
Introduction to SQL, Part 2
Greg Ridgeway Ruth Moyer

2025-11-30

Table of contents

1 Creating an IUCR lookup table 1
1.1 Exercises . 27

2 SQL dates 27

3 Creating the final table 31

4 Joining data across tables 35
4.1 Exercises . 45

5 Subqueries 45
5.1 Exercise . 48

6 Solutions 49

[1] TRUE

1 Creating an IUCR lookup table

The crime table in our Chicago crime database is not ideal. It is overly complicated to extract
the year from a date. There is also a lot of redundant information in the table.

Let’s take a look at a few example rows.

Block IUCR PrimaryType FBICode Longitude Latitude
040XX W 26TH ST 0560 ASSAULT 08A -87.67741 41.90842

1

Block IUCR PrimaryType FBICode Longitude Latitude
089XX S SOUTH
CHICAGO AVE

0498 BATTERY 04B -87.63394 41.88602

052XX S HARPER AVE 2820 OTHER
OFFENSE

26 -87.62615 41.87183

033XX N TROY ST 2825 OTHER
OFFENSE

26 -87.69560 41.85655

015XX W 107TH ST 1310 CRIMINAL
DAMAGE

14 -87.59488 41.65512

0000X N LARAMIE AVE 2018 NARCOTICS 18 -87.76673 41.94523
0000X N KEELER AVE 0554 ASSAULT 08A -87.61501 41.76935
026XX N ELSTON AVE 0560 ASSAULT 08A -87.57389 41.76742
076XX S ABERDEEN ST 0486 BATTERY 08B -87.64308 41.76094
3XX N SHEFFIELD AVE 1811 NARCOTICS 18 -87.70109 41.79261

Note that whenever IUCR is 0560, then PrimaryType is ASSAULT and FBICode is 08A. There
is no reason to store the IUCR code, the primary crime type, and the FBI code all in the same
file. We should keep a separate table that links the IUCR codes, the primary crime types,
and the FBI codes. Note that it is essential to store the IUCR code in the crime table. Both
IUCR codes 2018 and 1811 both link to NARCOTICS and FBI code 18. If we deleted IUCR
from the crime table and kept only the primary crime type, then we would lose some detailed
information. Here is Chicago PD’s listing of FBI codes.

Aside from reducing database size, eliminating redundant information also provides “update
consistency.” In the table’s current form, we could erroneously add a row that had IUCR 0560,
PrimaryType as BATTERY, and FBICode 14.

Block IUCR PrimaryType FBICode Longitude Latitude
040XX W 26TH ST 0560 ASSAULT 08A -87.67741 41.90842
040XX W 26TH ST 0560 BATTERY 14 -87.67741 41.90842

The database would not complain even though this is an incorrect combination. IUCR code
0560 must link with ASSAULT and 08A. An IUCR lookup table avoids this possibility. The
lookup table has each IUCR code showing up only once and always linking to the correct
PrimaryType and FBICode.

IUCR PrimaryType FBICode
0486 BATTERY 08B
0498 BATTERY 04B
0554 ASSAULT 08A

2

https://www.chicagopolice.org/statistics-data/data-requests/

IUCR PrimaryType FBICode
0560 ASSAULT 08A
1310 CRIMINAL DAMAGE 14
1811 NARCOTICS 18
2018 NARCOTICS 18
2820 OTHER OFFENSE 26
2825 OTHER OFFENSE 26

Then we can remove PrimaryType and FBICode from the crime table and look up the associated
PrimaryType and FBICode from the IUCR lookup table whenever we need that information.

Let’s start by reconnecting to the Chicago crime database.

library(dplyr)
library(RSQLite)
con <- dbConnect(SQLite(), "chicagocrime.db")

The SQL keyword DISTINCT will filter out any duplicated rows in the result set so that every
row is a unique combination of values.

a <- dbGetQuery(con, "
SELECT DISTINCT IUCR, PrimaryType, FBIcode
FROM crime")

head(a)

IUCR PrimaryType FBICode
1 1582 OFFENSE INVOLVING CHILDREN 17
2 2017 NARCOTICS 18
3 0326 ROBBERY 03
4 0281 CRIM SEXUAL ASSAULT 02
5 1320 CRIMINAL DAMAGE 14
6 0810 THEFT 06

This creates a lookup table showing how IUCR links to the primary crime types and FBI
codes. We should check that each IUCR code uniquely links to a single primary type and a
single FBI code.

a |> count(IUCR) |> filter(n > 1)

3

IUCR n
1 0261 2
2 0262 2
3 0263 2
4 0264 2
5 0265 2
6 0266 2
7 0271 2
8 0272 2
9 0273 2
10 0274 2
11 0275 2
12 0281 2
13 0291 2
14 1030 2
15 1035 2
16 1261 2
17 1537 2
18 1540 2
19 1541 2
20 1576 2
21 1581 2
22 1710 2
23 1715 2
24 1725 2
25 1750 2
26 1751 2
27 1752 2
28 1755 2
29 1780 2
30 1790 2
31 1792 2
32 2091 2
33 2092 2
34 2093 2
35 2820 2
36 2850 2
37 2851 2
38 2890 2
39 2895 2
40 3300 2
41 3400 2
42 3960 2

4

43 3961 2
44 3966 2
45 5114 2

Unfortunately, it looks like several IUCR codes have multiple values for PrimaryType and/or
FBICode. Let’s start by examining codes 2091, 2092, and 2093.

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,

IUCR,
PrimaryType,
FBICode,
SUBSTR(Date, 7, 4) AS year

FROM crime
WHERE IUCR IN ('2091', '2092', '2093')
GROUP BY IUCR, PrimaryType, year, FBICode
ORDER BY IUCR, PrimaryType, year, FBICode")

crimecount IUCR PrimaryType FBICode year
1 389 2091 NARCOTICS 26 2001
2 267 2091 NARCOTICS 26 2002
3 238 2091 NARCOTICS 26 2003
4 288 2091 NARCOTICS 26 2004
5 253 2091 NARCOTICS 26 2005
6 232 2091 NARCOTICS 26 2006
7 221 2091 NARCOTICS 26 2007
8 225 2091 NARCOTICS 26 2008
9 246 2091 NARCOTICS 26 2009
10 208 2091 NARCOTICS 26 2010
11 178 2091 NARCOTICS 26 2011
12 1 2091 NARCOTICS 18 2012
13 205 2091 NARCOTICS 26 2012
14 2 2091 NARCOTICS 18 2013
15 195 2091 NARCOTICS 26 2013
16 27 2091 NARCOTICS 18 2014
17 166 2091 NARCOTICS 26 2014
18 136 2091 NARCOTICS 18 2015
19 28 2091 NARCOTICS 26 2015
20 123 2091 NARCOTICS 18 2016
21 113 2091 NARCOTICS 18 2017
22 105 2091 NARCOTICS 18 2018
23 106 2091 NARCOTICS 18 2019

