognitive).

The backfitting algorithm is the common method of fitting additive models of this
form. The constant β0 is fixed at the mean of the yi’s and the iterative algorithm
begins by fitting the univariate natural spline to predict y from motor score. Then
the algorithm builds a natural spline to fit the cognitive score to the residuals left
over from the motor score component. The motor score component is refit and the
process iterates until convergence. This algorithm is fast as it generally involves
only a few iterations, each of which uses an efficient B-spline implementation.

Hastie and Tibshirani (1990) provides more details on additive models including
extensions to the GLMs from section 4.3. The interested reader might also look
into multivariate adaptive regression splines (MARS) (Friedman, 1991). Just as
CART implements a greedy search to construct a tree, MARS greedily constructs
a model by introducing features into the prediction model (usually) through linear
splines. It selects the variable and the spline transformation that offers the greatest
decrease in prediction error through an exhaustive search similar to CART. The
result is a modeling framework that allows some variables to enter as main effects
(CART is only one big interaction term) and others to be interacted with one
another. Many variations on this theme are possible.

 33

5.4 Neural networks

While the neural network chapter in this handbook discusses these models in
much greater detail, the brief discussion here casts them into the framework
developed in this chapter. Like all the methods discussed so far there are
variations in the functional form of the neural network predictors and the
algorithms for fitting them. Generally, however, the single hidden layer neural
network can be expressed in terms of a basis expansion

�
=

′=
K

k
kk sf

1

)()(xx αβ (40)

where s(z) = 1/(1+e–z), the logistic transformation. The K basis functions are
known as the hidden units and the number of them is often fixed but may be
selected by cross-validation.

For univariate classification problems neural networks model P(Y = 1|x) like the
logistic regression model (18). For M-class classification problems we create a
multivariate outcome for each observation, yi, where the mth value takes on the
value 1 if the observation is in class m. Maintaining a common set of αk’s as in
(40), we allow each dimension of y to have a different βkm and the prediction as

�
�

=′ ′=
==′=

M

m m

m
K

k
kkmm

f

f
mYPsf

1
1)(exp

)(exp
)|(and)()(

x

x
xxx αβ . (41)

See the neural network chapter concerning methods for estimating the parameters
of neural networks. Their inclusion in this section is to show that they share the
same building blocks as all the other methods. Neural networks make specific
choices for their basis functions but then can be used to minimize any loss
function that we adopt for an application. The term universal approximator has
been used for neural networks to mean that they can approximate any regression
function. As the dataset grows and K is allowed to grow they are Bayes risk
consistent (Barron, 1991). These are properties also shared by trees, nearest
neighbors, and thin-plate splines. However, neural networks have the curious
mathematical property that the rate at which the estimated predictor converges to
the best predictor does not depend on the dimension number of features (Barron
1993).

5.5 Support vector machines

Several of the previous classification examples focused on obtaining good
estimates of P(Y = 1 | x) and then perhaps applying (5) to get a cost minimizing

 34

decision rule. The support vector machine (SVM) in its basic form aims directly
for the decision boundary.

We begin with an example of a linearly separable dataset shown in Figure 14.
There are two continuous features and the class labels are y = +1 or y = –1 marked
by clear and solid dots respectively. Many lines can separate the two classes.
SVMs select the line that maximizes the margin, the space between the decision
boundary and the closest points from each of the classes. With separable classes
we can find a separating line having the form w′x + b = 0 such that

1+≥+′ bixw when yi = +1

1−≤+′ bixw when yi = –1.

(42)

(43)

We can rescale w and b so that for some point(s) equality holds in (42) and in
(43). A little geometry shows that the two planes defined by w′xi + b = 1 and
w′xi + b = –1 are parallel, have no points between them, and are separated by a
distance of d where

2

1

22 /4/4 w== �
=

d

j
jwd . (44)

Putting these steps together, fitting the SVM corresponds to maximizing the
margin (44) subject to the constraints (42) and (43) solvable as a quadratic
optimization problem.

