
Extracting data from text and geocoding to
study officer-involved shootings

Greg Ridgeway

2025-11-30

Table of contents

1 Introduction 1

2 Scraping the OIS data 2

3 Extracting OIS incident details 13

4 Extracting dates from the text 17

5 Geocoding the OIS locations 20

6 Working with shapefiles and coordinate systems 43
6.1 Coordinate systems . 50
6.2 Spatial joins . 54
6.3 Coloring a map based on the value of a feature 60

7 Summary 70

8 Exercises 70

1 Introduction

In this section, we are going to explore officer-involved shootings (OIS) in Philadelphia. The
Philadelphia Police Department posts a lot of information about officer-involved shootings
online going back to 2016. Have a look at their OIS webpage. While a lot of information has
been posted to the webpage, more information is buried in text linked to each of the incidents.
In order for us to explore these data, we are going to scrape the basic information from the

1

https://www.phillypolice.com/ois/

webpage, have R dig into the text for dates, clean up addresses using regular expressions,
geocode the addresses to latitude/longitude with the ArcGIS geocoder (using JSON), and
then make maps describing the shootings.

Start by loading the packages we will need.
library(lubridate)
library(jsonlite)
library(sf)
library(leaflet)
library(dplyr)
library(tidyr)
library(foreach)

library(chromote) # steer Chrome from R
library(rvest) # helpful webscraping tools
library(purrr) # for pluck()

2 Scraping the OIS data

We can run scan(), as we did previously, on the PPD OIS webpage and regex our way to a
data frame with the data elements that we want to store.
pull the whole OIS page
a <- scan("https://www.phillypolice.com/accountability/ois/",

what="", sep="\n")
search for the start of a table
i <- grep("<tbody>", a)
a[i] |> substring(1, 500)

[1] " </script><script id=\"7df2eafa34b89fa67704cfd13478287f-1\"
type=\"nitropack/inlinescript\"
class=\"nitropack-inline-script\">jQuery(document).ready(function(){var
e=jQuery(\"#ast-seach-full-screen-form\");jQuery(\".site-header\").after ⌋
(e);jQuery(\"#close\").removeAttr(\"tabindex\");var
t=jQuery(\".ast-header-html-2\");jQuery(\".ast-search-wrapper
.ast-container\").html(t);t.css(\"display\",\"flex\");jQuery(\"#closeSea ⌋
rch\").click(function(e){e.preventDefault();var
t=jQuery(\"#ast-seach-full-screen-form\");t.animate({\""

↪

↪

↪

↪

↪

↪

↪

↪

search for start of table <tbody> in a[i]
iStart <- gregexpr("<tbody>", a[i]) |> unlist()
a[i] |> substring(iStart, iStart+500)

2

[1] "<tbody><tr><td>26-17</td><td>5100
block of North 10th Street</td><td>2025</td><td>Killed</td><td>N/A</td>< ⌋
td>No</td><td>Pending</td><td></td> <td><p
style=\"text-align:justify;\">On Sunday, September 21, 2025, at
approximately 8:46 p.m., Police Officer #1 assigned to the 25th District,
was on duty and in full uniform when he and his partner responded to a
radio call for a person with a gun inside a residence on the 5100 block
of North 10th Stree"

↪

↪

↪

↪

↪

↪

↪

↪

Buried in the HTML code are the entries in the table. Even though all the information does
not appear on the main webpage, it is in the HTML. This is not always the case. Some pages
dynamically generate information as the user interacts with a page and the page elements. We
are going to use this as an opportunity to learn more advanced webscraping methods.

Instead of using scan(), we are going to use the chromote package to open a hidden Chrome
browser that we can control remotely from R. For this to work you do need to have a Chrome
browser installed on your computer. From R, we can simulate user actions, like typing a URL
in the address bar, selecting elements on the page, and clicking buttons.

The page source is the static HTML the browser receives from the server (e.g. what scan()
would capture). The Document Object Model (DOM) is the live, in-memory object the browser
constructs from that source and then updates as JavaScript runs. When we interact with a
webpage, like clicking, we are interacting with the DOM.

Start by initiating a new hidden Chrome browser.
browser <- ChromoteSession$new()
Good idea to setup the browser to close when we exit R
When creating these notes it runs too soon, so commented out here
on.exit(browser$close(), add = TRUE)

Nothing will be visible on your screen at this point. If you want to watch what the browser is
doing in response to R actions, you can use view(), but this is not necessary.
browser$view()

Let’s tell our hidden browser to navigate over to the PPD OIS webpage. Sometimes pages
take a moment to load. go_to() waits for the navigation to finish before allowing R to move
on to the next line of code.
browser$go_to("https://www.phillypolice.com/accountability/ois/")

I will grab a screenshot to show that everything is working so far.
get page size
pageSize <- browser$Page$getLayoutMetrics()$contentSize
browser$screenshot(cliprect = c(left=0, top=0,

width=pageSize$width, height=800))

3

https://www.google.com/chrome/
https://www.google.com/chrome/

Figure 1: Screenshot from the hidden Chrome browser view of the PPD OIS

Let’s take a little cybersecurity detour for a moment. If you right-click on a webpage and select
“Inspect,” then you can see the DOM for the page. Right-click and Inspect the OIS table and
you will find that the table’s ID is #data-table-ois. From R I can tell the DOM to change
elements on the page. To demonstrate, I will change the address in the 25th row to 3718
Locust Walk. tr:nth-child(25) selects the 25th row and td:nth-child(2) selects the column.
Setting .textContent = '3718 Locust Walk' changes the cell text in the DOM immediately.
browser$Runtime$evaluate("document.querySelector('#data-table-ois tr:nth-child(25)

td:nth-child(2)').textContent = '3718 Locust Walk';")

$result
$result$type
[1] "string"

4

$result$value
[1] "3718 Locust Walk"

Now let’s look at the page
pageSize <- browser$Page$getLayoutMetrics()$contentSize
browser$screenshot("screenshot2.png",

cliprect = c(left=0, top=pageSize$height-800,
width=pageSize$width, height=800))

Figure 2: Screenshot of the manipulated PPD OIS webpage

This is how the “refund/overpayment scam” works. A fraudster gets the victim to view their
account webpage and to give the fraudster some level of remote control. The fraudster then
manipulates the DOM to give the impression that they have mistakenly sent the victim $10,000
instead of $1,000. The fraudster then convinces the victim to send the $9,000 difference even
though no money was ever given to them.

5

Rather than try to scam someone, let’s get back to the business of pulling all the OIS data
into R. I will first get the ID of the main HTML from the DOM. Then I will read in the HTML
associated with that ID.
get the ID of the main HTML
html <- browserDOMgetDocument()$root$nodeId
html

[1] 16

pull in raw html source code, like view page source or scan()
page_html <- browserDOMgetOuterHTML(nodeId = html)$outerHTML
page_html is one long string of HTML code
look at a few lines
page_html |>

substring(1,1500)

[1] "<!DOCTYPE html><html lang=\"en-US\"><head><meta
http-equiv=\"origin-trial\" content=\"A7vZI3v+Gz7JfuRolKNM4Aff6zaGuT7X0m ⌋
f3wtoZTnKv6497cVMnhy03KDqX7kBz/q/iidW7srW31oQbBt4VhgoAAACUeyJvcmlnaW4iOi ⌋
JodHRwczovL3d3dy5nb29nbGUuY29tOjQ0MyIsImZlYXR1cmUiOiJEaXNhYmxlVGhpcmRQYX ⌋
J0eVN0b3JhZ2VQYXJ0aXRpb25pbmczIiwiZXhwaXJ5IjoxNzU3OTgwODAwLCJpc1N1YmRvbW ⌋
FpbiI6dHJ1ZSwiaXNUaGlyZFBhcnR5Ijp0cnVlfQ==\"><script async=\"\"
src=\"//cse.google.com/adsense/search/async-ads.js\"></script><script
type=\"text/javascript\" async=\"\" charset=\"utf-8\"
src=\"https://www.gstatic.com/recaptcha/releases/TkacYOdEJbdB_JjX802TMer ⌋
9/recaptcha__en.js\" crossorigin=\"anonymous\"
integrity=\"sha384-Ft89l3aihBBhSrkZ/Syx/7cCCaryQcJICINmdoWVHhaQefSnqabq/ ⌋
akNl06biiHi\"></script><script>if(navigator.userAgent.match(/MSIE|Intern ⌋
et Explorer/i)||navigator.userAgent.match(/Trident\\/7\\..*?rv:11/i)){let
e=document.location.href;if(!e.match(/[?&]nonitro/)){if(e.indexOf(\"?\") ⌋
==-1){if(e.indexOf(\"#\")==-1){document.location.href=e+\"?nonitro=1\"}e ⌋
lse{document.location.href=e.replace(\"#\",\"?nonitro=1#\")}}else{if(e.i ⌋
ndexOf(\"#\")==-1){document.location.href=e+\"&nonitro=1\"}else{document ⌋
.location.href=e.replace(\"#\",\"&nonitro=1#\")}}}}</script><link
rel=\"preconnect\" href=\"https://www.phillypolice.com\"><link
rel=\"preconnect\" href=\"https://www.google.com\"><link
rel=\"preconnect\" href=\"https://www.googletagmanager.com\"><link
rel=\"preconnect\" href=\"https://cdn-ilcomil.nitrocdn.com\"><meta
charset=\"UTF-8\"><meta name=\"viewport\" content=\"width=device-width,
initial-scale=1\"><meta"

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

Now convert all that HTML code into an HTML document object with which R knows how
to work.

6

page <- read_html(page_html)
page

{html_document}
<html lang="en-US">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8

...↪

[2] <body itemtype="https://schema.org/WebPage" itemscope="itemscope" class="
...↪

In this page we are looking for any table elements.
page |> html_elements("table")

{xml_nodeset (4)}
[1] <table cellspacing="0" cellpadding="0" role="presentation" class="gsc-sea

...↪

[2] <table cellspacing="0" cellpadding="0" role="presentation" id="gs_id50" c
...↪

[3] <table id="data-table-ois" class="display dataTable no-footer" aria-descr
...↪

[4] <table cellspacing="0" cellpadding="0" role="presentation" class="gstl_50
...↪

There appear to be four tables on the page, but I noticed that the third one of these has
id="data-table-ois". That must be the one we want. Let’s extract it by name and convert it
to an R data frame object.
extract the data-table-ois by name
page |>

html_elements("table#data-table-ois") |>
html_table() |>
data.frame()

Title Location Year Subject.Injury
1 26-17 5100 block of North 10th Street 2025 Killed
2 25-16 2000 block of Simon Street 2025 N/A
3 25-15 2900 block of North Lawrence Street 2025 Killed
4 25-14 2600 block of South 21st Street 2025 N/A
5 25-13 100 block of West Somerset Street 2025 Killed
6 25-12 300 block of North 65th Street 2025 N/A
7 25-11 4600 block of Roosevelt Blvd 2025 Killed
8 25-10 4100 block of Ogden Street 2025 N/A
9 25-09 4600 block of Roosevelt Boulevard 2025 Killed
10 25-08 1600 block of Moore Street 2025 Wounded

7

11 25-06 2800 block of Jasper Street 2025 N/A
12 25-05 1 Philadelphia International Airport Way 2025 Killed
13 25-04 4100 block of Leidy Avenue 2025 N/A
14 25-02 800 block of West Master Street 2025 No
15 25-01 600 block of Chamounix Drive 2025 N/A
16 24-37 3400 block of Vista Street 2024 N/A
17 24-36 3200 block of A Street 2024 N/A
18 24-35 5400 block of Chancellor Street 2024 Killed
19 24-32 2900 block of E. Street 2024 N/A
20 24-31 3300 block of Willits Road 2024 Killed
21 24-30 6100 block of Lebanon Avenue 2024 N/A
22 24-29 2600 block of Glenwood Avenue 2024 N/A
23 24-28 3900 block of Whittaker Avenue 2024 Wounded
24 24-27 2200 block of S. 65th Street 2024 N/A
25 24-23 3718 Locust Walk 2024 N/A