5

24 83 2091 NARCOTICS 18 2020
25 61 2091 NARCOTICS 18 2021
26 48 2091 NARCOTICS 18 2022
27 29 2091 NARCOTICS 18 2023
28 15 2091 NARCOTICS 18 2024
29 6 2091 NARCOTICS 18 2025
30 1675 2092 NARCOTICS 26 2001
31 2373 2092 NARCOTICS 26 2002
32 2775 2092 NARCOTICS 26 2003
33 3094 2092 NARCOTICS 26 2004
34 3130 2092 NARCOTICS 26 2005
35 3049 2092 NARCOTICS 26 2006
36 2726 2092 NARCOTICS 26 2007
37 1523 2092 NARCOTICS 26 2008
38 1435 2092 NARCOTICS 26 2009
39 1056 2092 NARCOTICS 26 2010
40 767 2092 NARCOTICS 26 2011
41 672 2092 NARCOTICS 26 2012
42 679 2092 NARCOTICS 26 2013
43 542 2092 NARCOTICS 26 2014
44 126 2092 NARCOTICS 18 2015
45 237 2092 NARCOTICS 26 2015
46 212 2092 NARCOTICS 18 2016
47 373 2092 NARCOTICS 18 2017
48 595 2092 NARCOTICS 18 2018
49 678 2092 NARCOTICS 18 2019
50 271 2092 NARCOTICS 18 2020
51 71 2092 NARCOTICS 18 2021
52 144 2092 NARCOTICS 18 2022
53 125 2092 NARCOTICS 18 2023
54 45 2092 NARCOTICS 18 2024
55 71 2092 NARCOTICS 18 2025
56 972 2093 NARCOTICS 26 2001
57 866 2093 NARCOTICS 26 2002
58 968 2093 NARCOTICS 26 2003
59 864 2093 NARCOTICS 26 2004
60 839 2093 NARCOTICS 26 2005
61 909 2093 NARCOTICS 26 2006
62 1033 2093 NARCOTICS 26 2007
63 2 2093 NARCOTICS 18 2008
64 1208 2093 NARCOTICS 26 2008
65 1 2093 NARCOTICS 18 2009
66 1099 2093 NARCOTICS 26 2009

6

67 2 2093 NARCOTICS 18 2010
68 1017 2093 NARCOTICS 26 2010
69 2 2093 NARCOTICS 18 2011
70 934 2093 NARCOTICS 26 2011
71 16 2093 NARCOTICS 18 2012
72 935 2093 NARCOTICS 26 2012
73 16 2093 NARCOTICS 18 2013
74 760 2093 NARCOTICS 26 2013
75 15 2093 NARCOTICS 18 2014
76 676 2093 NARCOTICS 26 2014
77 323 2093 NARCOTICS 18 2015
78 332 2093 NARCOTICS 26 2015
79 846 2093 NARCOTICS 18 2016
80 1000 2093 NARCOTICS 18 2017
81 1067 2093 NARCOTICS 18 2018
82 1052 2093 NARCOTICS 18 2019
83 760 2093 NARCOTICS 18 2020
84 776 2093 NARCOTICS 18 2021
85 634 2093 NARCOTICS 18 2022
86 641 2093 NARCOTICS 18 2023
87 693 2093 NARCOTICS 18 2024
88 477 2093 NARCOTICS 18 2025

These are all narcotics cases, but we see that in some years, these charges are marked as FBI
code 18 (crimes of production, sale, use of drugs) and sometimes 26 (a miscellaneous category).
FBI code 26 appears more commonly, but the FBI code 26 appears to phase out after 2015.
2091 is a narcotics code for “forfeit property,” 2092 is for “soliciting narcotics on a public way,”
and 2093 is for “found suspect narcotics.” It appears that the CPD is now using the more
specific FBI codes rather than the generic miscellaneous. The most practical decision is to use
the most modern coding and use code 18 for these crimes.

A similar story applies to IUCR crimes 1710, 1715, 1725, 1755, and 1780. These are all offenses
involving children that prior to 2016 had been given the FBI miscellaneous code 26, but more
recently have been coded as 20 (offenses against family). Again, it seems reasonable to use
the most modern coding choice and use FBI code 20.

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,

IUCR,
PrimaryType,
FBICode,
SUBSTR(Date, 7, 4) AS year

FROM crime

7

WHERE IUCR IN ('1710','1715','1725','1755','1780')
GROUP BY IUCR, PrimaryType, year, FBICode
ORDER BY IUCR, PrimaryType, year, FBICode")

crimecount IUCR PrimaryType FBICode year
1 503 1710 OFFENSE INVOLVING CHILDREN 26 2001
2 506 1710 OFFENSE INVOLVING CHILDREN 26 2002
3 479 1710 OFFENSE INVOLVING CHILDREN 26 2003
4 427 1710 OFFENSE INVOLVING CHILDREN 26 2004
5 413 1710 OFFENSE INVOLVING CHILDREN 26 2005
6 392 1710 OFFENSE INVOLVING CHILDREN 26 2006
7 403 1710 OFFENSE INVOLVING CHILDREN 26 2007
8 337 1710 OFFENSE INVOLVING CHILDREN 26 2008
9 374 1710 OFFENSE INVOLVING CHILDREN 26 2009
10 362 1710 OFFENSE INVOLVING CHILDREN 26 2010
11 1 1710 OFFENSE INVOLVING CHILDREN 20 2011
12 331 1710 OFFENSE INVOLVING CHILDREN 26 2011
13 1 1710 OFFENSE INVOLVING CHILDREN 20 2012
14 333 1710 OFFENSE INVOLVING CHILDREN 26 2012
15 6 1710 OFFENSE INVOLVING CHILDREN 20 2013
16 270 1710 OFFENSE INVOLVING CHILDREN 26 2013
17 2 1710 OFFENSE INVOLVING CHILDREN 20 2014
18 315 1710 OFFENSE INVOLVING CHILDREN 26 2014
19 22 1710 OFFENSE INVOLVING CHILDREN 20 2015
20 265 1710 OFFENSE INVOLVING CHILDREN 26 2015
21 276 1710 OFFENSE INVOLVING CHILDREN 20 2016
22 8 1710 OFFENSE INVOLVING CHILDREN 26 2016
23 328 1710 OFFENSE INVOLVING CHILDREN 20 2017
24 334 1710 OFFENSE INVOLVING CHILDREN 20 2018
25 384 1710 OFFENSE INVOLVING CHILDREN 20 2019
26 289 1710 OFFENSE INVOLVING CHILDREN 20 2020
27 261 1710 OFFENSE INVOLVING CHILDREN 20 2021
28 289 1710 OFFENSE INVOLVING CHILDREN 20 2022
29 262 1710 OFFENSE INVOLVING CHILDREN 20 2023
30 349 1710 OFFENSE INVOLVING CHILDREN 20 2024
31 219 1710 OFFENSE INVOLVING CHILDREN 20 2025
32 4 1715 OFFENSE INVOLVING CHILDREN 26 2003
33 1 1715 OFFENSE INVOLVING CHILDREN 26 2006
34 1 1715 OFFENSE INVOLVING CHILDREN 26 2007
35 3 1715 OFFENSE INVOLVING CHILDREN 26 2008
36 2 1715 OFFENSE INVOLVING CHILDREN 26 2009
37 3 1715 OFFENSE INVOLVING CHILDREN 26 2010