 35

Support
vectors

w′xi + b = +1 w′xi + b = –1

margin

x1

x 2

Figure 14: Geometry of the linear SVM. x1 and x2 represent two arbitrary
continuous features

In the more practical case when the classes are not completely separable, SVMs
still maximize the margin but allow for a limited number of observations to be on
the wrong side of the decision boundary. We can introduce slack variables, �i � 0,
into the constraints (42) and (43) as

ii b ξ−≥+′ 1xw when yi = +1 (45)

ii b ξ+−≤+′ 1xw when yi = –1. (46)

B
N

i i ≤� =1
ξ (47)

Again SVMs maximize the margin subject to (45) and (46) but also penalize the
sum of the �i (47), restricting the budget we have for observations being to far
from the decision boundary. The details of the fitting algorithm are fairly tedious
but two important ideas come in their development. To fill in the details not
covered here see the excellent SVM tutorial in Burges (1998). The SVM
optimization problem can be recast in its Wolfe dual form as

���
= ==

′−=
N

i

N

j
jijiji

N

i
i yyJ

1 11 2

1
)(xxαααα (48)

along with several constraints on the �i’s relating to the observed data and the �i.
The solution for the prediction rule is

 36

() �
�

�
�

� +′=+′= �
=

bybf
N

i
iii

1

signsign)(xxxwx α . (49)

Usually most of the �i’s turn out to be 0. Those observations corresponding to a
positive �i are called the support vectors. Conveniently the prediction rule
depends only on the support vectors. In Figure 14 there were only three support
vectors.

As with the linear models described in section 4, SVMs are easily extended by
expanding the set of features used in forming the decision boundary. We could
assume that the decision boundary has a basis expansion form like (36). An
interesting feature of the SVM is that the features only enter the fitting stage (48)
and the prediction stage (49) through the inner product of the features, xi�x. Rather
than having to specify the set of basis functions explicitly, only the inner product
of the basis functions needs definition. The common replacements for xi�x are

radial basis ()cK ii /exp),(
2

xxxx −=

polynomial c
iiK)1(),(xxxx ′+= (50)

neural network)tanh(),(21 ccK ii +′= xxxx .

These choices for the kernel are flexible and quick to compute. Therefore, to use
SVMs for prediction one needs to select a kernel, the kernel tuning parameters,
and the roughness of the decision boundary determined by B from (47).

To make the comparison of SVMs with other classifications we can reformulate
the optimization problem (45)-(47) as a loss function shown in (51).

��
==

+ +−=
d

j
j

N

i
ii wfyfJ

1

2

1

)](1[)(λx . (51)

Revisit Figure 2 to compare this to the other classification loss functions. The first
part of the SVM loss function encourages yi and f(xi) to agree on the sign. When
they disagree the penalty increases linearly in the magnitude of f(xi). The second
component penalizes the magnitude of the linear coefficients, equivalently
controlling the margin. As with the smoothing splines (35), � is a user specified
smoothing parameter. SVMs, therefore, are characterized as using (51) as the loss
function, having structural form (49) that may be generalized with a kernel choice
from (50), and utilizing quadratic programming to fit the models to data.

 37

5.6 Boosting

Although boosting has a technical definition in terms of computational learning
theory, it has been more generally applied to methods that use a flexible gradient
ascent approach to fit a prediction model. Schapire and Singer (1998) introduced
the Real AdaBoost algorithm for classification problems, one of the most
commonly used forms of boosting. Friedman et al (2000) decomposed this
algorithm into its basic components: the loss function, the functional form, and
the estimation procedure.

First consider the classification problem for which y takes on values +1 or –1. The
Real AdaBoost loss function is

))(exp()(| xx yfEfJ y −= . (52)

If y and f(x) frequently agree on the sign then (52) will be small. Furthermore, the
AdaBoost loss function is an upper bound to the misclassification rate as shown in
Figure 2. So intuitively, if on average y and f(x) frequently agree on the sign then
(52) is small and the misclassification rate will be small.

Boosting’s main innovation comes when we look at how it estimates f(x). Assume
that f0(x) is our current guess for the best predictor. To improve upon our current
guess we can consider adding a new function, g(x), to “fix” it. Of course we want
to choose the g(x) that helps us to decrease the loss function (53) the most.

()))()((exp)(0| xxx gfyEfJ y +−= . (53)

Setting the derivative of (53) with respect to g(x) equal to zero gives us the
“direction” in which f0(x) needs the most improvement,

)|1(

)|1(
log

2

1
)(

xyP

xyP
g

w

w

−=
+=

=x , (54)

Where Pw(y | x) is a weighted probability estimate with weight exp(–yf0(x)). The
brief derivation here deals with expectations but this is easily translated into data
applications.