Subject.Arrested Officer.Injury
1 N/A No
2 N/A No
3 N/A No
4 N/A No
5 N/A No
6 N/A Yes
7 N/A No
8 N/A No
9 N/A Yes
10 Yes No
11 N/A Yes
12 N/A No
13 N/A Yes
14 Yes Yes
15 N/A No
16 N/A No
17 N/A No
18 N/A No
19 N/A No
20 N/A No
21 N/A No
22 N/A No
23 No No
24 N/A No
25 N/A No

Looks like we got all 25 of the OIS incidents from the first page. Note that it still has
our manipulated address for the 25th OIS incident. Shortly we will refresh the webpage to

8

scrape all of the incidents and that will reset the addresses to their original values. On the
PPD’s page, each OIS’s ID has a hyperlink that gets us more detailed information about each
incident. Extract those URLs by looking for elements in the table body with an <a> HTML
tag. Eventually we will store these URLs so that we can scrape them for the OIS details.
page |>

html_elements("table#data-table-ois") |>
html_elements("tbody a") |>
html_attr("href")

[1] "https://www.phillypolice.com/ois/26-17/"
[2] "https://www.phillypolice.com/ois/25-16/"
[3] "https://www.phillypolice.com/ois/25-15/"
[4] "https://www.phillypolice.com/ois/25-14/"
[5] "https://www.phillypolice.com/ois/25-13/"
[6] "https://www.phillypolice.com/ois/25-12/"
[7] "https://www.phillypolice.com/ois/ps25-11/"
[8] "https://www.phillypolice.com/ois/25-10/"
[9] "https://www.phillypolice.com/ois/25-09/"
[10] "https://www.phillypolice.com/ois/25-08/"
[11] "https://www.phillypolice.com/ois/25-06/"
[12] "https://www.phillypolice.com/ois/25-05/"
[13] "https://www.phillypolice.com/ois/25-04/"
[14] "https://www.phillypolice.com/ois/25-02/"
[15] "https://www.phillypolice.com/ois/ps25-01/"
[16] "https://www.phillypolice.com/ois/24-37/"
[17] "https://www.phillypolice.com/ois/24-36/"
[18] "https://www.phillypolice.com/ois/24-35/"
[19] "https://www.phillypolice.com/ois/24-32/"
[20] "https://www.phillypolice.com/ois/24-31/"
[21] "https://www.phillypolice.com/ois/ps24-30/"
[22] "https://www.phillypolice.com/ois/24-29/"
[23] "https://www.phillypolice.com/ois/24-28/"
[24] "https://www.phillypolice.com/ois/24-27/"
[25] "https://www.phillypolice.com/ois/24-23/"

With that we have been able to get all of the information for the first 25 OIS incidents. Now
we have to “click” the Next button to get to the next set of 25 OIS incidents. First, I will
check to see if it is disabled. Since we are still looking at the first page it will not be disabled,
but when we are looking at the final page of OIS incidents then it will be disabled. To figure
out the name of that Next button, in my browser I right-clicked on the Next button, selected
Inspect, and then reviewed the resulting HTML code.
<a class="paginate_button next" aria-controls="data-table-ois" role="link" data-dt-

idx="next" tabindex="0" id="data-table-ois_next">Next

9

I see that the HTML tag is <a> and its classes are paginate_button and next. So
a.paginate_button.next will search the HTML code for an <a> element with both a
paginate_button and next class.
check whether the Next button is disabled
browser$Runtime$evaluate(
expression = 'document.

querySelector("a.paginate_button.next").
classList.
contains("disabled");') |>

pluck("result","value")

[1] FALSE

On a single page there might be several such buttons. A more robust method of finding the
right button is to query it by name, in this case data-table-ois_next.
check whether the Next button is disabled
browser$Runtime$evaluate(
expression = 'document.

querySelector("#data-table-ois_next").
classList.
contains("disabled");') |>

pluck("result","value")

[1] FALSE

Either method gives the same response: the button is not disabled. That means we can click
it to move on to the next page.
Click the "Next" button
browser$Runtime$evaluate(
expression = 'document.

querySelector("#data-table-ois_next").
click();')

Armed with all the skills to navigate and extract key information from this site, we can wrap
these ideas in a while() loop that will keep scraping OIS data as long as the Next button is
active.
reset page to beginning
browser$go_to("https://www.phillypolice.com/accountability/ois/")
give the browser additional time to fully load page
Sys.sleep(5)
you can force scroll to bottom if you have the view open
browser$Runtime$evaluate("window.scrollTo(0, document.body.scrollHeight);")

store results from each page in ois (a list of data frames)
ois <- list()

10

isFinished <- FALSE
iPage <- 1
while(!isFinished)
{
message(paste0("Read HTML from page ",iPage))
get ID of main HTML
html <- browserDOMgetDocument()$root$nodeId
raw html source code
page_html <- browserDOMgetOuterHTML(nodeId = html)$outerHTML
parse the HTML into a structured document
page <- read_html(page_html)

Pull the table
oisTable <- page |>

html_elements("table#data-table-ois")

extract the table text to a data frame
ois[[iPage]] <- oisTable |>

html_table() |>
data.frame()

message("Read in ", nrow(ois[[iPage]]), " rows")

extract the URLs from each row
oisURLs <- oisTable |>

html_elements("tbody a") |>
html_attr("href")

ois[[iPage]]$url <- oisURLs

is "Next" button disabled?
isFinished <- browser$Runtime$evaluate(

expression = 'document.
querySelector("#data-table-ois_next").
classList.
contains("disabled");') |>

pluck("result","value")

if(!isFinished)
{

Click the "Next" button
browser$Runtime$evaluate(
expression = 'document.

querySelector("#data-table-ois_next").
click();')

Sys.sleep(2)
iPage <- iPage + 1

}
}

11

Read HTML from page 1

Read in 25 rows

Read HTML from page 2

Read in 25 rows

Read HTML from page 3

Read in 25 rows

Read HTML from page 4

Read in 25 rows

Read HTML from page 5

Read in 25 rows

Read HTML from page 6

Read in 25 rows

close the browser
browser$close()

[1] TRUE

combine pages into single data frame
drop year since we are going to extract the actual date later
ois <- bind_rows(ois) |>
select(-Year) |>
rename(id = Title,

location = Location,
subInjury = Subject.Injury,
subArrest = Subject.Arrested,
offInjury = Officer.Injury)

Let’s check that it read everything in.
head(ois)

id location subInjury subArrest offInjury
1 26-17 5100 block of North 10th Street Killed N/A No
2 25-16 2000 block of Simon Street N/A N/A No
3 25-15 2900 block of North Lawrence Street Killed N/A No
4 25-14 2600 block of South 21st Street N/A N/A No

12

5 25-13 100 block of West Somerset Street Killed N/A No
6 25-12 300 block of North 65th Street N/A N/A Yes

url
1 https://www.phillypolice.com/ois/26-17/
2 https://www.phillypolice.com/ois/25-16/
3 https://www.phillypolice.com/ois/25-15/
4 https://www.phillypolice.com/ois/25-14/
5 https://www.phillypolice.com/ois/25-13/
6 https://www.phillypolice.com/ois/25-12/

tail(ois)

id location subInjury
145 16-11 Unit Block of Salford street No
146 16-10 5700 N. Park street/5700 N. Broad street Killed
147 16-07 3100 Block of north Carlisle Street Wounded
148 16-03 Near Loudon and D streets No
149 16-02 100 block of north 55th Street No
150 16-01 300 block of south 60th street Wounded

subArrest offInjury
145 Yes (both offenders) P/O #1 (wounded)
146 Yes No
147 Yes No
148 2 of 4 arrested No
149 Yes No
150 Yes Wounded

url
145 https://www.phillypolice.com/ois/16-11/
146 https://www.phillypolice.com/ois/16-10/
147 https://www.phillypolice.com/ois/16-07/
148 https://www.phillypolice.com/ois/16-03/
149 https://www.phillypolice.com/ois/16-02/
150 https://www.phillypolice.com/ois/16-01/

3 Extracting OIS incident details

Now let’s dig into the details of the incident, starting with the first OIS. The hyperlink in
the very first OIS incident points to the page https://www.phillypolice.com/ois/26-17/. Let’s
read in the incident details from that page. In your browser, if you right-click and Inspect the
text description of the incident, then you will find that the text has the id ois-content-area.
We can grab that by name.

13

https://www.phillypolice.com/ois/26-17/

read_html(ois$url[1]) |>
html_element("div.ois-content-area") |>
html_text() |>
trimws() # trim whitespace

[1] "On Sunday, September 21, 2025, at approximately 8:46 p.m., Police
Officer #1 assigned to the 25th District, was on duty and in full uniform
when he and his partner responded to a radio call for a person with a gun
inside a residence on the 5100 block of North 10th Street. Initial
reports also indicated that a female had been shot inside the
property.\nWhile attempting to make entry into the home to assist the
victim, Officer #1 was fired upon by a male suspect from the second floor
of the residence. Officer #1 returned fire. He then retreated to cover
and broadcast over police radio that shots had been fired.\nThe incident
was declared a barricade situation, and SWAT personnel responded. After
several hours of attempted communication and tactical deployment, the
suspect, 54-year-old male, was located on the second floor of the
residence deceased from what appeared to be a self-inflicted gunshot
wound. A firearm was recovered near his body.\nThe female victim was
transported for medical treatment of a gunshot wound, which had been
fired by the decedent. No officers or civilians were struck during the
exchange of gunfire.\nThis investigation is being handled by the
Officer-Involved Shooting Investigation (OISI) Unit and remains ongoing
in coordination with the Philadelphia District Attorney’s
Office.\nOfficer #1 is 36-years-old and a one-year veteran of the
Philadelphia Police Department. He has been placed on administrative duty
pending the outcome of the investigations conducted by the
Officer-Involved Shooting Investigations unit, the Internal Affairs
Bureau, and the DAO."

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

Now we are ready to read in all the incidents’ details.
ois$text <- NA
for(i in 1:nrow(ois))
{

message(paste0("Incident: ",i))
a <- try(read_html(ois$url[i]))

if(inherits(a, "try-error"))
{ # in case a page does not exist

message(paste0("Could not access webpage for ", ois$id[i]))
} else
{

grab text between <div class="ois-content-area"> and </div>
ois$text[i] <- a |>

14

html_element("div.ois-content-area") |>
html_text() |>
trimws()

}
}

And let’s just check that we have some descriptions now.
ois$text |> substring(1, 30)