8

38 2 1715 OFFENSE INVOLVING CHILDREN 26 2011
39 4 1715 OFFENSE INVOLVING CHILDREN 26 2012
40 1 1715 OFFENSE INVOLVING CHILDREN 26 2013
41 1 1715 OFFENSE INVOLVING CHILDREN 26 2015
42 1 1715 OFFENSE INVOLVING CHILDREN 20 2016
43 1 1715 OFFENSE INVOLVING CHILDREN 20 2017
44 2 1715 OFFENSE INVOLVING CHILDREN 20 2018
45 3 1715 OFFENSE INVOLVING CHILDREN 20 2019
46 2 1715 OFFENSE INVOLVING CHILDREN 20 2020
47 2 1715 OFFENSE INVOLVING CHILDREN 20 2021
48 1 1715 OFFENSE INVOLVING CHILDREN 20 2024
49 2 1725 OFFENSE INVOLVING CHILDREN 26 2002
50 4 1725 OFFENSE INVOLVING CHILDREN 26 2003
51 1 1725 OFFENSE INVOLVING CHILDREN 26 2004
52 5 1725 OFFENSE INVOLVING CHILDREN 26 2005
53 4 1725 OFFENSE INVOLVING CHILDREN 26 2006
54 9 1725 OFFENSE INVOLVING CHILDREN 26 2007
55 4 1725 OFFENSE INVOLVING CHILDREN 26 2008
56 3 1725 OFFENSE INVOLVING CHILDREN 26 2009
57 16 1725 OFFENSE INVOLVING CHILDREN 26 2010
58 9 1725 OFFENSE INVOLVING CHILDREN 26 2011
59 7 1725 OFFENSE INVOLVING CHILDREN 26 2012
60 12 1725 OFFENSE INVOLVING CHILDREN 26 2013
61 2 1725 OFFENSE INVOLVING CHILDREN 20 2014
62 12 1725 OFFENSE INVOLVING CHILDREN 26 2014
63 1 1725 OFFENSE INVOLVING CHILDREN 20 2015
64 9 1725 OFFENSE INVOLVING CHILDREN 26 2015
65 4 1725 OFFENSE INVOLVING CHILDREN 20 2016
66 15 1725 OFFENSE INVOLVING CHILDREN 20 2017
67 6 1725 OFFENSE INVOLVING CHILDREN 20 2018
68 7 1725 OFFENSE INVOLVING CHILDREN 20 2019
69 5 1725 OFFENSE INVOLVING CHILDREN 20 2020
70 1 1725 OFFENSE INVOLVING CHILDREN 20 2021
71 1 1725 OFFENSE INVOLVING CHILDREN 20 2022
72 4 1725 OFFENSE INVOLVING CHILDREN 20 2023
73 5 1725 OFFENSE INVOLVING CHILDREN 20 2024
74 3 1725 OFFENSE INVOLVING CHILDREN 20 2025
75 37 1755 OFFENSE INVOLVING CHILDREN 26 2002
76 75 1755 OFFENSE INVOLVING CHILDREN 26 2003
77 69 1755 OFFENSE INVOLVING CHILDREN 26 2004
78 64 1755 OFFENSE INVOLVING CHILDREN 26 2005
79 70 1755 OFFENSE INVOLVING CHILDREN 26 2006
80 59 1755 OFFENSE INVOLVING CHILDREN 26 2007

9

81 49 1755 OFFENSE INVOLVING CHILDREN 26 2008
82 34 1755 OFFENSE INVOLVING CHILDREN 26 2009
83 52 1755 OFFENSE INVOLVING CHILDREN 26 2010
84 52 1755 OFFENSE INVOLVING CHILDREN 26 2011
85 39 1755 OFFENSE INVOLVING CHILDREN 26 2012
86 49 1755 OFFENSE INVOLVING CHILDREN 26 2013
87 43 1755 OFFENSE INVOLVING CHILDREN 26 2014
88 3 1755 OFFENSE INVOLVING CHILDREN 20 2015
89 32 1755 OFFENSE INVOLVING CHILDREN 26 2015
90 32 1755 OFFENSE INVOLVING CHILDREN 20 2016
91 46 1755 OFFENSE INVOLVING CHILDREN 20 2017
92 29 1755 OFFENSE INVOLVING CHILDREN 20 2018
93 38 1755 OFFENSE INVOLVING CHILDREN 20 2019
94 36 1755 OFFENSE INVOLVING CHILDREN 20 2020
95 36 1755 OFFENSE INVOLVING CHILDREN 20 2021
96 30 1755 OFFENSE INVOLVING CHILDREN 20 2022
97 59 1755 OFFENSE INVOLVING CHILDREN 20 2023
98 53 1755 OFFENSE INVOLVING CHILDREN 20 2024
99 41 1755 OFFENSE INVOLVING CHILDREN 20 2025
100 11 1780 OFFENSE INVOLVING CHILDREN 26 2001
101 166 1780 OFFENSE INVOLVING CHILDREN 26 2002
102 352 1780 OFFENSE INVOLVING CHILDREN 26 2003
103 559 1780 OFFENSE INVOLVING CHILDREN 26 2004
104 465 1780 OFFENSE INVOLVING CHILDREN 26 2005
105 504 1780 OFFENSE INVOLVING CHILDREN 26 2006
106 613 1780 OFFENSE INVOLVING CHILDREN 26 2007
107 624 1780 OFFENSE INVOLVING CHILDREN 26 2008
108 658 1780 OFFENSE INVOLVING CHILDREN 26 2009
109 2 1780 OFFENSE INVOLVING CHILDREN 20 2010
110 616 1780 OFFENSE INVOLVING CHILDREN 26 2010
111 1 1780 OFFENSE INVOLVING CHILDREN 20 2011
112 649 1780 OFFENSE INVOLVING CHILDREN 26 2011
113 2 1780 OFFENSE INVOLVING CHILDREN 20 2012
114 628 1780 OFFENSE INVOLVING CHILDREN 26 2012
115 1 1780 OFFENSE INVOLVING CHILDREN 20 2013
116 628 1780 OFFENSE INVOLVING CHILDREN 26 2013
117 2 1780 OFFENSE INVOLVING CHILDREN 20 2014
118 608 1780 OFFENSE INVOLVING CHILDREN 26 2014
119 17 1780 OFFENSE INVOLVING CHILDREN 20 2015
120 516 1780 OFFENSE INVOLVING CHILDREN 26 2015
121 540 1780 OFFENSE INVOLVING CHILDREN 20 2016
122 38 1780 OFFENSE INVOLVING CHILDREN 26 2016
123 415 1780 OFFENSE INVOLVING CHILDREN 20 2017