Begin with a naïve guess for f0(x), perhaps a constant, c.

For t in 1,…,T do the following

1. Assign weights to the observations, wi = exp(–yft–1(xi)).

 38

2. Obtain an estimate for Pw(y = 1 | x) using any prediction model that can
handle weights and puts out a probabilistic prediction. Classification trees
are by far the most popular.

3. Form gt(x) as in (54) and lastly
4. Update the current guess as ft(x) � ft –1(x) + gt(x).

For a new observation x the model predicts that y = sign(fT (x)).

It is helpful at this point to note some similarities with the linear logistic
regression discussion in section 4.2.1. Like AdaBoost, the IRLS algorithm for
linear logistic regression repeatedly fits weighted regression models to the dataset
to obtain the best fit. In that situation the model is restricted to have a linear form
and so the updates get directly absorbed into the current guess for �. In addition
the IRLS weights were pi(1 – pi), which are largest when pi = ½, the point at
which the equal cost decision rule is most in question. This behavior is replicated
in the AdaBoost weights. Those weights are largest when y and f0(x) greatly
disagree, perhaps the more difficult observations to classify.

Having discussed the loss function and estimation process, the last component is
the predictor’s form. This depends much on the base classifier selected for the
Pw(y = 1 | x) estimate. If we use the naïve Bayes classifier AdaBoost leaves it
unchanged from the linear form (approximately so for the earlier Discrete
AdaBoost algorithm, Ridgeway et al 1998). If we use stumps, decision trees with
only a single split, the final model falls into the class of additive models of the
form (39). To see this, note that the model that AdaBoost produces has a basis
expansion form

)()()()()(121 xxxxx TTT ggggcf +++++= −� . (55)

In the additive model discussion the basis functions were decided upon ahead of
time then fit simultaneously to the data. Boosting selects the basis functions in
(55) greedily rather than simultaneously. If we use stumps then each gt(x) is a
function of one feature alone. We can then collect all those gt(x)’s that split on
variable j into a single component.

)()()()(*
2

*
21

*
1 ddT xgxgxgcf ++++= �x . (56)

A two split decision tree for the base classifier results in an additive model with
each term potentially being a function of two features. Therefore the depth of the
tree allows us to select the complexity of the feature interactions.

For data mining applications decision trees turn out to be an excellent choice for
the base model. Trees seamlessly handle continuous, ordinal, nominal, and
missing data. The other methods that this chapter discusses do not necessarily

 39

handle such a mix of data types easily. Trees are also invariant to one-to-one
transformations of the features, using only the order information to determine the
optimal partitions. For example, whether we use income or log(income) as a
feature the tree will have the same form and produce the same predictions either
way. The split points will be on the corresponding scale but all else will be the
same. The performance of other methods can be particularly sensitive to feature
transformations. This invariance in turn adds a bit of robustness to the boosted
tree model.

Generalizations of the AdaBoost algorithm amount to selecting a different loss
function, applying the same estimation procedure, and perhaps examining
different base classifiers. Boosting can be generalized to all of the other loss
functions discussed in section 3. Friedman (2001) gives a general framework for
developing boosting algorithms, deriving specific algorithms for least squares,
robust, and logistic regression.

To demonstrate the flexibility of boosting, consider the Cox loss function from
section 0 for survival data (see also Ridgeway 1999). We will apply the boosting
ideas to maximize the log-partial likelihood, the logarithm of (13).

� �
= = �

�
�

�

�
�
	

�
�
�

�
�
�

�
≥−=

N

i

N

j
jijii fttIffJ

1 1

)(exp)(log)()(xxδ . (57)

As with AdaBoost we can find a function to add to f(xi) to improve the model.
The derivative of (57) pointwise with respect to f(xi) indicates the direction that
will adjust f(xi) to increase the likelihood. The derivative equals

�
�=

=
≥

≥
−=

N

j
N

k kjk

iji
jii

fttI

fttI
z

1
1

)(exp)(

)(exp)(

x

x
δδ . (58)

This means that for some step size, �, if all the f(xi) in (57) were replaced with
f(xi) + �zi then the likelihood would increase. In the AdaBoost algorithm � is
exactly 1 but more generally we need to set it. Generally, zi has information
indicating how to adjust the current guess for f(x). To pull in the features we fit a
regression tree, g(x), predicting zi from xi. If g(x) can capture the gradient
information from zi a good update is f(x) � f(x) + �g(x), where � can be selected
with a line search.