[1] "On Sunday, September 21, 2025," "On Sunday, August 10th 2025, a"
[3] "On Friday, July 4, 2025 at 5:5" "On June 20th, 2025, at approxi"
[5] "On Wednesday, May 21, 2025, at" "On Wednesday, April 30, 2025, "
[7] "On Monday, April 28, 2025, at " "4100 block of Ogden Street On "
[9] "4600 block of Roosevelt Boulev" "1600 block of Moore Street\nOn "
[11] "2800 block of Jasper Street\nOn" "1 Philadelphia International A"
[13] "4100 block of Leidy Avenue\nOn " "800 West Master Street\nOn Satu"
[15] "3600 block of Chamounix Drive\n" "3400 block of Vista Street\nOn "
[17] "3200 block of A Street On Tues" "5400 block of Chancellor Stree"
[19] "29oo block of E. Street\nOn Fri" "3300 Willits Road\nOn Thursday,"
[21] "6100 block of Lebanon Avenue\nO" "2600 block of Glenwood Avenue\n"
[23] "3900 block of Whittaker Avenue" "2200 block of S. 65th Street\nT"
[25] "3000 block of Ruth Street\nThe " "6100 block of West Columbia Av"
[27] "3500 block of F Street\nA Phila" "2700 block of North 6th Street"
[29] "1500 block of North 57th Stree" "2100 block of East Westmorelan"
[31] "1600 South Dover Street\nOn Thu" "3000 block of North 16th Stree"
[33] "1500 block of South 58th Stree" "2200 block of West Oxford Aven"
[35] "3900 block of Fairmont Avenue\n" "Unit block of East Cliveden St"
[37] "2100 block of Eastburn Avenue\n" "1000 block of West Dakota Stre"
[39] "6200 block of Haverford Avenue" "1000 block of North 48th Stree"
[41] "300 block of Adams Avenue\nOn T" "2800 block of Mascher Street\nA"
[43] "2300 block of Borbeck Avenue\nA" "3600 block of Sepviva Street\nA"
[45] "1800 block of South 29th St.\nO" "8000 block of North Frankford "
[47] "3700 block of Fairmount Street" "7500 block of Whitaker Ave.\nAt"
[49] "1500 block of N. 62nd Street\nO" "Unit Block of E. Phil Ellena S"
[51] "7600 block of Lexington Avenue" "3100 block of Emerald St.\nOn T"
[53] "On Monday, August 14, at appro" "2300 block of Fawn Street\nOn T"
[55] "400 block of West Bringhurst S" "15xx E. Johnson Street\nOn Frid"
[57] "200 block of North 60th Street" "800 block of North 10th Street"
[59] "3300 block of North 10th Stree" "1300 block of Chancellor Stree"
[61] "500 block of East Brinton Stre" "400 block of South Street\nOn S"
[63] "2200 block of West Hunting Par" "4700 block of Leiper Street\nOn"
[65] "4000 block of Lancaster Avenue" "1700 block of Barbara Street\nO"
[67] "2000 block of South Beechwood " "100 block of West Lehigh Avenu"

15

[69] "4800 block of Keyser Street\nOn" "1700 Dickinson Street\nOn Wedne"
[71] "2700 block of Brown Street\nOn " "1900 block of South Bancroft S"
[73] "5700 block of Overbrook Avenue" "4100 block of Parkside Avenue\n"
[75] "Whitaker Avenue and Roosevelt " "9th Street and Hunting Park Av"
[77] "3000 block of North Water Stre" "300 Glen Echo Road\nOn Monday, "
[79] "Broad Street and Somerville Av" "3300 Emerald Street\nOn Friday,"
[81] "4700 block of Rorer Street\nOn " "3500 block of Kyle Road\nOn Mon"
[83] "3500 block of Wharton Street\nO" "1900 block of East Hart Lane\nO"
[85] "6100 block of Locust Street\nO" "5600 block of Greene Street\nOn"
[87] "1400 block of Sharpnack Street" "4200 block of Clarissa Street\n"
[89] "6th Street and McKean\nOn Tuesd" "2500 Block of South 7th Street"
[91] "1500 block of Bailey Street\nOn" "7600 Block of Roosevelt Blvd\nO"
[93] "Jasper Street and Hart Lane On" "On November 21, 2019, at appro"
[95] "On Saturday, November 2, 2019," "On 9-02-19, at 10:15 PM, two u"
[97] "On May 20, 2019, at approximat" "On Saturday, May 11th 2019 at "
[99] "On Thursday, April 25, 2019, u" "On Saturday April 20, 2019, at"
[101] "On March 28, 2019, at approxim" "On March 6, 2019, at approxima"
[103] "OIS 18-28\nAt approximately 8:4" "OIS# 18-27\nOn November 13, 201"
[105] "OIS# 18-26\nOn November 13, 201" "OIS # 18-25\nOn Wednesday, Nove"
[107] "OISI # 18-22\nOn Saturday, Augu" "OISI # 18-19\nOn Monday, August"
[109] "OIS# 18-17\nOn Thursday, August" "OIS# 18-16\nOn Monday, August 6"
[111] "OIS # 18-12\nOn Friday, June 8," "OIS# 18-08\nOn Wednesday, April"
[113] "OIS# 18-02\nOn Monday, January " "OIS# 18-01\nOn Saturday, Januar"
[115] "OIS# 17-37\nOn Wednesday, Decem" "OIS# 17-36\nOn Tuesday, Decembe"
[117] "OIS# 17-30\nOn Saturday, Novemb" "OIS# 17-28\nOn Saturday, Septem"
[119] "OIS# 17-25\nOn Saturday, August" "OIS# 17-23\nOn Friday, August 1"
[121] "OIS# 17-22\nOn Monday, August 7" "OIS# 17-20\nOn Thursday, July 2"
[123] "OIS# 17-19\nOn Wednesday, July " "OIS# 17-17 (June 8, 2017)\nOn T"
[125] "OIS# 17-13\nOn Friday, May 12, " "OIS# 17-08 (March 29, 2017)\nOn"
[127] "OIS# 17-03 (February 15, 2017)" "PS#16-43\n11/25/16\nOn Friday, N"
[129] "PS#16-40\n11/07/16\nOn Monday, N" "PS#16-38\n11/2/16\nOn Saturday, "
[131] "PS#16-37\n10/27/16\nOn Thursday," "PS# 16-35\n10/19/16\nOn Saturday"
[133] "PS# 16-34\n10/19/16\nOn Wednesda" "PS# 16-33\n10/18/16\nOn Tuesday,"
[135] "PS#16-32\n9/28/16\nOn Wednesday," "PS#16-30\n9/16/16\nOn Friday, Se"
[137] "PS#16-29\n9/09/16\nOn Friday, Se" "PS#16-28\n9/08/16\nOn Thursday, "
[139] "PS# 16-26\n9/05/16\nOn Monday, S" "PS#16-19\n5/31/16\nOn Tuesday, M"
[141] "PS#16-18\n5/31/16\nOn Tuesday, M" "PS# 16-16\n5/20/16\nOn Friday, M"
[143] "PS#16-13\n5/04/16\nOn Wednesday " "PS#16-12\n5/03/16\nOn Tuesday, M"
[145] "PS# 16-11\n4/17/16\nOn Sunday, A" "PS#16-10\n4/09/16\nOn Saturday, "
[147] "PS#16-07\n3/17/16\nOn Thursday, " "PS#16-03\n2/04/16\nOn Thursday, "
[149] "PS#16-02\n2/02/16\nOn Tuesday, F" "PS# 16-01\n1/07/16\nOn Thursday,"

16

4 Extracting dates from the text

While the main OIS webpage did not give the date of the incident, the text details always
show the date. We can extract those dates with regular expressions. The dates may come in
a variety of formats, but we can use the lubridate package to parse them. Let’s start with
those where the date is spelled out.
extract dates in January 11, 2024 format
(?x) - ignore spaces and newlines
lets me break regex into several lines
(?s) - allows .* to include \n
both (?x) and (?s) require perl=TRUE
\s - whitespace (spaces, tabs, line feeds, carriage return)
a <- gsub("(?xs)
.*?(January|February|March|April|May|June|

July|August|September|October|November|December)
\\s* ([0-9]{1,2})
(, \\s* (20[0-9]{2}))?.*",

"\\1 \\2\\3", ois$text, perl=TRUE)

For those incidents matching that January 11, 2024 format, they should have less than 20
characters in them. Let’s check those out.
a[nchar(a) < 20]

[1] "September 21, 2025" "August 10" "July 4, 2025"
[4] "June 20" "May 21, 2025" "April 30, 2025"
[7] "April 28, 2025" "March 22, 2025" "March 20, 2025"
[10] "March 19, 2025" "February 4, 2025" "February 3, 2025"
[13] "January 27, 2025" "January 11, 2025" "January 10, 2025"
[16] "December 10, 2024" "November 12, 2024" "November 10, 2024"
[19] "October 11, 2024" "October 3, 2024" "October 2, 2024"
[22] "September 26, 2024" "September 19, 2024" "September 6, 2024"
[25] "July 4" "June 24, 2024" "June 22, 2024"
[28] "June 15" "June 5, 2024" "May 30, 2024"
[31] "May 23, 2024" "May 15, 2024" "May 14, 2024"
[34] "May 12" "May 1, 2024" "April 20, 2024"
[37] "April 17, 2024" "April 15, 2024" "April 14, 2024"
[40] "April 10" "February 15, 2024" "January 26"
[43] "January 17, 2024" "January 10, 2024" "December 31, 2023"
[46] "December 10, 2023" "November 4, 2023" "October 4"
[49] "October 4, 2023" "October 2, 2023" "September 27, 2023"
[52] "September 14, 2023" "August 14" "May 4, 2023"
[55] "April 29, 2023" "March 24, 2023" "February 8, 2023"
[58] "October 12, 2022" "October 7, 2022" "September 11, 2022"

17

[61] "September 10, 2022" "June 4, 2022" "May 11, 2022"
[64] "March 19, 2022" "March 1, 2022" "February 15, 2022"
[67] "February 11, 2022" "February 9, 2022" "February 2, 2022"
[70] "January 4, 2022" "August 18" "July 22, 2021"
[73] "June 14, 2021" "April 7, 2021" "November 30, 2020"
[76] "September 18, 2020" "August 18, 2020" "June 23, 2020"
[79] "May 9, 2020" "April 10, 2020" "February 28, 2020"
[82] "February 20, 2020" "November 21, 2019" "November 2, 2019"
[85] "May 20, 2019" "May 11" "April 25, 2019"
[88] "April 20, 2019" "March 28, 2019" "March 6, 2019"
[91] "December 5, 2018" "November 13, 2018" "November 13, 2018"
[94] "November 7, 2018" "August 25, 2018" "August 20, 2018"
[97] "August 9, 2018" "August 6, 2018" "June 8, 2018"
[100] "April 18, 2018" "January 29" "January 13"
[103] "December 27, 2017" "December 26, 2017" "November 11, 2017"
[106] "September 23, 2017" "August 19, 2017" "August 11, 2017"
[109] "August 7, 2017" "July 27, 2017" "July 19"
[112] "June 8, 2017" "May 12, 2017" "March 29, 2017"
[115] "February 15, 2017" "November 25, 2016" "November 7, 2016"
[118] "October 29, 2016" "October 27, 2016" "October 22, 2016"
[121] "October 19, 2016" "October 18, 2016" "September 9, 2016"
[124] "September 16, 2016" "September 9, 2016" "September 8, 2016"
[127] "September 5, 2016" "May 31, 2016" "May 31, 2016"
[130] "May 20, 2016" "May 4, 2016" "May 3, 2016"
[133] "April 17, 2016" "April 9, 2016" "March 17, 2016"
[136] "February 4, 2016" "February 2, 2016" "January 7, 2016"

The code seems to work for many dates, but we also see that some of the dates did not include
the year. The first two digits of the incident ID are the last two digits of the year.
a[nchar(a) < 20 & !grepl("20[0-9]{2}", a)]

[1] "August 10" "June 20" "July 4" "June 15" "May 12"
[6] "April 10" "January 26" "October 4" "August 14" "August 18"
[11] "May 11" "January 29" "January 13" "July 19"

first two digits of id have the year
i <- nchar(a) < 20 & !grepl("20[0-9]{2}", a)
paste0(a[i], ", 20", substring(ois$id[i],1,2))

[1] "August 10, 2025" "June 20, 2025" "July 4, 2024" "June 15, 2024"
[5] "May 12, 2024" "April 10, 2024" "January 26, 2024" "October 4,

2023"↪

[9] "August 14, 2023" "August 18, 2021" "May 11, 2019" "January 29,
2018"↪

18

[13] "January 13, 2018" "July 19, 2017"

The rest of the dates have formats that are in some variation of 01/11/2024 or 01-11-2024
or 01/11/24 or 01-11-24, sometimes with / separators and sometimes with - separators and
sometimes with a four digit year and sometimes with a two digit year. We can craft our regular
expression to capture all these variations.
get the remaining dates in #/#/# or #-#-# format
.* is "greedy" and will absorb as much as possible
.*? is "lazy" and will stop at the first pattern match
gsub(".*?([0-9]{1,2}[/-][0-9]{1,2}[/-](20)?[1-2][0-9]).*",