10

124 398 1780 OFFENSE INVOLVING CHILDREN 20 2018
125 341 1780 OFFENSE INVOLVING CHILDREN 20 2019
126 419 1780 OFFENSE INVOLVING CHILDREN 20 2020
127 393 1780 OFFENSE INVOLVING CHILDREN 20 2021
128 330 1780 OFFENSE INVOLVING CHILDREN 20 2022
129 260 1780 OFFENSE INVOLVING CHILDREN 20 2023
130 261 1780 OFFENSE INVOLVING CHILDREN 20 2024
131 208 1780 OFFENSE INVOLVING CHILDREN 20 2025

IUCR codes 1030 and 1035, which involve possession of incendiary devices, are now being
coded as arson (09) rather than miscellaneous (26).

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,

IUCR,
PrimaryType,
FBICode,
SUBSTR(Date,7,4) AS year

FROM crime
WHERE IUCR IN ('1030','1035')
GROUP BY IUCR, PrimaryType, year, FBICode
ORDER BY IUCR, PrimaryType, year, FBICode")

crimecount IUCR PrimaryType FBICode year
1 6 1030 ARSON 26 2001
2 2 1030 ARSON 26 2002
3 5 1030 ARSON 26 2003
4 4 1030 ARSON 26 2004
5 3 1030 ARSON 26 2005
6 7 1030 ARSON 26 2006
7 5 1030 ARSON 26 2007
8 7 1030 ARSON 26 2008
9 5 1030 ARSON 26 2009
10 9 1030 ARSON 26 2010
11 5 1030 ARSON 26 2011
12 2 1030 ARSON 26 2012
13 6 1030 ARSON 26 2013
14 2 1030 ARSON 26 2014
15 5 1030 ARSON 26 2015
16 2 1030 ARSON 09 2016
17 1 1030 ARSON 26 2016
18 3 1030 ARSON 09 2017

11

19 1 1030 ARSON 09 2018
20 3 1030 ARSON 09 2019
21 4 1030 ARSON 09 2020
22 9 1030 ARSON 09 2021
23 4 1030 ARSON 09 2022
24 7 1030 ARSON 09 2023
25 4 1030 ARSON 09 2024
26 7 1030 ARSON 09 2025
27 7 1035 ARSON 26 2002
28 2 1035 ARSON 26 2004
29 3 1035 ARSON 26 2005
30 8 1035 ARSON 26 2006
31 6 1035 ARSON 26 2007
32 6 1035 ARSON 26 2008
33 4 1035 ARSON 26 2009
34 1 1035 ARSON 26 2010
35 1 1035 ARSON 26 2011
36 1 1035 ARSON 26 2012
37 1 1035 ARSON 09 2016

This all points to a modernization of FBI codes where Chicago adopted more specific FBI
codes rather than placing them in the miscellaneous category.

Lastly, there are some inconsistent spellings of primary crime types. The spelling of the
primary type for 5114 has changed to remove the extra spaces. Even though they differ only
by a few spaces, SQL will conclude that these are different values.

dbGetQuery(con,
"SELECT COUNT(*) AS crimecount,

IUCR,
PrimaryType,
FBICode,
SUBSTR(Date, 7, 4) AS year

FROM crime
WHERE IUCR='5114'
GROUP BY IUCR, PrimaryType, FBICode, year")

crimecount IUCR PrimaryType FBICode year
1 3 5114 NON - CRIMINAL 26 2013
2 10 5114 NON - CRIMINAL 26 2014
3 20 5114 NON - CRIMINAL 26 2015
4 5 5114 NON - CRIMINAL 26 2016

12

5 1 5114 NON-CRIMINAL 26 2015
6 14 5114 NON-CRIMINAL 26 2016
7 7 5114 NON-CRIMINAL 26 2017
8 15 5114 NON-CRIMINAL 26 2018
9 1 5114 NON-CRIMINAL 26 2019

Criminal sexual assault also has an inconsistent spelling.

dbGetQuery(con, "
SELECT COUNT(*) AS crimcount,

PrimaryType,
year

FROM crime
WHERE iucr IN ('0261','0263','0264','0265','0266','0271','0281','0291')
GROUP BY PrimaryType, year
ORDER BY year")

crimcount PrimaryType Year
1 1712 CRIM SEXUAL ASSAULT 2001
2 42 CRIMINAL SEXUAL ASSAULT 2001
3 1740 CRIM SEXUAL ASSAULT 2002
4 38 CRIMINAL SEXUAL ASSAULT 2002
5 1532 CRIM SEXUAL ASSAULT 2003
6 53 CRIMINAL SEXUAL ASSAULT 2003
7 1495 CRIM SEXUAL ASSAULT 2004
8 56 CRIMINAL SEXUAL ASSAULT 2004
9 1485 CRIM SEXUAL ASSAULT 2005
10 52 CRIMINAL SEXUAL ASSAULT 2005
11 1402 CRIM SEXUAL ASSAULT 2006
12 59 CRIMINAL SEXUAL ASSAULT 2006
13 1469 CRIM SEXUAL ASSAULT 2007
14 66 CRIMINAL SEXUAL ASSAULT 2007
15 1477 CRIM SEXUAL ASSAULT 2008
16 65 CRIMINAL SEXUAL ASSAULT 2008
17 1366 CRIM SEXUAL ASSAULT 2009
18 59 CRIMINAL SEXUAL ASSAULT 2009
19 1291 CRIM SEXUAL ASSAULT 2010
20 78 CRIMINAL SEXUAL ASSAULT 2010
21 1414 CRIM SEXUAL ASSAULT 2011
22 74 CRIMINAL SEXUAL ASSAULT 2011
23 1360 CRIM SEXUAL ASSAULT 2012
24 89 CRIMINAL SEXUAL ASSAULT 2012

