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Overview

e Actuarial risk assessment tools
* Aim to provide objective measures of risk, but...
e Generate concerns over racial bias

* Typical process
* Fit models to maximize prediction accuracy...
* Then assess racial fairness

* Fairness regularized models

e Simultaneously optimize predictive performance and minimize racial
differences

 Logistic regression fit with a “lack of fairness penalty” added to the negative
Bernoulli log-likelihood
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Background

* Actuarial risk assessment is increasingly prevalent in the
justice system

* Several widely publicized critiques

e Attorney General Eric Holder’s Comments (NACDL Speech, 2014)

* Propublica/COMPAS Controversy (e.g., Angwin et al. 2016; cf. Flores
et al. 2016)

* Weapons of Math Destruction (Cathy O’Neil 2016)

* Multiple, conflicting definitions of “fairness” (Chouldechova
2017; Berk et al. 2021)

* Mathematical proofs that all common fairness measures cannot be
satisfied simultaneously
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Calibration Is One Way of Defining Fairness in

Risk Assessment

Figure 1. Predicted Probabilities of Any Re-Arrest by PCRA Score and Race

10
Total PCRA Score

| — — — - Black Offenders White Offenders
Skeem & Lowenkamp (2016)

A score S is well-calibrated if
P(Y =1|S =s,R =Dblack) = P(Y = 1|S = 5, R = white)

At any PCRA
score, rearrest
probabilities
are similar
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PATTERN Risk Tool Is Accurate...

* High overall accuracy relative to instruments used in criminal justice

* Female group AUCs range from 0.73 - 0.86
 0.76 and 0.78 for White and Black women
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...But PATTERN Risk Scores Do Not Seem Fair

General Female 2019

PATTERN
scores are
not well-
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Source: https://www.ojp.gov/pdffiles1/nij/309264.pdf



Measure Lack-of-Calibration with F-statistic

 Lack-of-calibration penalty Natural splines allowing

 Compute score-and-sum predlctlons as non-linear relationship
f ,80 + ,lell + ,Bzle between score and log odds

= ay + alnsl(fl-) + aznsz(fl-) + a3n53(fi) + a4ns4(fl-) +
asblack; +
agblack;nsy (fl) + a-black;ns, (fl) + agblack;ns; (ﬁ) + agblackins4(ﬁ)

P(y;=1)
1-P(y;=1)

log
Main effect for race

* Measure calibration with F-statistic testing Capture difference

— — — _ _ in calibration curves
*s e &7 Ug U9 0 across race
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Minimize Deviance with Unfairness Penalty

* Finds 8 to minimize

£(8) = =2 ) yif'x; —log(1 + exp(B'x)) + AF ()
=1

* No differences in calibration by race group, F = 0
* Increasing A focuses optimization focuses on equal calibration

* May create scores that fail to incentive constructive rehabilitation
* For example, more serious criminal history predicts lower recidivism risk

e Additional constraints on 3
e Risk must increase with more serious criminal history
* Risk must decrease with more participation in rehabilitation programming
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Fairness Regularization Improves
Within Race Calibration

1
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mproving Calibration Slightly Reduces

Predictive Performance (AUC)

PATTERN FR
White 0.80 0.79
Black 0.75 0.74
Hispanic 0.77 0.75
Native American 0.70 0.70
Asian 0.84 0.84
Overall 0.78 0.77
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Conclusion

* When unconstrained, risk assessments
* Are not calibrated within groups
* May encode undesirable incentives

* Fairness regularization improves within group calibration
* Optimization can also enforce desired incentives

* Improving fairness comes with a price: reduced predictive
performance

* Forcing perfectly calibration reduces the model to predict the baseline
rearrest rate for everyone (perfectly fair, but no risk assessment)
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