To examine the performance of boosting Cox’s proportional hazards model, we
turn to a clinical trial for testing the drug DPCA for the treatment of primary
biliary cirrhosis of the liver (PBC). This dataset has been the subject of several
modern data analyses (Dickson et al 1989, Fleming et al 1991, Raftery et al

 40

1996). The data consist of 310 patients with complete observations on the
predictors. Of these, 124 patients died during the study and the remaining 186
were censored observations. Of the eight features Raftery et al (1996) considered,
we selected the six continuous features for use in the model.

iteration

pa
rt

ia
l l

og
-li

ke
lih

oo
d

0 20000 40000 60000

-2
80

-2

70

-2
60

-2

50

-2
40

Figure 15: Partial log-likelihood for PBC data. The upward trending curve
indicates the boosted trees performance on test data. The horizontal line indicates
the partial likelihood from the linear Cox model.

We tested this method by comparing the out-of-sample predictive performance of
the linear Cox model to the boosted Cox model using regression stumps as gt(x),
the base regressor. To judge the out-of-sample predictive performance of the two
models, we trained each on half of the observations, reserving the rest for a test
set. Figure 15 shows the value of the validation log-likelihood as the algorithm
proceeds. To obtain a very smooth prediction surface we shrunk the � by a factor
of 1000, making each adjustment very slight and requiring many more iterations.
We see that after 40,000 iterations the boosted estimate has surpassed the linear
Cox model. Furthermore, for the next 30,000 iterations the boosted version
continues to improve, although at a diminishing rate of return. Even though the
model fitting used many iterations, it takes about a minute to complete the
iterations on this small dataset.

 41

age

f(
ag

e)

10000 15000 20000 25000

-0
.2

0.

0
0.

2
0.

4

albumin

f(
al

bu
m

in
)

2.0 2.5 3.0 3.5 4.0 4.5 -0
.2

 -
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

copper

f(
co

pp
er

)

0 100 200 300 400

-0
.2

 0
.0

0.

2
0.

4
0.

6

bilirubin

f(
bi

lir
ub

in
)

0 5 10 15 20 25
-0

.5

0.
0

0.
5

1.
0

Figure 16: Boosted estimates of the main effects of the PBC data. The curves are
the boosted estimates of the functions and the superimposed lines are the
estimates from the linear model.

Since the base regressors were one-split decision trees, we can investigate the
estimates of the main additive effects as in (56). Figure 16 shows the boosted
estimates of four of those effects along with those based on the linear model.
Every variable shows evidence of either a threshold effect, a saturation effect, or
both. In the region where most of the data points are concentrated, for most of the
variables (except bilirubin) the underlying regressor is nearly linear. For this
reason we would expect the linear model to perform reasonably well. However,
for a patient with a more extreme value for any of the variables the boosted model
is far superior. When effects depart substantially from linearity, as in the PBC
dataset, accurate survival prediction for all patients depends on a non-linear
estimation procedure like boosting.

6 Availability of software

This section returns to the methods reviewed in this chapter indicating what
software tools are available. Many of the available tools come in the form of add-
ons to other packages, such as S-plus, Gauss, or Matlab. In general, a simple web
search for the method will likely turn up everything from original source code, to
Matlab scripts, to full stand-alone commercial versions. The R project

 42

(www.r-project.org) is a great place to start for statistical algorithms. It is a free,
full-featured statistical package maintained by many in the statistical community
and is often the place where the latest statistical algorithms first appear. Weka
(http://www.cs.waikato.ac.nz/ml/weka/) is another well integrated, ever
improving, package that implements many algorithms popular in the machine
learning community. There are stand-alone packages that implement individual
algorithms but they often lack convenient methods for managing the datasets.

Generalized linear models - All standard statistical packages, SAS, SPSS, Stata,
S-plus, R, etc, include GLM procedures as well as the Cox model and other
survival models.

Generalized additive models - Original source code is available from StatLib
(lib.stat.cmu.edu/general). The standard S-plus (gam()) and R distributions
(mgcv library) come with GAM. SAS as of version 8.2 has PROC GAM.

K Nearest Neighbors - Available in R (knn() in the class library) and Weka
(weka.classifiers.IBk).