"\\1",
a[nchar(a) > 20])

[1] "4/6/2022" "1-31-2022" "10-26-21" "10-4-2021" "7-29-21"
[6] "12-25-2020" "12-9-2020" "11-27-20" "11-12-20" "10-26-2020"
[11] "10-8-2020" "9-02-19"

We have covered all the cases and can now create a column of incident dates extracted from
the incident details.
ois <- ois |>

mutate(date = gsub(
"(?xs)

.*?(January|February|March|April|May|June|
July|August|September|October|November|December)
\\s* ([0-9]{1,2})
(, \\s* (20[0-9]{2}))?.*",

"\\1 \\2\\3", text, perl=TRUE),
date = if_else(nchar(date)<20, date, NA),
date = if_else(!is.na(date) & !grepl("20[0-9]{2}", date),

paste0(date, ", 20", substring(id,1,2)),
date),

date = if_else(
is.na(date),
gsub(".*?([0-9]{1,2}[/-][0-9]{1,2}[/-](20)?[1-2][0-9])[^0-9].*",

"\\1", text),
date),

date = mdy(date))

For a little test, let’s check if there are any incidents where the year we scraped from the
webpage differs from the first two digits of the incident ID.
table(year(ois$date), substring(ois$id,1,2))

16 17 18 19 20 21 22 23 24 25 26
2016 23 0 0 0 0 0 0 0 0 0 0

19

2017 0 13 0 0 0 0 0 0 0 0 0
2018 0 0 12 0 0 0 0 0 0 0 0
2019 0 0 0 9 0 0 0 0 0 0 0
2020 0 0 0 0 14 0 0 0 0 0 0
2021 0 0 0 0 0 7 0 0 0 0 0
2022 0 0 0 0 0 0 15 0 0 0 0
2023 0 0 0 0 0 0 0 13 0 0 0
2024 0 0 0 0 0 0 0 0 29 0 0
2025 0 0 0 0 0 0 0 0 0 14 1

That is a good sign!

5 Geocoding the OIS locations

Our OIS data frame has the address for every incident, but to be more useful we really need
the geographic coordinates. If we had the coordinates, then we could put them on a map,
tabulate how many incidents occur within an area, calculate distances, and answer questions
about the geography of these data.

Geocoding is the process of converting a text description of a location (typically an address or
intersection) to obtain geographic coordinates (often longitude/latitude, but other coordinate
systems are also possible). Google Maps currently reigns supreme in this area. Google Maps
understands very general descriptions of locations. You can ask for the coordinates of some-
thing like “chipotle near UPenn” and it will understand that “UPenn” means the University of
Pennsylvania and that “chipotle” is the burrito chain. Unfortunately, as of June 2018 Google
Maps requires a credit card in order to access its geocoding service. Previously, anyone could
geocode up to 2,500 locations per day without needing to register.

We will use the ArcGIS geocoder to get the coordinates of every location. Many web data
sources use a standardized language for providing data. JSON (JavaScript Object Notation)
is quite common and ArcGIS uses JSON.

The URL for ArcGIS has the form

https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/findAddressCandidates?f=json&singleLine=38th%20and%20Walnut,%20Philadelphia,%20PA&outFields=Match_addr,Addr_type

You can see the address for Penn’s McNeil Building embedded in this URL. Spaces need to be
replaced with %20 (the space character has ASCII code 20). Let’s see what data we get back
from this URL.
scan("https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/

findAddressCandidates?f=json&singleLine=38th%20and%20Walnut,%20Philadelphia,%20
PA&outFields=Match_addr,Addr_type",
what="", sep="\n")

20

[1] "{\"spatialReference\":{\"wkid\":4326,\"latestWkid\":4326},\"candidates\ ⌋
":[{\"address\":\"S 38th St & Walnut St, Philadelphia, Pennsylvania,
19104\",\"location\":{\"x\":-75.198781031742,\"y\":39.953632005469},\"sc ⌋
ore\":99.36,\"attributes\":{\"Match_addr\":\"S 38th St & Walnut St,
Philadelphia, Pennsylvania, 19104\",\"Addr_type\":\"StreetInt\"},\"exten ⌋
t\":{\"xmin\":-75.199781031742,\"ymin\":39.952632005469,\"xmax\":-75.197 ⌋
781031742,\"ymax\":39.954632005469}},{\"address\":\"S 38th St & Walnut
St, Philadelphia, Pennsylvania,
19104\",\"location\":{\"x\":-75.198651028424,\"y\":39.953613020458},\"sc ⌋
ore\":99.36,\"attributes\":{\"Match_addr\":\"S 38th St & Walnut St,
Philadelphia, Pennsylvania, 19104\",\"Addr_type\":\"StreetInt\"},\"exten ⌋
t\":{\"xmin\":-75.199651028424,\"ymin\":39.952613020458,\"xmax\":-75.197 ⌋
651028424,\"ymax\":39.954613020458}}]}"

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

It is messy, but readable. You can see embedded in this text the lat and lon for this address.
You can also see that it should not be too hard for a machine to extract these coordinates, and
the rest of the information here, from this block of text. This is the point of JSON, producing
data in a format that a human could understand in a small batch, but a machine could process
fast and easily.

The jsonlite R package facilitates the conversion of JSON text like this into convenient R
objects.
library(jsonlite)
fromJSON("https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/

findAddressCandidates?f=json&singleLine=38th%20and%20Walnut,%20Philadelphia,%20
PA&outFields=Match_addr,Addr_type")

$spatialReference
$spatialReference$wkid
[1] 4326

$spatialReference$latestWkid
[1] 4326

$candidates
address location.x

1 S 38th St & Walnut St, Philadelphia, Pennsylvania, 19104 -75.19878
2 S 38th St & Walnut St, Philadelphia, Pennsylvania, 19104 -75.19865
location.y score attributes.Match_addr

1 39.95363 99.36 S 38th St & Walnut St, Philadelphia, Pennsylvania, 19104
2 39.95361 99.36 S 38th St & Walnut St, Philadelphia, Pennsylvania, 19104
attributes.Addr_type extent.xmin extent.ymin extent.xmax extent.ymax

1 StreetInt -75.19978 39.95263 -75.19778 39.95463

21

2 StreetInt -75.19965 39.95261 -75.19765 39.95461

fromJSON() converts the JSON results from the ArcGIS geocoder to an R list object. The
JSON tags turn into list names and columns in a data frame.

To make geocoding a little more convenient, here is an R function that automates the process
of taking an address, filling in special characters (like spaces) with their ASCII codes with
URLencode(), and retrieving the JSON results from the ArcGIS geocoding service.
geocodeARCGIS <- function(address)
{

paste0("https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/
findAddressCandidates?f=json&singleLine=",

URLencode(address),
"&outFields=Match_addr,Addr_type") |>

fromJSON()
}

Let’s test out geocodeARCGIS() by pulling up a map of the geocoded coordinates. Once we
have the latitude and longitude for the McNeil Building, where we typically hold our crime
data science courses at Penn, we can use leaflet() to show us a map of the area.
gcPenn <- geocodeARCGIS("3718 Locust Walk, Philadelphia, PA") |>

pluck("candidates") |>
head(1) |>
mutate(lon = location$x,

lat = location$y)

leaflet(width = 1200, height = 800) |>
addTiles() |>
addTiles(

urlTemplate = "https://api.maptiler.com/maps/streets/{z}/{x}/{y}.png?key={
key}",

options = tileOptions(key = Sys.getenv("MAPTILER_API_KEY"),
tileSize = 512,
zoomOffset = -1),

attribution = '© MapTiler © OpenStreetMap contributors') |>
setView(lng=gcPenn$lon, lat=gcPenn$lat, zoom=18) |>
addCircleMarkers(lng=gcPenn$lon,

lat=gcPenn$lat)

22

+

−

Leaflet | © MapTiler © Open

Figure 3: ArcGIS geocoding result for 3718 Locust Walk

23

leaflet() prepares the mapping process (the width and height do not have to be set, by I
needed to for these notes). addTiles() pulls in the relevant map image (buildings and streets).
Generally, you can use addTiles() with no other arguments. I regularly recompile these notes
which hits the OpenStreetMap server a little too much, so I have to rely on a different map
provider that can better handle the load of requests. setView() takes the longitude and latitude
from our gcPenn object, sets that as the center of the map, and zooms in to level “18,” which
is a fairly close zoom of about one block. addCircleMarkers() creates a circle at the selected
point.

We are almost ready to throw all of our addresses at the geocoder, but let’s first make sure
the addresses look okay. Several locations have & where the ArcGIS geocoder wants and.
& → and for geocoding
grep('&', ois$location, value=TRUE)

[1] "Jasper Street & Hart Lane" "Front Street & Allegheny Avenue"
[3] "Bridge Street & Roosevelt Boulevard" "49th & Walnut Streets"
[5] "4800, 4900 & 5100 blocks of Sansom" "near 16th Street & Allegheny Ave"

Many addresses just give the block, like “3700 block of Locust Walk.” We will need to change
these to the midpoint of the block like “3750 Locust Walk” so that we get a geocoding hit that
is nearby.
grep("[Bb]lock", ois$location, value=TRUE)

[1] "5100 block of North 10th Street"
[2] "2000 block of Simon Street"
[3] "2900 block of North Lawrence Street"
[4] "2600 block of South 21st Street"
[5] "100 block of West Somerset Street"
[6] "300 block of North 65th Street"
[7] "4600 block of Roosevelt Blvd"
[8] "4100 block of Ogden Street"
[9] "4600 block of Roosevelt Boulevard"
[10] "1600 block of Moore Street"
[11] "2800 block of Jasper Street"
[12] "4100 block of Leidy Avenue"
[13] "800 block of West Master Street"
[14] "600 block of Chamounix Drive"
[15] "3400 block of Vista Street"
[16] "3200 block of A Street"
[17] "5400 block of Chancellor Street"
[18] "2900 block of E. Street"
[19] "3300 block of Willits Road"
[20] "6100 block of Lebanon Avenue"

24

[21] "2600 block of Glenwood Avenue"
[22] "3900 block of Whittaker Avenue"
[23] "2200 block of S. 65th Street"
[24] "3000 block of Ruth Street"
[25] "6100 block of West Columbia Avenue"
[26] "3500 block of F Street"
[27] "2700 block of North 6th Street"
[28] "1500 block of North 57th Street"
[29] "2100 block of East Westmoreland Street"
[30] "3000 block of North 16th Street"
[31] "1500 block of 58th Street"
[32] "2200 block of West Oxford Avenue"
[33] "3900 block of Fairmont Avenue"
[34] "Unit block of East Cliveden Street"
[35] "2100 block of Eastburn Avenue"
[36] "1000 block of West Dakota Street"
[37] "6200 block of Haverford Avenue"
[38] "1000 block of North 48th Street"
[39] "300 block of Adams Avenue"
[40] "2800 block of Mascher Street"
[41] "2300 block of Borbeck Avenue"
[42] "3600 block of Sepviva Street"
[43] "1800 block of South 29th Street"
[44] "8000 block of N. Frankford Ave."
[45] "3700 block of Fairmount Street"
[46] "7500 block of Whitaker Avenue"
[47] "1500 block of N. 62nd Street"
[48] "Unit block of E. Phil Ellena St."
[49] "7600 block of Lexington Avenue"
[50] "3100 block of Emerald Street"
[51] "100 block of E. Willard St."
[52] "2300 block of Fawn St."
[53] "400 block of W. Bringhurst St."
[54] "2700 block of Brown Street,"
[55] "3000 block of N. Water Street"
[56] "300 block of Glen Echo Road"
[57] "2500 Block of south 7th Street"
[58] "1500 Block of Bailey Street"
[59] "7600 Block of Roosevelt Blvd"
[60] "5900 block of Torresdale Avenue"
[61] "1000 block of Chelten Avenue"
[62] "3400 block of G Street"
[63] "1800 block of N. Broad Street"