13

25 1224 CRIM SEXUAL ASSAULT 2013
26 103 CRIMINAL SEXUAL ASSAULT 2013
27 1275 CRIM SEXUAL ASSAULT 2014
28 104 CRIMINAL SEXUAL ASSAULT 2014
29 1311 CRIM SEXUAL ASSAULT 2015
30 131 CRIMINAL SEXUAL ASSAULT 2015
31 1453 CRIM SEXUAL ASSAULT 2016
32 156 CRIMINAL SEXUAL ASSAULT 2016
33 1453 CRIM SEXUAL ASSAULT 2017
34 229 CRIMINAL SEXUAL ASSAULT 2017
35 1364 CRIM SEXUAL ASSAULT 2018
36 364 CRIMINAL SEXUAL ASSAULT 2018
37 884 CRIM SEXUAL ASSAULT 2019
38 771 CRIMINAL SEXUAL ASSAULT 2019
39 75 CRIM SEXUAL ASSAULT 2020
40 1169 CRIMINAL SEXUAL ASSAULT 2020
41 1516 CRIMINAL SEXUAL ASSAULT 2021
42 1591 CRIMINAL SEXUAL ASSAULT 2022
43 1646 CRIMINAL SEXUAL ASSAULT 2023
44 1576 CRIMINAL SEXUAL ASSAULT 2024
45 1034 CRIMINAL SEXUAL ASSAULT 2025

The conclusion of all of this is that if there is any inconsistency in the connection between
IUCR, PrimaryType, and FBICode, then we should choose the most recent combination and
delete the rest as options. The following SQL query finds for each IUCR the most recent year
that it occurred in the dataset. Not all codes appear in the most recent year. Several IUCR
codes last occurred before 2015.

dbGetQuery(con, "
SELECT IUCR, MAX(year) AS maxyear
FROM crime
GROUP BY IUCR")

IUCR maxyear
1 0110 2025
2 0130 2022
3 0141 2022
4 0142 2025
5 0261 2025
6 0262 2025
7 0263 2025
8 0264 2025

14

9 0265 2025
10 0266 2025
11 0271 2025
12 0272 2024
13 0273 2025
14 0274 2024
15 0275 2025
16 0281 2025
17 0291 2025
18 0312 2025
19 0313 2025
20 031A 2025
21 031B 2025
22 0320 2025
23 0325 2025
24 0326 2025
25 0330 2025
26 0331 2025
27 0334 2025
28 0337 2025
29 033A 2025
30 033B 2025
31 0340 2025
32 041A 2025
33 041B 2025
34 0420 2025
35 0430 2025
36 0440 2025
37 0450 2025
38 0451 2021
39 0452 2025
40 0453 2025
41 0454 2025
42 0460 2025
43 0461 2025
44 0462 2025
45 0470 2025
46 0475 2025
47 0479 2025
48 0480 2021
49 0481 2015
50 0482 2025
51 0483 2025

15

52 0484 2025
53 0485 2025
54 0486 2025
55 0487 2025
56 0488 2025
57 0489 2024
58 0490 2006
59 0492 2005
60 0493 2006
61 0494 2006
62 0495 2025
63 0496 2025
64 0497 2025
65 0498 2025
66 0499 2009
67 0510 2020
68 051A 2025
69 051B 2025
70 0520 2025
71 0530 2025
72 0545 2025
73 0550 2025
74 0551 2025
75 0552 2025
76 0553 2025
77 0554 2025
78 0555 2025
79 0556 2025
80 0557 2025
81 0558 2025
82 0560 2025
83 0580 2025
84 0581 2025
85 0583 2025
86 0584 2025
87 0585 2018
88 0610 2025
89 0620 2025
90 0630 2025
91 0650 2025
92 0710 2025
93 0760 2025
94 0810 2025

16

95 0820 2025
96 0830 2016
97 0840 2014
98 0841 2014
99 0842 2014
100 0843 2014
101 0850 2025
102 0860 2025
103 0865 2025
104 0870 2025
105 0880 2025
106 0890 2025
107 0895 2025
108 0910 2025
109 0915 2025
110 0917 2025
111 0918 2025
112 0920 2025
113 0925 2025
114 0927 2025
115 0928 2025
116 0930 2025
117 0935 2025
118 0937 2025
119 0938 2025
120 1010 2025
121 1020 2025
122 1025 2025
123 1030 2025
124 1035 2016
125 1050 2025
126 1055 2025
127 1090 2025
128 1101 2025
129 1102 2025
130 1110 2025
131 1120 2025
132 1121 2025
133 1122 2025
134 1130 2025
135 1135 2025
136 1140 2025
137 1145 2025

17

138 1147 2025
139 1150 2025
140 1151 2025
141 1152 2025
142 1153 2025
143 1154 2025
144 1155 2025
145 1156 2025
146 1160 2018
147 1170 2025
148 1185 2025
149 1187 2025
150 1192 2025
151 1195 2025
152 1197 2025
153 1199 2025
154 1200 2025
155 1205 2025
156 1206 2025
157 1210 2025
158 1220 2025
159 1230 2023
160 1235 2024
161 1240 2025
162 1241 2025
163 1242 2025
164 1245 2025
165 1255 2018
166 1260 2025
167 1261 2025
168 1262 2025
169 1263 2025
170 1265 2024
171 1305 2025
172 1310 2025
173 1320 2025
174 1330 2025
175 1335 2025
176 1340 2025
177 1345 2025
178 1350 2025
179 1360 2025
180 1365 2025

18

181 1370 2025
182 1375 2025
183 141A 2025
184 141B 2025
185 141C 2025
186 142A 2025
187 142B 2025
188 1435 2025
189 143A 2025
190 143B 2025
191 143C 2025
192 1440 2008
193 1450 2025
194 1460 2025
195 1476 2023
196 1477 2025
197 1478 2025
198 1479 2025
199 1480 2025
200 1481 2025
201 1504 2025
202 1505 2025
203 1506 2025
204 1507 2025
205 1510 2017
206 1511 2020
207 1512 2024
208 1513 2025
209 1515 2023
210 1518 2025
211 1519 2025
212 1520 2025
213 1521 2006
214 1525 2019
215 1526 2018
216 1530 2024
217 1531 2025
218 1535 2025
219 1536 2025
220 1537 2024
221 1540 2025
222 1541 2025
223 1542 2015