Tree structured models - Salford Systems (www.salford-systems.com)
maintains and develops the official implementation of CART. Rpart, developed at
the Mayo clinic, is part of the standard R distribution and is full-featured
including surrogate splitting for missing values. S-plus (tree()) and SPSS
(AnswerTree) include tree structured modeling but do not implement all the
features of the CART algorithm. Also look for implementations of Quinlan’s C4.5
and C5.0 on the web.

MARS - Salford Systems maintains and develops MARS. There are various other
implementations, usually add-ons for other packages such as S-plus or Gauss.

Support vector machines - Many research packages are now available. SVM-
Light is one of the most popular, freely available at svmlight.joachims.org.

Neural networks - There are many variants on neural networks and at least as
many programs out there. Matlab users may want to look at Netlab
(www.ncrg.aston.ac.uk/netlab) to become more familiar with the technique. For a
large catalog of free and commercial packages visit
www.emsl.pnl.gov:2080/proj/neuron/neural.

Naïve Bayes - Available in Weka. Also Bayda exclusively implements naïve
Bayes (www.cs.helsinki.fi/research/cosco/Projects/NONE/SW)

Boosting - To accompany his Gradient Boosting paper, Friedman has an R add-
on for the LogitBoost algorithm, least squares, and robust regression methods.
(www-stat.stanford.edu/~jhf). Boosting methods for AdaBoost and other loss
functions including Poisson regression and the Cox model are available at

 43

www.i-pensieri.com/gregr/gbm.shtml as an R add-on, additional functionality
forthcoming. Weka can apply the AdaBoost algorithm to any of its standard
classifiers

7 Summary

For prediction problems the process begins by choosing a loss function, then
selecting the type of predictor, and lastly determining how best to fit the model to
potentially massive datasets. Of course, this ordering is ideal, but in practice we
may find that computational complexity or a policy constraint prevents us from
modeling exactly how we had hoped. As section 5.6 showed algorithms designed
to minimize particular loss functions can be slightly modified to minimize other
loss functions that we might prefer. Indeed, SVMs have been used to maximize
the logistic log-likelihood and k-nearest neighbors has been used for to minimize
squared error loss. So while this chapter focused only on particular combinations
commonly used in practice, data analysts can and should think creatively to match
loss, model structure, and fitting algorithm to the problem at hand.

In public policy problems as well as business and scientific applications,
interpretability is frequently a constraint. At times the SVM or the boosted tree
model might predict the outcome better than the more easily interpreted models.
However, applications often require a model fit that can be translated into
humanly understandable relationships between the features and the outcome.
When a model like the linear model adequately approximates the optimal
predictor, interpretation is not in doubt. One should use great caution when trying
to interpret an apparently interpretable model when more complex models exist
that substantially outperform it. Clearly, we should be careful when creating
policies and actions based on interpreting models that do not fit the data well. See
Breiman (2001) and the accompanying discussion for both sides of this debate. As
noted in section 5.2 interpreting the apparently interpretable decision tree actually
requires a fair bit of care. Research continues to develop in the area of converting
the competitive “black box” models into interpretable patterns. Friedman (2001),
for example, makes substantial gains in turning complex boosted regression
models into understandable relationships between features and outcomes.

While interpretability potentially is an issue, scalability is the main problem
facing data miners. The simplest models such as the linear models can be fit to
data in a small number of passes through the data, sometimes only once. But the
benefit of having large datasets is the ability to model complex, non-linear, deeply
interacted functions. As discussed in the tree model chapter, researchers have
made substantial progress in creating scalable algorithms for decision trees.
Research has also shown that subsampling within boosting iterations not only
decreases the computational complexity but also incidentally improves predictive

 44

performance. Computational advances are making SVMs potentially applicable to
large data mining problems. Watch for continued advances in each of these areas
over the next few years.

References

Barron, A.R. (1991). Complexity regularization with application to neural
networks. In G. Roussas (Ed.), Nonparametric functional estimation and related
topics (pp. 561-576). Dordrecht, Netherlands: Kluwer Academic Publishers.

Barron, A.R. (1993). Universal approximation bounds for superpositions of a
sigmoid function. IEEE Transactions on Information Theory, 39, pp. 930–945.

Berger, J. & Wolpert, R. (1984). The likelihood principle. Institute of
Mathematical Statistics.

Bloomfield, P. & Steiger, W.L. (1983). Least absolute deviations: Theory,
applications, and algorithms. Boston, Mass: Birkhauser.