25

[64] "2100 block of Taney Terrace"
[65] "1300 block of Kater Street"
[66] "4900 block of Hazel Avenue"
[67] "7500 block of Brookhaven Road"
[68] "8700 block of Crispin Street"
[69] "3200 block of G Street"
[70] "2700 block of Dickinson Street"
[71] "7100 block of Hegerman Street"
[72] "2000 block of Snyder Avenue"
[73] "4800 block of Knox Street"
[74] "1400 block of Lardner Street"
[75] "3100 block of N. 33rd Street"
[76] "1300 block of Bigler Street"
[77] "2800 block of Kensington Avenue"
[78] "1200 block of S. 29th Street"
[79] "2300 block of north 13th Street"
[80] "2500 Block of N. Alder Street"
[81] "3100 Block of N. Darien Street"
[82] "2200 Block of N. Fairhill Street"
[83] "8300 Block of Horrocks Street"
[84] "400 block of East Somerset Street"
[85] "4200 block of Whitaker Avenue"
[86] "1200 block of south 51st street"
[87] "6400 block of Lambert Street"
[88] "2900 Block of Amber Street"
[89] "3100 block of N. 9th Street"
[90] "2900 block of N. Front Street"
[91] "3800 block of Elsinore Street"
[92] "500 block of N. 56 Street"
[93] "6300 block of Crafton Street"
[94] "1400 block of Chew Avenue"
[95] "6300 block of Hazel Avenue"
[96] "4800, 4900 & 5100 blocks of Sansom"
[97] "200 block of Millick Street"
[98] "600 block of E. Clearfield Street"
[99] "3400 block of Broad street"
[100] "6300 Block of Overbrook Avenue"
[101] "5300 Block of Grays Avenue"
[102] "Unit Block of Salford street"
[103] "3100 Block of north Carlisle Street"
[104] "100 block of north 55th Street"
[105] "300 block of south 60th street"

Lastly, there are some addresses with the word “near” that need to be deleted.

26

grep("[Nn]ear", ois$location, value=TRUE)

[1] "near 16th Street & Allegheny Ave" "Near Loudon and D streets"

Let’s make all these fixes.
ois <- ois |>

mutate(location = gsub("&","and",location),
location = gsub("00 [Bb]lock(of)?", "50", location),
location = gsub("[Uu]nit [Bb]lock(of)?", "50", location),
location = gsub("[Nn]ear ", "", location))

Some OIS incidents are missing locations.
ois |>
filter(grepl("[Ww]ithheld", location)) |>
pull(text)

[1] "PS# 16-26\n9/05/16\nOn Monday, September 5, 2016, at approximately 6:28
P.M., an off-duty officer, in plainclothes, became involved in a verbal
and physical altercation with his son at their residence. During the
physical altercation the officer discharged his personal weapon, striking
his son.\nThe officer’s son was transported to Aria-Torresdale Hospital
for treatment.\nThe officer’s firearm, a .40 caliber semi-automatic
pistol, loaded with three live rounds, was recovered at the scene.\nThere
were no other injuries as a result of this incident.\n*** Information
posted in the original summary reflects a preliminary understanding of
what occurred at the time of the incident. This information is posted
shortly after the incident and may be updated as the investigation leads
to new information. The DA’s Office is provided all the information from
the PPD’s investigation prior to their charging decision."

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

27

[2] "PS#16-18\n5/31/16\nOn Tuesday, May 31, 2016, at approximately 1:12 PM,
an off-duty officer, in civilian attire, arrived home at his residence.
Upon entering the front door, the officer observed the living room
television missing, the rear kitchen window open, and the rear kitchen
door ajar. The officer heard voices coming from the basement. The officer
went to the top of the basement steps and announced, “Police.” A male
appeared at the bottom of the steps and charged up the steps toward the
officer with a dark metal object in his hand. In response, the officer
discharged his weapon one time missing the offender. The offender fell
down the steps crashing into the basement wall. The offender along with a
second offender that was also in the basement fled out the rear basement
door with the officer in foot pursuit. Upon exiting the rear basement
door, the officer observed a green/blue van pull away from his property.
The officer apprehended one offender in the 3200 block of Wellington
Street. An off-duty detective apprehended the other offender near
Brighton and Hawthorne Streets.\nThere were no reported injuries as a
result of this police firearm discharge.\nNo weapon was recovered.\n***
Information posted in the original summary reflects a preliminary
understanding of what occurred at the time of the incident. This
information is posted shortly after the incident and may be updated as
the investigation leads to new information. The DA’s Office is provided
all the information from the PPD’s investigation prior to their charging
decision."

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

The text of OIS 16-18 gives a nearby address (3250 Wellington Street). We will drop incident
16-26, since it is not really a police shooting.

Several other incidents have quirky addresses.
ois |>
filter(id %in% c("16-30","16-10","17-08")) |>
select(id, location, text)

id location
1 17-08 New Castle County (see summary for details of PPD involvement)
2 16-30 4800, 4900 and 5150s of Sansom
3 16-10 5700 N. Park street/5700 N. Broad street

t ⌋
e ⌋
x ⌋
t

↪

↪

↪

↪

28

1 OIS# 17-08 (March 29, 2017)\nOn Wednesday, March 29, 2017, at approximately
5:39 PM, two uniformed officers in a marked vehicle responded to a radio
assignment of “Person with a gun” at 5600 Whitby Avenue. A description of
the individual was broadcast. Upon arrival at the location both officers
observed a male who met the description entering the driver’s seat of a
parked minivan. As the male approached the open driver’s door area both
officers instructed him to stop. The male instead sat in the driver seat.
The male accelerated the vehicle rearward striking officer number one,
knocking him to the ground. The officer got back on his feet observed the
male driver reach under the driver’s seat (through the open drivers side
door), and officer number one discharged one round at the male. The male
drove from the location, struck a vehicle at 5700 Woodland Avenue, and
continued toward Island Avenue and Lindbergh Boulevard where the minivan
became disabled. The male exited the minivan, entered an unoccupied
vehicle that was nearby with the engine running and the keys in the
ignition. He ushered five passengers from the minivan into the stolen
vehicle. The male drove the stolen vehicle to a house in New Castle
Delaware, and dropped off four of the passengers. The male and a
remaining female passenger drove to a second house in New Castle Delaware
in the stolen vehicle. New Castle County Police Officers responded to the
second location and report to Philadelphia Police that New Castle County
Police Officers attempted to arrest the male who was inside the stolen
vehicle. A uniformed New Castle County officer discharged his firearm
multiple times, striking the male. The male was pronounced deceased at
Christiana Hospital.\nThere were no other injuries as a result of this
incident. No firearm was recovered from the male or the vehicles. The
female was not charged with any offense.\n*** Information posted in the
original summary reflects a preliminary understanding of what occurred at
the time of the incident. This information is posted shortly after the
incident and may be updated as the investigation leads to new
information. The DA’s Office is provided all the information from the
PPD’s investigation prior to their charging decision.

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

29

2 PS#16-30\n9/16/16\nOn Friday, September 16, 2016,
at approximately 11:18 P.M., a uniformed sergeant in a marked police
vehicle was seated in her parked vehicle in the 5100 block of Sansom
Street, when a male approached and without warning, began to discharge a
firearm, striking the sergeant, as she remained seated in her vehicle.
The offender then began walking east on Sansom Street, stopping at a
lounge/bar in the 5100 block of Sansom Street, where he discharged his
firearm into the lounge/bar, striking a female employee and a male
security guard. The offender continued walking east on Sansom Street to
the 4900 block, where he discharged his firearm into an occupied parked
vehicle, striking one female and one male occupant.\nResponding uniformed
officers, in marked police vehicles, along with an officer from the
University of Pennsylvania police force, located the offender in an
alleyway in the rear of the 4800 blocks of Sansom and Walnut Streets.
While in the 4800 block of Sansom Street the offender discharged his
firearm, striking the University of Pennsylvania Officer as well as a
marked police vehicle. Four Officers (one of whom was the University of
Pennsylvania Officer) discharged their firearms, striking the offender.
The offender fell to the ground and dropped his firearm. Fire Rescue
responded and pronounced the offender deceased.\nThe offender’s firearm,
a 9MM, semi-automatic pistol, with an obliterated serial number, loaded
with 14 live rounds, was recovered at the scene. There were three empty
magazines from the offender’s firearm recovered throughout the
scene.\nThe sergeant, the University of Pennsylvania Officer, along with
the four civilians who were all struck by gunfire, were transported to
Penn-Presbyterian Hospital for treatment.\nThe female from the parked
vehicle was later pronounced deceased at Penn-Presbyterian Hospital.\n***
Information posted in the original summary reflects a preliminary
understanding of what occurred at the time of the incident. This
information is posted shortly after the incident and may be updated as
the investigation leads to new information. The DA’s Office is provided
all the information from the PPD’s investigation prior to their charging
decision.

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

30

3
PS#16-10\n4/09/16\nOn Saturday, April 9, 2016, at approximately 2:26
P.M., an off-duty police officer, in plainclothes, observed two males
involved in a physical struggle on the highway, in the 5700 block of N.
Park Avenue. The officer observed that one of the males was armed with a
handgun. The officer, who was armed, identified himself as a police
officer and ordered the offender to drop his gun. The offender turned
toward the officer and pointed the firearm at him. In response, the
officer discharged his weapon at the offender. The offender fled to a
rear parking lot in the 5700 block of N. Broad Street, where he fell to
the ground, dropping his weapon. The offender retrieved his weapon and
again pointed it at the officer. The officer responded by discharging his
weapon, striking the offender. The offender again fled but collapsed near
the corner of Broad and Chew Streets, where he was arrested.\nThe
offenders’ firearm, a .22 caliber revolver, loaded with three spent
casings, was recovered at the scene.\nThe offender was transported to
Albert Einstein Medical Center, where he was later pronounced deceased as
a result of his injuries.\nThere were no other reported injuries as a
result of this incident.\n*** Information posted in the original summary
reflects a preliminary understanding of what occurred at the time of the
incident. This information is posted shortly after the incident and may
be updated as the investigation leads to new information. The DA’s Office
is provided all the information from the PPD’s investigation prior to
their charging decision.

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

↪

Reading the details of the incidents, we can come up with reasonable fixes to the addresses.
OIS 17-08 is not a PPD shooting incident. Some PPD officers were present when New Castle
County (Delaware) police officers shot someone. Let’s drop this incident. The remaining
incidents we can edit based on the contents of the OIS description. We will also tack on “,
Philadelphia, PA” to the end of each location to improve geocoding accuracy.
ois <- ois |>
filter(id != "17-08" & # not a PPD shooting

id != "16-26") |> # not really a police shooting
mutate(location = case_match(id,

"16-18" ~ "3250 Wellington Street",
two locations, let's use the first one
"16-10" ~ "5750 N. Broad Street",
pick the location where the police shooting occurred
"16-30" ~ "4850 Sansom Street",
.default=location),

location = # add the city
paste0(location,", Philadelphia, PA"))

Let’s test out the process for just the first location. The code here shows how you can extract

31

each bit of information that we want from geocoding an address: the coordinates (long,lat),
the specific address that the geocoding service translated our requested address to, a quality-
of-match score, and location type (e.g. StreetInt, PointAddress, StreetAddress).
a <- geocodeARCGIS(ois$location[1])
collect (long,lat), matched address, address match score, and location type
a$candidates$location$x[1]

[1] -75.13942

a$candidates$location$y[1]

[1] 40.03112

a$candidates$address[1]

[1] "5150 N 10th St, Philadelphia, Pennsylvania, 19141"

a$candidates$score[1]

[1] 100

a$candidates$attributes$Addr_type[1]

[1] "StreetAddress"