19

224 1544 2025
225 1549 2025
226 1562 2025
227 1563 2025
228 1564 2024
229 1565 2025
230 1566 2025
231 1570 2025
232 1572 2007
233 1573 2025
234 1574 2024
235 1576 2024
236 1577 2025
237 1578 2005
238 1580 2023
239 1581 2025
240 1582 2025
241 1585 2025
242 1590 2025
243 1599 2025
244 1610 2008
245 1611 2012
246 1620 2008
247 1621 2009
248 1622 2008
249 1624 2008
250 1625 2005
251 1626 2009
252 1627 2011
253 1630 2007
254 1631 2011
255 1633 2004
256 1640 2008
257 1650 2008
258 1651 2021
259 1661 2025
260 1670 2024
261 1680 2025
262 1681 2006
263 1682 2022
264 1697 2002
265 1710 2025
266 1715 2024

20

267 1720 2025
268 1725 2025
269 1726 2025
270 1750 2025
271 1751 2025
272 1752 2025
273 1753 2025
274 1754 2025
275 1755 2025
276 1780 2025
277 1790 2025
278 1791 2025
279 1792 2025
280 1811 2025
281 1812 2025
282 1821 2025
283 1822 2025
284 1840 2025
285 1850 2025
286 1860 2023
287 1900 2025
288 2010 2025
289 2011 2025
290 2012 2025
291 2013 2025
292 2014 2025
293 2015 2025
294 2016 2025
295 2017 2025
296 2018 2025
297 2019 2025
298 2020 2025
299 2021 2025
300 2022 2025
301 2023 2025
302 2024 2025
303 2025 2025
304 2026 2025
305 2027 2025
306 2028 2025
307 2029 2025
308 2030 2024
309 2031 2025

21

310 2032 2025
311 2033 2025
312 2034 2025
313 2040 2025
314 2050 2025
315 2060 2016
316 2070 2022
317 2080 2024
318 2090 2025
319 2091 2025
320 2092 2025
321 2093 2025
322 2094 2024
323 2095 2025
324 2110 2025
325 2111 2014
326 2120 2007
327 2160 2025
328 2170 2025
329 2210 2025
330 2220 2025
331 2230 2025
332 2240 2023
333 2250 2025
334 2251 2023
335 2820 2025
336 2825 2025
337 2826 2025
338 2830 2025
339 2840 2025
340 2850 2025
341 2851 2025
342 2860 2025
343 2870 2025
344 2890 2025
345 2895 2024
346 2896 2025
347 2900 2025
348 3000 2025
349 3100 2025
350 3200 2025
351 3300 2025
352 3400 2020

22

353 3610 2024
354 3710 2025
355 3720 2020
356 3730 2025
357 3731 2025
358 3740 2016
359 3750 2025
360 3751 2021
361 3760 2025
362 3770 2016
363 3800 2025
364 3910 2024
365 3920 2025
366 3960 2025
367 3961 2024
368 3966 2022
369 3970 2024
370 3975 2016
371 3980 2019
372 4210 2025
373 4220 2025
374 4230 2025
375 4240 2025
376 4255 2025
377 4310 2025
378 4386 2025
379 4387 2025
380 4388 2025
381 4389 2025
382 4510 2024
383 4625 2025
384 4650 2025
385 4651 2025
386 4652 2025
387 4740 2025
388 4750 2021
389 4800 2025
390 4810 2025
391 4860 2025
392 5000 2025
393 5001 2025
394 5002 2025
395 5003 2025

23

396 5004 2025
397 5005 2002
398 5007 2025
399 5008 2013
400 5009 2025
401 500E 2025
402 500N 2025
403 5011 2025
404 5013 2025
405 501A 2025
406 501H 2025
407 502P 2025
408 502R 2025
409 502T 2025
410 5073 2018
411 5093 2018
412 5094 2017
413 5110 2025
414 5111 2025
415 5112 2025
416 5113 2017
417 5114 2019
418 5120 2018
419 5121 2024
420 5122 2025
421 5130 2025
422 5131 2025
423 5132 2025
424 9901 2001

Now that we have a query that tells us the most recent year for each IUCR code, we should look
up what the PrimaryType and FBICode are for each IUCR in its most recent year. We are going
to temporarily create a table with the results from the previous query using “Common Table
Expressions” (CTE). A CTE is a temporary table that only lasts for the one query in which it
is created. You can have multiple CTEs in one query. Also, here we have our first encounter
with a JOIN. We will cover more about JOIN later in these notes. For now, study the query
and see how it solves our problem. With a CTE (the part following the keyword WITH) we
create a temporary table called recentIUCR that has two columns, IUCR and maxyear. Then
the main query looks for rows in the crime table that match the rows in recentIUCR. When it
finds a match, it merges in that crime’s PrimaryType and FBICode. Since many crimes with
the same value of IUCR show up, we use DISTINCT to keep just the unique combinations.

24

iucrLookupTable <- dbGetQuery(con, "
WITH

recentIUCR AS
(SELECT IUCR, MAX(year) AS maxyear
FROM crime
GROUP BY IUCR)

SELECT DISTINCT crime.IUCR,
crime.PrimaryType,
crime.FBICode

FROM crime
INNER JOIN recentIUCR

ON crime.iucr = recentIUCR.iucr AND
crime.year = recentIUCR.maxyear

ORDER BY crime.IUCR
")

check for a few IUCRs
iucrLookupTable |>

filter(IUCR %in% c(2091,2092,2093,1030,1035,5114))

IUCR PrimaryType FBICode
1 1030 ARSON 09
2 1035 ARSON 09
3 2091 NARCOTICS 18
4 2092 NARCOTICS 18
5 2093 NARCOTICS 18
6 5114 NON-CRIMINAL 26

make sure that each IUCR code shows up in only one row
should be empty
iucrLookupTable |>

count(IUCR) |>
filter(n > 1)

[1] IUCR n
<0 rows> (or 0-length row.names)

With questions about IUCR to FBI codes resolved, let’s create the IUCR, primary type, and
FBI code lookup table in our Chicago crime database. We can use dbWriteTable() to post
our data frame iucrLookupTable to the database, creating a new table called iucr.

25

remove iucr table if it is there already
if(dbExistsTable(con,"iucr")) dbRemoveTable(con, "iucr")

import the data frame into SQLite
dbWriteTable(con, "iucr", iucrLookupTable,

row.names=FALSE)

check
dbListFields(con,"iucr")

[1] "IUCR" "PrimaryType" "FBICode"

check whether the table looks correct
dbGetQuery(con, "SELECT * FROM iucr LIMIT 5")

IUCR PrimaryType FBICode
1 0110 HOMICIDE 01A
2 0130 HOMICIDE 01A
3 0141 HOMICIDE 01B
4 0142 HOMICIDE 01B
5 0261 CRIMINAL SEXUAL ASSAULT 02

Everything looks correct!

