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Outline

Importance sampling and propensity scores

Estimating propensity scores via boosted
logistic regression

Phoenix house: Effectiveness of a residential
drug treatment program. Adjust treatment
effect estimates for selection bias
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Example: Phoenix house

The treatment
assignments are

Offenders

non-random

We Want to eStimate Committee
treatment effect :

We Can rewelght the In- Phoenix house Z;es?;r:;?;t
dividuals from the other l l

facility to look like those
from the Phoenix house
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Causal estimation

Each individual has a control outcome, vy,
and a treatment outcome, v;.

Average treatment effect of the treated
=B(u|T =1) — E(lT = 1)

>_ieT Y1i

Ep|T =1) =~ N
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Causal estimation

EolT =1) = /[ vof (yo. x|T = 1) dx dy,
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Causal estimation

E(ylT =1) = //yof Yo, X|T" = 1) dx dyg

_ / f y07X|T I 1
f(yo,x|T = 0)

f(yo, x|T = 0) dx dyq

Apply Bayes Theorem to f(yo, x|T).
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Causal estimation

?Jo‘T — 1)

= 1y, %) f(yo,X) (T =0) o o o) g
/yo T = 0lyo, x) f(yo,x) f(T 1)][(% SRR

Assume f(T'|yo,x) = f(T|x)

This the “strong ignorability asumption.” If x
contains all the information used in assigning
treatments, then this assumption holds.
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Causal estimation

E(y|T =1) // Yo

f (o, x|T' = 0) dx dyqy

>_ieC W;iYoi

> ieC Wy
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Summary of the method

N

By |T = 1) & Sg

?\ilwi 1—;)yo;
E(p|T =1) = Zif-v1 wi-(lzg

w; = fj—p and p; Is the probability that subject
» goes to the treatment group

Derivation requires that treatment
assignments depend only on x

x IS high-dimensional. This is the problem on
which machine learning has focused for
years.
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Logistic log-likelihood

Let p(x) =1/ (1 + e F™)
Find F'(x) to maximize

EixtF(x) —log (1 + eF(X))



Gradient boosting

nitialize F(x) = 0

-ind a g(x) such that F'(x) + A\g(x) has a
arger log-likelinood than F'(x)

The g(x) offering the greatest improvement in
the log-likelihood is

1
[T e X

g(x) = E |t

We will use regression trees to estimate
E[t — p(x)[x]



Advantages

1. Excellent estimation of p(x)

2. The resulting model handles continuous,
nominal, ordinal, and missing x’s

3. Invariant to one-to-one transformations of the
r'S

4. Model higher interaction terms with more
complex regression trees

5. Implemented in R in the gbm library
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Observed control group weights

Frequency
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Balance of subject features

weighted unweighted

treatment control control effect size

Variable mean mean mean weighted unweighted
Treatment motivation 2.52 2.22 1.35 0.23 0.89
Environmental risk 30.61 31.09 28.94 -0.05 0.17
Substance use 7.61 6.94 4.59 0.16 0.69
Complex behavior 12.84 13.00 12.11 -0.02 0.09
Age 15.82 15.76 15.31 0.07 0.56
ESS 175 107.5 274

Average |ES| 0.107 0.307
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Results: Phoenix house

Unweighted GBM  Logit, 0.05 Logit, 0.20
Estimated Treatment Effect
(confidence interval)
Marijuana -11.8 -5.9 -1.9 -5.2
(-19.7,-3.8) (-16.2,4.3) (-12.7,8.8) (-24.4,14.1)
Alcohol -1.2 2.8 1.5 3.1

(-5.5,3.0) (-3.6,9.3) (-10.2,13.3) (-10.5, 16.7)

Measures of model fit

Deviance NA 466.4 539.2 5114
ASAM 0.31 0.11 0.14 0.20
SE, Marijuana 4.0 5.2 6.6 11.8

SE, Alcohol 2.2 3.3 7.2 8.3
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Remaining questions

Selecting the optimal number of iterations

» Cross-validation, out-of-bag estimation, or
minimize imbalance in pretreatment
characteristics

» There must be a bias/variance tradeoff but
it is difficult to optimize

Sensitivity to the independence assumption
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Assessing sensitivity

Let G > 1, for an observed weight of w the range for
true weightis in [w/G, wG]

Maximize S = Y,cc a,w;y;/ > icc a;w; SUbject to
1/G<a; <G

Repeat, this time minimizing S

G Maximum Minimum

1.24 0.00 -11.32
2.00 13.78 -20.58
3.00 23.19 -26.52

4.00 28.06 -29.87
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Central epidemiological questions

Epidemiology discerns whether various groups are at
greater risk

» detecting racial biases,

» estimating the number of uninsured reservists,
» aSSess a gun violence suppression program,

» others?

How can we best create suitable comparison groups?

Outcomes can censored (death, incarceration) but the
treatment exposure can influence censoring.
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