Brier, G.W. (1950). Verification of forecasts expressed in terms of probability.
Monthly Weather Review 78(1), pp. 1–3.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science,
16(3), pp.199–231.

Burges, C.J.C. (1998). A tutorial on support vector machines for pattern
recognition. Knowledge Discovery and Data Mining, 2(2).

Dickson, E.R., Grambsch, P.M., Fleming, T.R., Fisher, L.D., & Langworthy, A.
(1989). Prognosis in primary biliary cirrhosis: Model for decision-making.
Hepatology, 10, pp. 1–7.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7, pp.179–188.

Fleming, T.R. & Harrington, D.P. (1991). Counting processes and survival
analysis. New York, NY: Wiley.

Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1), pp.119–139.

Friedman, J., Hastie, T. & Tibshirani, R. (2000). Additive logistic regression: A
statistical view of boosting (with discussion). Annals of Statistics, 28(2), pp. 337–
374.

Friedman, J. (1991). Multivariate adaptive regression splines (with discussion).
Annals of Statistics, 19(1), pp. 1-82.

 45

Friedman, J. (2001). Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29(4).

Gordon, L. & Olshen, R.A. (1984). Almost surely consistent nonparametric
regression from recursive partitioning schemes. Journal of Multivariate Analysis,
15, pp. 147–163.

Greene, W.H. (1999). Econometric analysis (4th ed.). Prentice-Hall.

Hand, D.J. & Yu, K. (2001). Idiot’s Bayes - not so stupid after all?. International
Statistical Review, 69(3), pp. 385-398.

Hastie, T. & Tibshirani, R. (1990). Generalized Additive Models. London:
Chapman and Hall.

Hastie, T., Tibshirani , R, & Buja, A.(1994). Flexible discriminant analysis by
optimal scoring. Journal of the American Statistical Association, 89, pp.1255–
1270.

Hastie, T., Tibshirani, R., Friedman , J. (2001). Elements of statistical learning:
Data mining, prediction, and inference. Springer.

Huber, P. (1964). Robust estimation of a location parameter. Annals of
Mathematical Statistics, 53, pp. 73–101.

McCullagh, P. & Nelder, J. (1989). Generalized linear models. London: Chapman
and Hall.

Raftery, A.E., Madigan, D. & Volinsky, C.T. (1996). Accounting for model
uncertainty in survival analysis improves predictive performance. In J.M.
Bernardo, J.O. Berger, A.P. Dawid & A.F.M. Smith (Eds.), Bayesian statistics 5
(pp. 323–349). Oxford University Press.

Ridgeway, G. (2002). Looking for lumps: Boosting and bagging for density
estimation. Computational Statistics and Data Analysis, 38(4), pp. 379–392.

Ridgeway, G., Madigan, D., Richardson, T. & O’Kane, J. (1998). Interpretable
boosted naïve Bayes classification. R. Agrawal, P. Stolorz, G. Piatetsky-Shapiro.
(Eds.), Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (pp. 101-104).

Sanders, F. (1963). On subjective probability forecasting. Journal of Applied
Meteorology, 2, pp.191–201.

Schapire, R. E. & Singer, Y. (1998). Improved boosting algorithms using
confidence-rated predictions. Proceedings of the Eleventh Annual Conference on
Computational Learning Theory.

 46

Vapnik, V. (1996). The nature of statistical learning theory. New York, NY:
Springer-Verlag.

Wahba, G. (1990). Spline models for observational data. Philadelphia, PA: SIAM.

Yates, J.F. (1982). External correspondence: Decompositions of the mean
probability score. Organizational Behavior and Human Performance, 30, pp. 132–
156.

	Chapter 6. Strategies and Methods for Prediction
	Introduction to the prediction problem
	Guiding examples
	Regression: Cost of stroke rehabilitation
	Classification: Detecting high school dropouts
	Survival: Survival time of PBC patients

	Prediction model components

	Loss functions Œ what we are trying to accomplish
	
	Common regression loss functions
	Common classification loss functions
	Cox loss function for survival data

	Linear models
	Linear Regression
	Classification
	Linear logistic regression
	The naïve Bayes classifier
	Linear discriminant analysis

	Generalized linear model

	Non-linear models
	Nearest neighbor and kernel methods
	Tree models
	Smoothing, basis expansions, and additive models
	Neural networks
	Support vector machines
	Boosting

	Availability of software
	Summary
	References