With that we are ready to run all of our addresses through the ArcGIS geocoder. We could have
geocoded all these addresses with the more simple code lapply(ois$location, geocodeARCGIS).
However, if the JSON connection to the geocoder fails for even one of the addresses (likely
if you have a poor internet connection), then the whole lapply() function fails. With the
for-loop implementation, if the connection fails, then ois still keeps all of the prior geocoding
results and you can restart the for-loop at the point where it failed.
takes about 3 minutes
geoInfo <- foreach(i=1:nrow(ois), .combine=bind_rows) %do%
{
message(paste0("#", i, " Address: ", ois$location[i]))
a <- geocodeARCGIS(ois$location[i])

data.frame(lon = a$candidates$location$x[1],
lat = a$candidates$location$y[1],
addrmatch = a$candidates$address[1],
score = a$candidates$score[1],
addrtype = a$candidates$attributes$Addr_type[1])

}
ois <- ois |> bind_cols(geoInfo)

32

Now we should have longitude and latitude for every incident. Let’s check that they all look
sensible.
stem(ois$lat)

The decimal point is 2 digit(s) to the left of the |

3987 | 7
3988 |
3989 |
3990 |
3991 | 4579
3992 | 4566779
3993 | 02344588
3994 | 2239
3995 | 14667788
3996 | 3345566999
3997 | 11134566669
3998 | 112558999
3999 | 011111122233334445566666899
4000 | 000011233567
4001 | 11556678
4002 | 12455888
4003 | 00133558
4004 | 000123889
4005 | 012233445
4006 | 226
4007 | 1
4008 | 0

stem(ois$lon)

The decimal point is 2 digit(s) to the left of the |

-7526 | 7
-7524 | 00885444432000
-7522 | 76321030
-7520 | 98769873300
-7518 | 754221194432221
-7516 | 9766633332555444210
-7514 | 87776654443221099666554321
-7512 | 99221099873111100

33

-7510 | 98776655521987400
-7508 | 9786
-7506 | 93760
-7504 | 19977
-7502 | 977
-7500 | 39
-7498 | 9

All the points have latitude around 39 and 40 and longitude around -75. That is a good sign!

Let’s check the “address type”. We should worry about addresses geocode to a “StreetName.”
That means the incident got geocoded to, say, “Market Street” but we are not sure where along
Market Street the incident actually occurred. The geocoder most likely placed the incident at
the midpoint of the street.
ois |> count(addrtype)

addrtype n
1 PointAddress 62
2 StreetAddress 71
3 StreetAddressExt 2
4 StreetInt 10
5 StreetName 3

ois |>
filter(addrtype=="StreetName") |>
select(id, location, addrmatch)

id location
1 25-05 1 Philadelphia International Airport Way, Philadelphia, PA
2 25-01 650 Chamounix Drive, Philadelphia, PA
3 21-14 3800 Landsowne Drive, Philadelphia, PA

addrmatch
1 Philadelphia International Airport, Philadelphia, Pennsylvania, 19153
2 Chamounix Dr, Philadelphia, Pennsylvania, 19131
3 Lansdowne Dr, Philadelphia, Pennsylvania, 19104

One address should be at the Philadelphia Airport. This one geocoded just fine.
ois |>
filter(id=="25-05") |>
leaflet(width = 1200, height = 800) |>

addTiles(
urlTemplate = "https://api.maptiler.com/maps/streets/{z}/{x}/{y}.png?key={

key}",
options = tileOptions(key = Sys.getenv("MAPTILER_API_KEY"),

tileSize = 512,

34

zoomOffset = -1),
attribution = '© MapTiler © OpenStreetMap contributors') |>

addCircleMarkers(~lon, ~lat,
radius=3, stroke=FALSE,
fillOpacity = 1) |>

addPopups(~lon, ~lat, ~location)

35

1 Philadelphia International Airport Way, Philadelphia,
PA

×

+

−

Leaflet | © MapTiler © Open

Figure 4: Checking the location of OIS 25-05

36

OIS 25-01 involves a dog shooting in Fairmount Park. The news stories about the incident
place it 1 mile from Belmont/Edgely, close to Chamounix Drive and Ford Ave.
ois |>

filter(id=="25-01") |>
leaflet(width = 1200, height = 800) |>
addTiles(

urlTemplate = "https://api.maptiler.com/maps/streets/{z}/{x}/{y}.png?key={key
}",

options = tileOptions(key = Sys.getenv("MAPTILER_API_KEY"),
tileSize = 512,
zoomOffset = -1),

attribution = '© MapTiler © OpenStreetMap contributors') |>
addCircleMarkers(~lon, ~lat,

radius=3, stroke=FALSE,
fillOpacity = 1) |>

addPopups(~lon, ~lat, ~location)

37

650 Chamounix Drive, Philadelphia, PA
×

+

−

Leaflet | © MapTiler © Open

Figure 5: Checking the location of OIS 25-01

38

geocodeARCGIS("Chamounix Drive and Ford Ave, Philadelphia, PA")

$spatialReference
$spatialReference$wkid
[1] 4326

$spatialReference$latestWkid
[1] 4326

$candidates
address location.x

1 Chamounix Dr & Ford Rd, Philadelphia, Pennsylvania, 19131 -75.20474
2 Chamounix Dr, Philadelphia, Pennsylvania, 19131 -75.20779
location.y score attributes.Match_addr

1 39.99711 99.59 Chamounix Dr & Ford Rd, Philadelphia, Pennsylvania, 19131
2 39.99607 90.79 Chamounix Dr, Philadelphia, Pennsylvania, 19131
attributes.Addr_type extent.xmin extent.ymin extent.xmax extent.ymax

1 StreetInt -75.20574 39.99611 -75.20374 39.99811
2 StreetName -75.20879 39.99507 -75.20679 39.99707

OIS 21-14 has address “3800 Landsowne Drive”. Presumably it intended to find 3800 Lans-
downe Drive, but it could not place the 3800 block on Lansdowne Drive. The text describes
the incident as occurring behind a school. Let’s zoom in and see where this might have oc-
curred. It must have occurred behind the School of the Future. I used Google Maps to find
the coordinates behind this school.
ois |>

filter(id=="21-14") |>
leaflet(width = 1200, height = 800) |>
addTiles(

urlTemplate = "https://api.maptiler.com/maps/streets/{z}/{x}/{y}.png?key={key
}",

options = tileOptions(key = Sys.getenv("MAPTILER_API_KEY"),
tileSize = 512,
zoomOffset = -1),

attribution = '© MapTiler © OpenStreetMap contributors') |>
addCircleMarkers(~lon, ~lat,

radius=3, stroke=FALSE,
fillOpacity = 1) |>

addPopups(~lon, ~lat, ~location)

39

3800 Landsowne Drive, Philadelphia, PA
×

+

−

Leaflet | © MapTiler © Open

Figure 6: Checking the location of OIS 21-14

40

Let’s record these fixes.
ois <- ois |>
mutate(lat = case_match(id,

"21-14" ~ 39.975984,
"25-01" ~ 39.99711,
.default = lat),

lon = case_match(id,
"21-14" ~ -75.203309,
"25-01" ~ -75.20474,
.default = lon))

Here’s a map of all of the incidents. For each incident I have added some pop-up text so that
if you click on an incident it will show you the location of the incident and the text describing
the incident.
ois |>

leaflet(width = 1200, height = 800) |>
addTiles(

urlTemplate = "https://api.maptiler.com/maps/streets/{z}/{x}/{y}.png?key={key
}",

options = tileOptions(key = Sys.getenv("MAPTILER_API_KEY"),
tileSize = 512,
zoomOffset = -1),

attribution = '© MapTiler © OpenStreetMap contributors') |>
addCircleMarkers(~lon, ~lat,

radius=4, stroke=FALSE,
fillOpacity = 1,
popup = paste("",ois$location,"
",ois$text),
popupOptions = popupOptions(autoClose = TRUE,

closeOnClick = FALSE))

41

+

−

Leaflet | © MapTiler © Open

Figure 7: All Philadelphia Officer-involved Shootings

42

6 Working with shapefiles and coordinate systems

The Philadelphia Police Department divides the city into Police Service Areas (PSAs). The
city provides a shapefile, a file containing geographic data, that describes the boundaries
of the PSAs at Philadelphia’s open data site. R can read these files using the st_read()
function provided in the sf (simple features) package. Even though st_read() appears to
only be accessing Boundaries_PSA.shp, you should have all of the Boundaries_PSA files in your
10_shapefiles_and_data folder. The other files have information that st_read() needs, like
the coordinate system stored in Boundaries_PSA.prj. If you do not have all Boundaries_PSA
files in your folder, then in a few lines you will get errors like “the sfc object should have crs
set,” meaning that the Coordinate Reference System (CRS) is missing.
library(sf)
PPDmap <- st_read("10_shapefiles_and_data/Boundaries_PSA.shp")

Reading layer `Boundaries_PSA' from data source
`C:\R4crim\10_shapefiles_and_data\Boundaries_PSA.shp' using driver `ESRI

Shapefile'↪

Simple feature collection with 66 features and 10 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: -75.28031 ymin: 39.86701 xmax: -74.95575 ymax: 40.13793
Geodetic CRS: WGS 84

You can also get the same PSA boundaries using geoJSON.
library(geojsonsf)
PPDmap <- geojson_sf("https://opendata.arcgis.com/datasets/8

dc58605f9dd484295c7d065694cdc0f_0.geojson")

PPDmap is an sf (simple features) object. It is not unlike a data frame, but it contains a special
geometry column containing geographic information associated with a row of data. Here are
the two columns in PPDmap that are of primary interest.
PPDmap |> select(PSA_NUM, geometry)

Simple feature collection with 65 features and 1 field
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: -75.28031 ymin: 39.86701 xmax: -74.95575 ymax: 40.13793
Geodetic CRS: WGS 84
First 10 features:

PSA_NUM geometry
1 243 POLYGON ((-75.11026 39.9929...
2 144 POLYGON ((-75.16339 40.0769...

43

https://www.opendataphilly.org/dataset/police-service-areas

3 151 POLYGON ((-75.0572 39.99865...
4 193 POLYGON ((-75.23857 39.9761...
5 012 POLYGON ((-75.17143 39.9167...
6 053 POLYGON ((-75.21072 40.0413...
7 391 POLYGON ((-75.15955 40.0239...
8 351 POLYGON ((-75.11112 40.0310...
9 072 POLYGON ((-75.04012 40.0686...
10 082 POLYGON ((-74.98683 40.0387...

The first column shows the PSA number and the second column shows a truncated description
of the geometry associated with this row. In this case, geometry contains the coordinates of
the boundary of the PSA for each row. Use st_geometry() to extract these coordinates.
plot(st_geometry(PPDmap))
axis(side=1, cex.axis=0.7) # add x-axis
axis(side=2, cex.axis=0.7) # add y-axis
extract the center points of each PSA
a <- st_coordinates(st_centroid(st_geometry(PPDmap)))
add the PSA number to the plot
text(a[,1], a[,2], PPDmap$PSA_NUM, cex=0.5)

44

−75.3 −75.2 −75.1 −75.0 −74.9

39
.9

0
39

.9
5

40
.0

0
40

.0
5

40
.1

0

243

144

151

193

012

053

391

351

072

082

022

222

263

252

095

121

183

161

032

172

051
052

143

141

142 353

352

392

393

073

071

083

081

023

021 153

152

254

251

253
242

241

262

261
224

221

223
091

092
093094

171
173

031

033
011

192
191

181182

162

123122

124

77A

Figure 8: Map of Philadelphia Police Service Areas

We can extract the actual coordinates of one of the polygons if we wish.
a <- st_coordinates(PPDmap$geometry[1])
head(a)

X Y L1 L2
[1,] -75.11026 39.99297 1 1
[2,] -75.10992 39.99314 1 1
[3,] -75.10945 39.99337 1 1
[4,] -75.10866 39.99375 1 1

45

[5,] -75.10780 39.99421 1 1
[6,] -75.10691 39.99470 1 1

tail(a)

X Y L1 L2
[139,] -75.10905 39.99158 1 1
[140,] -75.10922 39.99178 1 1
[141,] -75.10934 39.99192 1 1
[142,] -75.10953 39.99213 1 1
[143,] -75.10971 39.99234 1 1
[144,] -75.11026 39.99297 1 1

And we can use those coordinates to add additional features to our plot
plot(st_geometry(PPDmap))
axis(side=1, cex.axis=0.7)
axis(side=2, cex.axis=0.7)
a <- st_coordinates(st_centroid(st_geometry(PPDmap)))
text(a[,1], a[,2], PPDmap$PSA_NUM, cex=0.5)
a <- st_coordinates(PPDmap$geometry[1])
lines(a[,1], a[,2], col="red", lwd=3)

46

−75.3 −75.2 −75.1 −75.0 −74.9

39
.9

0
39

.9
5

40
.0

0
40

.0
5

40
.1

0

243

144

151

193

012

053

391

351

072

082

022

222

263

252

095

121

183

161

032

172

051
052

143

141

142 353

352

392

393

073

071

083

081

023

021 153

152

254

251

253
242

241

262

261
224

221

223
091

092
093094

171
173

031

033
011

192
191

181182

162

123122

124

77A

Figure 9: Map of Philadelphia Police Service Areas highlighting the first PSA in PPDmap

So this highlighted in red PSA 243.