Note that we ran a SQL query to pull this lookup table into iucrLookupTable, then we wrote
that table back to the database with dbWriteTable(). There really was no need to pull the
table into R, only to post it right back into the database. We can use a CREATE TABLE clause
to create this lookup table directly in our database.

remove iucr table if it is there already
if(dbExistsTable(con,"iucr")) dbRemoveTable(con, "iucr")

use dbExecute() since we are creating a table, not retrieving data
dbExecute(con, "
CREATE TABLE iucr AS
WITH

recentIUCR AS
(SELECT IUCR, MAX(year) AS maxyear
FROM crime
GROUP BY IUCR)

SELECT DISTINCT crime.IUCR, crime.PrimaryType, crime.FBICode

26

FROM crime
INNER JOIN recentIUCR

ON crime.iucr = recentIUCR.iucr AND
crime.year = recentIUCR.maxyear

ORDER BY crime.IUCR
")

[1] 0

We now see that our database has two tables, the original crime table and the new iucr
lookup table.

dbListTables(con)

[1] "crime" "iucr"

1.1 Exercises

With the new table iucr in the database, complete the following exercises.

1. Print out all of the rows in iucr

2. Print out all the IUCR codes for “KIDNAPPING”

3. How many IUCR codes are there for “ASSAULT”?

4. Try doing the prior exercise again using COUNT(*) if you did not use it the first time

2 SQL dates

SQLite has no special date/time data type. The Date column is currently stored in the crime
table as plain text. The PRAGMA statement is a way to modify or query the SQLite database
itself. Here we can ask SQLite the data types it is using to store each of the columns. All
the entries, including Date, are stored as text, integers, or doubles (numbers with decimal
points).

dbGetQuery(con, "PRAGMA table_info(crime)")

27

cid name type notnull dflt_value pk
1 0 ID INT 0 NA 0
2 1 CaseNumber TEXT 0 NA 0
3 2 Date TEXT 0 NA 0
4 3 Block TEXT 0 NA 0
5 4 IUCR TEXT 0 NA 0
6 5 PrimaryType TEXT 0 NA 0
7 6 Description TEXT 0 NA 0
8 7 LocationDescription TEXT 0 NA 0
9 8 Arrest TEXT 0 NA 0
10 9 Domestic TEXT 0 NA 0
11 10 Beat INT 0 NA 0
12 11 District TEXT 0 NA 0
13 12 Ward TEXT 0 NA 0
14 13 CommunityArea TEXT 0 NA 0
15 14 FBICode TEXT 0 NA 0
16 15 XCoordinate INT 0 NA 0
17 16 YCoordinate INT 0 NA 0
18 17 Year INT 0 NA 0
19 18 UpdatedOn TEXT 0 NA 0
20 19 Latitude DOUBLE 0 NA 0
21 20 Longitude DOUBLE 0 NA 0
22 21 Location TEXT 0 NA 0

The standard date format in computing is yyyy-mm-dd hh:mm:ss, where the hours are on the
24-hour clock (so no AM/PM). The reason for this format is that you can sort the data in this
format to get events in order. For some reason, the producers of the Chicago crime dataset did
not use this standard format. If you sort events in the current database, then all the January
events will come first (regardless of the year in which they occurred) and any events occurring
at 1pm will show up before those occurring at 2am. Putting the dates in a standard format
also allows us to use some useful SQLite date functions for extracting the year, day of the
week, time of day, and other features of the date and time.

The plan is to create a data frame in R with each crime’s ID and Date. Then we will use
lubridate to clean up the dates and put them in the standard format. Then we will push a
new table into the database containing each crime’s ID and its newly formatted date.

library(lubridate)
data <- dbGetQuery(con, "SELECT ID, Date FROM crime")
data |> head()

ID Date

28

1 13311263 07/29/2022 03:39:00 AM
2 13053066 01/03/2023 04:44:00 PM
3 12131221 08/10/2020 09:45:00 AM
4 11227634 08/26/2017 10:00:00 AM
5 13203321 09/06/2023 05:00:00 PM
6 13204489 09/06/2023 11:00:00 AM

Since the dates are in mm/dd/yyyy hh:mm:ss format, we will use mdy_hms() from the
lubridate package to clean these up. Fortunately, this function can also handle the
AM/PM.

data <- data |>
mutate(datefix = mdy_hms(Date),

datefix = as.character(datefix)) |> # convert to plain text
delete the original date from the data frame
select(-Date)

check that the reformatting worked
data |> head()

ID datefix
1 13311263 2022-07-29 03:39:00
2 13053066 2023-01-03 16:44:00
3 12131221 2020-08-10 09:45:00
4 11227634 2017-08-26 10:00:00
5 13203321 2023-09-06 17:00:00
6 13204489 2023-09-06 11:00:00

With the dates in standard format, let’s push the fixed dates table to the database.

remove DateFix table if it already exists
if(dbExistsTable(con,"DateFix")) dbRemoveTable(con, "DateFix")

save a table with ID and the properly formatted date
dbWriteTable(con, "DateFix", data, row.names=FALSE)
dbListTables(con)

[1] "DateFix" "crime" "iucr"

Our database now has three tables with the addition of the new DateFix table.

29

Before we used SUBSTR() to extract the year from the date. That was not very elegant and
required figuring out which characters held the four characters representing the year. Even
though SQLite does not have a date/time type, it does have some functions that help us work
with dates. We will use SQLite’s STRFTIME() function. It stands for “string format time”. It
is a decades-old function that you will find in almost all languages. Even R has its own version
of strftime(). Early programming language compilers limited functions to at most eight
characters, so programmers got rather creative in shrinking complicated function descriptions
down to eight characters.

The STRFTIME() function has two primary arguments (and some optional modifiers). The first
is a format parameter in which you tell STRFTIME() what you want it to extract from the date.
The second argument is the column containing the dates. There are a lot of options for the
format parameter. For example, you can extract just the year (%Y), just the month (%m),
just the minute (%M), the day of the week (%w) with Sunday represented as 0 and Saturday
as 6, or the week of the year (%W). You can also combine to get, for example, the year and
month (%Y-%m). You can find a complete listing here.

Let’s write a query to test out STRFTIME(). Here we will select some dates from DateFix and
determine on which day of the week the crime occurred.

a <- dbGetQuery(con, "
SELECT ID,

datefix,
STRFTIME('%w',datefix) AS weekday

FROM DateFix")
a |> head()

ID datefix weekday
1 13311263 2022-07-29 03:39:00 5
2 13053066 2023-01-03 16:44:00 2
3 12131221 2020-08-10 09:45:00 1
4 11227634 2017-08-26 10:00:00 6
5 13203321 2023-09-06 17:00:00 3
6 13204489 2023-09-06 11:00:00 3

For the first date, 2022-07-29, STRFTIME() tells us that this was day 5 of the week, which is
Friday (remember that 0 is Sunday).