We can also overlay a leaflet map with the PPDmap object.
PPDmap |>

leaflet(width = 1200, height = 800) |>
addPolygons(weight=1, label=~PSA_NUM) |>
addTiles(

urlTemplate = "https://api.maptiler.com/maps/streets/{z}/{x}/{y}.png?key={key
}",

options = tileOptions(key = Sys.getenv("MAPTILER_API_KEY"),

47

tileSize = 512,
zoomOffset = -1),

attribution = '© MapTiler © OpenStreetMap contributors')

48

+

−

Leaflet | © MapTiler © Open

Figure 10: Map layer with the Philadelphia Police Service Areas (PSA)

49

6.1 Coordinate systems

Geographic datasets that describe locations on the surface of the earth have a “coordinate
reference system” (CRS). Let’s extract the CRS for PPDmap.
st_crs(PPDmap)

Coordinate Reference System:
User input: 4326
wkt:

GEOGCS["WGS 84",
DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,

AUTHORITY["EPSG","9122"]],
AXIS["Latitude",NORTH],
AXIS["Longitude",EAST],

AUTHORITY["EPSG","4326"]]

The coordinate system used to describe the PPD boundaries is the World Geodetic System
1984 (WGS84) maintained by the United States National Geospatial-Intelligence Agency, one
of several standards to aid in navigation and geography. The European Petroleum Survey
Group (EPSG) maintains a catalog of different coordinate systems (should be no surprise that
oil exploration has driven the development of high quality geolocation standards). They have
assigned the standard longitude/latitude coordinate system to be EPSG4326. You can find
the full collection of coordinate systems at spatialreference.org. You can see in the output
above a reference to EPSG 4326.

Many of us are comfortable with the longitude/latitude angular coordinate systems. However,
the distance covered by a degree of longitude shrinks as you move towards the poles and only
equals the distance covered by a degree of latitude at the equator. In addition, the earth is
not very spherical so the coordinate system used for computing distances on the earth surface
might need to depend on where you are on the earth surface.

Almost all web mapping tools (Google Maps, ESRI, OpenStreetMap) use the pseudo-Mercator
projection (EPSG3857). Let’s convert our PPD map to that coordinate system.
PPDmap <- st_transform(PPDmap, crs=3857)
st_crs(PPDmap)

50

http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/
http://spatialreference.org/ref/epsg/3857/

Coordinate Reference System:
User input: EPSG:3857
wkt:

PROJCRS["WGS 84 / Pseudo-Mercator",
BASEGEOGCRS["WGS 84",

ENSEMBLE["World Geodetic System 1984 ensemble",
MEMBER["World Geodetic System 1984 (Transit)"],
MEMBER["World Geodetic System 1984 (G730)"],
MEMBER["World Geodetic System 1984 (G873)"],
MEMBER["World Geodetic System 1984 (G1150)"],
MEMBER["World Geodetic System 1984 (G1674)"],
MEMBER["World Geodetic System 1984 (G1762)"],
MEMBER["World Geodetic System 1984 (G2139)"],
MEMBER["World Geodetic System 1984 (G2296)"],
ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1]],
ENSEMBLEACCURACY[2.0]],

PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],

ID["EPSG",4326]],
CONVERSION["Popular Visualisation Pseudo-Mercator",

METHOD["Popular Visualisation Pseudo Mercator",
ID["EPSG",1024]],

PARAMETER["Latitude of natural origin",0,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],

PARAMETER["Longitude of natural origin",0,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],

PARAMETER["False easting",0,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],

PARAMETER["False northing",0,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],

CS[Cartesian,2],
AXIS["easting (X)",east,

ORDER[1],
LENGTHUNIT["metre",1]],

AXIS["northing (Y)",north,
ORDER[2],
LENGTHUNIT["metre",1]],

USAGE[

51

SCOPE["Web mapping and visualisation."],
AREA["World between 85.06°S and 85.06°N."],
BBOX[-85.06,-180,85.06,180]],

ID["EPSG",3857]]

The CRS now indicates that this is a Mercator projection with distance measured in meters
(LENGTHUNIT["metre",1]). There are special coordinate systems for every part of the world. A
useful coordinate system for the Philadelphia area is EPSG2272. Let’s convert our PPD map
to that coordinate system.
PPDmap <- st_transform(PPDmap, crs=2272)
st_crs(PPDmap)

Coordinate Reference System:
User input: EPSG:2272
wkt:

PROJCRS["NAD83 / Pennsylvania South (ftUS)",
BASEGEOGCRS["NAD83",

DATUM["North American Datum 1983",
ELLIPSOID["GRS 1980",6378137,298.257222101,

LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,

ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4269]],

CONVERSION["SPCS83 Pennsylvania South zone (US survey foot)",
METHOD["Lambert Conic Conformal (2SP)",

ID["EPSG",9802]],
PARAMETER["Latitude of false origin",39.3333333333333,

ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8821]],

PARAMETER["Longitude of false origin",-77.75,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8822]],

PARAMETER["Latitude of 1st standard parallel",40.9666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8823]],

PARAMETER["Latitude of 2nd standard parallel",39.9333333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8824]],

PARAMETER["Easting at false origin",1968500,
LENGTHUNIT["US survey foot",0.304800609601219],
ID["EPSG",8826]],

PARAMETER["Northing at false origin",0,
LENGTHUNIT["US survey foot",0.304800609601219],

52

http://spatialreference.org/ref/epsg/2272/

ID["EPSG",8827]]],
CS[Cartesian,2],

AXIS["easting (X)",east,
ORDER[1],
LENGTHUNIT["US survey foot",0.304800609601219]],

AXIS["northing (Y)",north,
ORDER[2],
LENGTHUNIT["US survey foot",0.304800609601219]],

USAGE[
SCOPE["Engineering survey, topographic mapping."],
AREA["United States (USA) - Pennsylvania - counties of Adams;

Allegheny; Armstrong; Beaver; Bedford; Berks; Blair; Bucks;
Butler; Cambria; Chester; Cumberland; Dauphin; Delaware; Fayette;
Franklin; Fulton; Greene; Huntingdon; Indiana; Juniata;
Lancaster; Lawrence; Lebanon; Lehigh; Mifflin; Montgomery;
Northampton; Perry; Philadelphia; Schuylkill; Snyder; Somerset;
Washington; Westmoreland; York."],

↪

↪

↪

↪

↪

↪

BBOX[39.71,-80.53,41.18,-74.72]],
ID["EPSG",2272]]

This coordinate system is the Lambert Conic Conformal (LCC). This particular projection of
the PPDmap is tuned to provide good precision for the southern part of Pennsylvania (note the
parallel coordinates are at the latitude of southern Pennsylvania and the meridian is a little
west of Philadelphia) and distances are measured in feet (note the LENGTHUNIT["US survey
foot",0.304800609601219] tag in the CRS description).

Let’s transform back to longitude/latitude. It really is best to work using a different coordinate
system, but I’m going to stick with longitude/latitude so that the values make a little more
sense to us.
PPDmap <- st_transform(PPDmap, crs=4326)

Now both the PPD data and the polygons are on the same scale
plot(st_geometry(PPDmap), axes=TRUE, cex.axis=0.7)
points(lat~lon, data=ois, col=rgb(1,0,0,0.5), pch=16)

53

75.3°W 75.2°W 75.1°W 75.0°W 74.9°W

39
.9

0°
N

39
.9

5°
N

40
.0

0°
N

40
.0

5°
N

40
.1

0°
N

Figure 11: Map of OISs over PSAs

To make the dots a little transparent, I have used the rgb() function with which you can mix
red, green, and blue colors and set the transparency. The 1 tells rgb() to use maximum red.
The two 0s tell rgb() to use no green or blue. The 0.5 tells rgb() to make the dots halfway
transparent.

6.2 Spatial joins

A spatial join is the process of linking two data sources by their geography. For the case of
the OIS data, we want to know how many OISs occurred in each PSA. To do this we need to

54

drop each OIS point location into the PSA polygons and have R tell us in which polygon did
each OIS land.

First we need to convert our ois data frame to an sf object, communicating to R that the lon
and lat columns are special. At this stage we also have to communicate in what coordinate
system are the lon and lat values. st_as_sf() converts an R object into an sf object.
ois <- st_as_sf(ois,

coords=c("lon","lat"),
crs=4326)

ois |> select(-text, -url, -addrmatch)

Simple feature collection with 148 features and 8 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -75.26743 ymin: 39.87683 xmax: -74.98863 ymax: 40.07977
Geodetic CRS: WGS 84
First 10 features:

id location subInjury subArrest
1 26-17 5150 North 10th Street, Philadelphia, PA Killed N/A
2 25-16 2050 Simon Street, Philadelphia, PA N/A N/A
3 25-15 2950 North Lawrence Street, Philadelphia, PA Killed N/A
4 25-14 2650 South 21st Street, Philadelphia, PA N/A N/A
5 25-13 150 West Somerset Street, Philadelphia, PA Killed N/A
6 25-12 350 North 65th Street, Philadelphia, PA N/A N/A
7 25-11 4650 Roosevelt Blvd, Philadelphia, PA Killed N/A
8 25-10 4150 Ogden Street, Philadelphia, PA N/A N/A
9 25-09 4650 Roosevelt Boulevard, Philadelphia, PA Killed N/A
10 25-08 1650 Moore Street, Philadelphia, PA Wounded Yes

offInjury date score addrtype geometry
1 No 2025-09-21 100 StreetAddress POINT (-75.13942 40.03112)
2 No 2025-08-10 100 PointAddress POINT (-75.06722 40.01509)
3 No 2025-07-04 100 PointAddress POINT (-75.13857 39.99598)
4 No 2025-06-20 100 StreetAddress POINT (-75.18278 39.91872)
5 No 2025-05-21 100 StreetAddress POINT (-75.13236 39.99267)
6 Yes 2025-04-30 100 PointAddress POINT (-75.25006 39.96911)
7 No 2025-04-28 100 StreetAddress POINT (-75.09951 40.02845)
8 No 2025-03-22 100 StreetAddress POINT (-75.20741 39.96899)
9 Yes 2025-03-20 100 StreetAddress POINT (-75.09951 40.02845)
10 No 2025-03-19 100 StreetAddress POINT (-75.17337 39.92857)

You can see that ois now has one of those special geometry columns. We can plot the OISs
over the PSA map.
plot(st_geometry(PPDmap), axes=TRUE, cex.axis=0.7)
plot(st_geometry(ois), add=TRUE, col=rgb(1,0,0,0.5), pch=16)

55

75.3°W 75.2°W 75.1°W 75.0°W 74.9°W

39
.9

0°
N

39
.9

5°
N

40
.0

0°
N

40
.0

5°
N

40
.1

0°
N

Figure 12: Map of OISs over PSAs using sf objects

st_join() will match each row in ois to each polygon in PSA. When linking a data frame
with point data (OIS location) with a data frame with polygon data (like PSAs), the points
will join with the polygons in which they land. I just want to add the PSA_NUM column out of
the PPDmap to our ois data.
PSAlookup <- ois |>
st_join(PPDmap |> select(PSA_NUM))

PSAlookup |>
select(id, date, location, PSA_NUM, geometry) |>
head()

56

Simple feature collection with 6 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -75.25006 ymin: 39.91872 xmax: -75.06722 ymax: 40.03112
Geodetic CRS: WGS 84

id date location PSA_NUM
1 26-17 2025-09-21 5150 North 10th Street, Philadelphia, PA 352
2 25-16 2025-08-10 2050 Simon Street, Philadelphia, PA 152
3 25-15 2025-07-04 2950 North Lawrence Street, Philadelphia, PA 253
4 25-14 2025-06-20 2650 South 21st Street, Philadelphia, PA 011
5 25-13 2025-05-21 150 West Somerset Street, Philadelphia, PA 253
6 25-12 2025-04-30 350 North 65th Street, Philadelphia, PA 191

geometry
1 POINT (-75.13942 40.03112)
2 POINT (-75.06722 40.01509)
3 POINT (-75.13857 39.99598)
4 POINT (-75.18278 39.91872)
5 POINT (-75.13236 39.99267)
6 POINT (-75.25006 39.96911)

Now our PSAlookup contains everything from ois but also adds a new column PSA_NUM.

Let’s examine the PSA with the most OISs and highlight their incidents on the map.
PSAlookup |>

count(PSA_NUM) |>
slice_max(n)

Simple feature collection with 1 feature and 2 fields
Geometry type: MULTIPOINT
Dimension: XY
Bounding box: xmin: -75.12886 ymin: 39.98866 xmax: -75.11249 ymax: 39.99641
Geodetic CRS: WGS 84
PSA_NUM n geometry

1 242 11 MULTIPOINT ((-75.11249 39.9...

plot(st_geometry(PPDmap), axes=TRUE, cex.axis=0.7)
PSAlookup |>

st_join(PSAlookup |>
count(PSA_NUM) |>
slice_max(n) |>
select(-PSA_NUM),

left=FALSE) |> # right join
st_geometry() |>
plot(add=TRUE, col=rgb(0,1,0,0.5), pch=16)

57

75.3°W 75.2°W 75.1°W 75.0°W 74.9°W

39
.9

0°
N

39
.9

5°
N

40
.0

0°
N

40
.0

5°
N

40
.1

0°
N

Figure 13: Map of PSA with the largest number of OISs

Let’s identify which OISs occurred in the same PSA as the University of Pennsylvania. We’ve
already geocoded Penn and have its coordinates. Let’s join it with PPDmap to find out which
PSA it is in.
gcPenn

address location.x location.y
1 3718 Locust Walk, Philadelphia, Pennsylvania, 19104 -75.19789 39.95204
score attributes.Match_addr

1 100 3718 Locust Walk, Philadelphia, Pennsylvania, 19104

58

attributes.Addr_type extent.xmin extent.ymin extent.xmax extent.ymax
1 PointAddress -75.19889 39.95104 -75.19689 39.95304

lon lat
1 -75.19789 39.95204

st_as_sf(gcPenn,
coords=c("lon","lat"),
crs=4326) |> # tell R that the coords are lon/lat

st_join(PPDmap) |>
select(PSA_NUM)

Simple feature collection with 1 feature and 1 field
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -75.19789 ymin: 39.95204 xmax: -75.19789 ymax: 39.95204
Geodetic CRS: WGS 84
PSA_NUM geometry

1 183 POINT (-75.19789 39.95204)

Now we see that Penn is in PSA 183 and we can highlight those points on the map.
plot(st_geometry(PPDmap), axes=TRUE, cex.axis=0.7)
PSAlookup |>
filter(PSA_NUM=="183") |>
st_geometry() |>
plot(add=TRUE, col="blue", pch=16)

59

75.3°W 75.2°W 75.1°W 75.0°W 74.9°W

39
.9

0°
N

39
.9

5°
N

40
.0

0°
N

40
.0

5°
N

40
.1

0°
N

Figure 14: Map of OISs in the same PSA as Penn

We read about this incident earlier when fixing the OIS incident locations in Section 5.

6.3 Coloring a map based on the value of a feature

Lastly, we will tabulate the number of OISs in each PSA and color the map by the number of
OISs.
merge the shooting count into the PPDmap data
PPDmap <- PPDmap |>

left_join(PSAlookup |>

60

count(PSA_NUM) |>
st_drop_geometry(),

by=join_by(PSA_NUM)) |>
rename(nShoot=n) |>
mutate(nShoot=replace_na(nShoot, 0))

head(PPDmap)

Simple feature collection with 6 features and 8 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: -75.26443 ymin: 39.87838 xmax: -75.0572 ymax: 40.09295
Geodetic CRS: WGS 84
OBJECTID SECT_CODE DIV_CODE DIST_NUMC PSA_NUM Shape__Area Shape__Length

1 1 <NA> EPD 24 243 13256469 16062.12
2 2 <NA> NWPD 14 144 22663486 26039.57
3 3 <NA> NEPD 15 151 17388456 22268.67
4 4 <NA> SWPD 19 193 11696975 18387.39
5 5 <NA> SPD 01 012 26771567 26695.53
6 6 <NA> NWPD 05 053 20373551 21860.86

nShoot geometry
1 2 POLYGON ((-75.11026 39.9929...
2 0 POLYGON ((-75.16339 40.0769...
3 3 POLYGON ((-75.0572 39.99865...
4 1 POLYGON ((-75.23857 39.9761...
5 1 POLYGON ((-75.17143 39.9167...
6 0 POLYGON ((-75.21072 40.0413...

We can see that PPDmap now has a new nShoot column. A histogram will show what kinds of
counts we observe in the PSAs.
hist(PPDmap$nShoot, xlab="Number of OISs", ylab="Number of PSAs", main="")

61

Number of OISs

N
um

be
r

of
 P

S
A

s

0 2 4 6 8 10

0
5

10
15

20
25

30

Figure 15: Histogram of OIS incident counts by PSA

Let’s discretize the OIS counts into a few categories.
PPDmap <- PPDmap |>
mutate(catShoot =

cut(nShoot,
breaks=c(0,1,2,3,4,8,Inf),
right=FALSE))

cut() converts all of the individual counts into categories, like [1,5) or [25,30). For each of
these categories we will associate a color for the map. heat.colors() will generate a sequence
of colors in the yellow, orange, red range.

62

a <- data.frame(catShoot = levels(PPDmap$catShoot),
col = rev(heat.colors(6,1)))

a
some other color options
col = rev(rainbow(6,1))
or generate a range of red colors
col = rgb(seq(0,1,length=6),0,0,1)

catShoot col
1 [0,1) #FFFF80FF
2 [1,2) #FFFF00FF
3 [2,3) #FFBF00FF
4 [3,4) #FF8000FF
5 [4,8) #FF4000FF
6 [8,Inf) #FF0000FF

These are eight digit codes describing the color. The first two digits correspond to red, digits
three and four correspond to green, digits five and six correspond to blue, and the last two
digits correspond to transparency. These are hexadecimal numbers (base 16). Hexadecimal
numbers use the digits 0-9, like normal decimal system numbers, and then denote 10 as A, 11
as B, on up to 15 as F. So FF as a decimal is 15 × 16 + 15 = 255, which is the maximum value
for a two digit hexadecimal. The hexadecimal 80 as a decimal is 8 × 16 + 0 = 128, which is
in the middle of the range 0 to 255. So the first color code, FFFF80FF, means maximum red,
maximum green, half blue, and not transparent at all. This mixture is known more commonly
as “yellow”.

Now we join PPDmap with our color lookup table in a and plot it.
match the color to category
PPDmap <- PPDmap |>
left_join(a, by=join_by(catShoot))

PPDmap |>
st_geometry() |>
plot(col=PPDmap$col, border="black")

add the number of shootings
warning is reminder that it is collapsing polygon data down to a point
b <- st_coordinates(st_centroid(PPDmap))

Warning: st_centroid assumes attributes are constant over geometries

text(b[,1], b[,2], PPDmap$nShoot, cex=0.7)

63

2

0

3

1

1

0

4

0

0

1

1

1

0

4

0

1

1

3

1

5

0
0

2

4

3 4
2

3
3

0

1

0

3
2

3 5
3

4
1

10
11

3

1
21

5
0

1 1
0 1
0
1 2

2
7

8
5

4 3
5

20

1

0

Figure 16: PSAs color-coded by number of OIS incidents

Those PSAs with the least shootings are a very pale yellow. As we examine PSAs with a
greater number of OISs, their colors get redder and redder.

sf objects have their own default plotting method to accomplish these kind of “heat maps.”
The default palette is generated with sf.colors().
PPDmap |>
select(nShoot) |>
plot(main="")

64

0
2

4
6

8
10

Figure 17: PSAs color-coded by number of OIS incidents, default sf colors

You can change the color palette, for example, by using the yellow-orange-red palette from
HCL (hue, chroma, luminance) color set.
PPDmap |>
select(nShoot) |>
plot(main="",

pal = hcl.colors(6, "YlOrRd", rev = TRUE),
nbreaks = 6)

65

2
4

6
8

10

Figure 18: PSAs color-coded by number of OIS incidents, YlOrRd HCL palette

Lastly, I will share the classic viridis palette, noted for being color-blind friendly and “percep-
tually uniform”.
classic viridis palette
library(viridis)

Loading required package: viridisLite

PPDmap |>
select(nShoot) |>
plot(main="",

66

pal = viridis_pal(option="D"),
nbreaks = 12)

0
2

4
6

8
10

Figure 19: PSAs color-coded by number of OIS incidents, viridis palette

And a leaflet version to end on.
PPDmap <- PPDmap |>
mutate(label = paste("PSA:",PSA_NUM, "Count:",nShoot))

PPDmap |>
leaflet(width = 1200, height = 800) |>
addPolygons(weight=1, col=~col, label=~label) |>

67

addTiles(
urlTemplate = "https://api.maptiler.com/maps/streets/{z}/{x}/{y}.png?key={key

}",
options = tileOptions(key = Sys.getenv("MAPTILER_API_KEY"),

tileSize = 512,
zoomOffset = -1),

attribution = '© MapTiler © OpenStreetMap contributors')

68

+

−

Leaflet | © MapTiler © Open

Figure 20: Map of OIS counts by PSA

69

7 Summary

We started with just a web page linking to a collection of text descriptions. We used a variety
of webscraping and regular expressions to extract everything we could from the web page
tables. We had R “read” the text descriptions to extract the dates. We geocoded the incidents
so that we could put them on a map. Finally, we tabulated by PSA the number of OISs and
mapped those as well.

If you have worked through all of this, then I would recommend that you save your objects,
using save(ois, PSAlookup, file="PPDOIS.RData"). That way you will not have to scrape
everything off the web again or redo any geocoding.

8 Exercises

1. Revisit the geocoding section discussing geocoding errors. Examine the OISs that have
not been geocoded to specific locations. Fix their addresses and redo the geocoding of
these OISs to improve the accuracy of the data.

2. Identify officer-involved shootings that resulted in the offender being transported to the
Hospital at the University of Pennsylvania. Create a map marking the location of HUP,
the location of officer-involved shootings resulting in the offender being transported to
HUP, and the locations of all other shootings.

3. For each shooting determine which hospital treated the offender. Use st_distance() to
determine what percentage of those shot in an OIS went to the closest hospital.

70

	Introduction
	Scraping the OIS data
	Extracting OIS incident details
	Extracting dates from the text
	Geocoding the OIS locations
	Working with shapefiles and coordinate systems
	Coordinate systems
	Spatial joins
	Coloring a map based on the value of a feature

	Summary
	Exercises