STRFTIME() always returns values that are text. That is, if you ask for the year using
STRFTIME('%Y',datefix) and you get values like 2017 and 2018, your results will be char-
acter strings rather than numeric. You will have to convert them using as.numeric() in R
or, preferably, using a CAST() expression in SQL. CAST() is particularly useful if you want to
select records that, say, occur after 2010 or after noon.

30

https://sqlite.org/lang_datefunc.html#modifiers
https://www.sqlite.org/lang_datefunc.html

Let’s count cases that occurred between Monday and Friday after noon.

dbGetQuery(con, "
SELECT COUNT(*) as crimecount,

CAST(STRFTIME('%w',datefix) AS INTEGER) AS weekday
FROM DateFix
WHERE (weekday>=1) AND (weekday<=5) AND

(CAST(STRFTIME('%H',datefix) AS INTEGER) >= 12)
GROUP BY weekday")

crimecount weekday
1 746915 1
2 768661 2
3 774035 3
4 760030 4
5 810449 5

In the SELECT clause, we told SQLite to store the weekday as an integer. In the WHERE clause
we extracted the hour (24-hour clock) so that we could make a numerical comparison with the
number 12.

3 Creating the final table

Now we can put it all together, drop columns we do not want, remove redundant information,
and clean up the dates.

Removing columns from tables in SQLite used to not be simple. Only after March 2021 could
you run ALTER TABLE crime DROP COLUMN Date to remove a single column. We are going to
use an old-school approach since we are going to make many changes to our database. We
are going to rename the current crime table, then copy only the columns we want into a
new crime table, while at the same time replacing the old format dates with dates in a more
preferable format.

First, rename the crime table to crime_old, which we will delete as soon as we are done.

dbExecute(con, "ALTER TABLE crime RENAME TO crime_old")

[1] 0

There should be a new table.

31

dbListTables(con)

[1] "DateFix" "crime_old" "iucr"

This will create our new crime table. It can take a few minutes.

dbExecute(con, "
CREATE TABLE crime AS
SELECT crime_old.ID,

crime_old.CaseNumber,
DateFix.datefix AS date,
crime_old.Block,
crime_old.IUCR,
crime_old.Description,
crime_old.LocationDescription,
crime_old.Arrest,
crime_old.Domestic,
crime_old.Beat,
crime_old.District,
crime_old.Ward,
crime_old.CommunityArea,
crime_old.Latitude,
crime_old.Longitude

FROM crime_old
INNER JOIN DateFix
ON crime_old.ID=DateFix.ID")

[1] 0

This query requires a bit of discussion. First, note that the FROM clause joins two tables,
crime_old and DateFix. The ON clause tells SQLite how to link these two tables together. It
says that if there is a row in crime_old with a particular ID, then it can find its associated
row in the DateFix table by finding the matching value in the DateFix’s ID column. For
every column in the SELECT clause, we have included the table from where SQLite should
find the column. Technically, we only need to prefix the column with the table name when
there might be confusion. For example, both crime_old and DateFix have a column called
ID. However, we like to be explicit in complicated queries to remind ourselves from where all
the data comes.

You can also see in this SELECT query why periods in column names cause problems. SQL
uses the period to separate the table name from the column name. If we were to include

32

Case.Number in a SELECT statement, then SQL would think we had a table called Case with
a column called Number. Are you not glad we fixed this way back when we first created our
database? When we were cleaning up the Chicago crime CSV file we ran this code on the first
line in the CSV file.

readLines(infile, n=1) |>
gsub(",", ";", x=_) |> # separate with ;
gsub(" ", "", x=_) |> # SQL doesn't like field names with .,-,space
writeLines(con=outfile)

R typically renames column names with spaces by replacing the spaces with periods. Right at
the beginning we deleted any spaces in column names so that we get CaseNumber instead of
Case Number or Case.Number.

Technically, Beat, District, Ward, and CommunityArea are all redundant information once
we have Latitude and Longitude. However, “spatial joins,” linking coordinates to spatial
areas, is computationally expensive so that it is more efficient to simply leave this redundant
information here. Lastly, note that the first line is a CREATE TABLE statement that will store
the results of this query in a new table called crime.

Let’s look at the newly cleaned up table.

dbGetQuery(con, "
SELECT *
FROM crime
LIMIT 10")

ID CaseNumber date Block IUCR
1 13311263 JG503434 2022-07-29 03:39:00 023XX S TROY ST 1582
2 13053066 JG103252 2023-01-03 16:44:00 039XX W WASHINGTON BLVD 2017
3 12131221 JD327000 2020-08-10 09:45:00 015XX N DAMEN AVE 0326
4 11227634 JB147599 2017-08-26 10:00:00 001XX W RANDOLPH ST 0281
5 13203321 JG415333 2023-09-06 17:00:00 002XX N Wells st 1320
6 13204489 JG416325 2023-09-06 11:00:00 0000X E 8TH ST 0810
7 11695116 JC272771 2019-05-21 08:20:00 018XX S CALIFORNIA AVE 0620
8 12419690 JE295655 2021-07-07 10:30:00 132XX S GREENWOOD AVE 1544
9 12729745 JF279458 2022-06-14 14:47:00 035XX N CENTRAL AVE 0340
10 12835559 JF406130 2022-09-21 22:00:00 004XX E 69TH ST 0910

Description LocationDescription Arrest
1 CHILD PORNOGRAPHY RESIDENCE true
2 MANUFACTURE / DELIVER - CRACK SIDEWALK true
3 AGGRAVATED VEHICULAR HIJACKING STREET true
4 NON-AGGRAVATED HOTEL/MOTEL false

33

5 TO VEHICLE PARKING LOT / GARAGE (NON RESIDENTIAL) false
6 OVER $500 PARKING LOT / GARAGE (NON RESIDENTIAL) false
7 UNLAWFUL ENTRY RESIDENCE false
8 SEXUAL EXPLOITATION OF A CHILD RESIDENCE false
9 ATTEMPT STRONG ARM - NO WEAPON BANK true
10 AUTOMOBILE OTHER (SPECIFY) true

Domestic Beat District Ward CommunityArea Latitude Longitude
1 false 1033 010 25 30 NA NA
2 false 1122 011 28 26 NA NA
3 false 1424 014 1 24 41.90842 -87.67741
4 false 122 001 42 32 NA NA
5 false 122 001 42 32 41.88602 -87.63394
6 false 123 001 4 32 41.87183 -87.62615
7 false 1023 010 25 29 41.85655 -87.69560
8 false 533 005 10 54 41.65512 -87.59488
9 false 1633 016 30 15 41.94523 -87.76673
10 false 322 003 6 69 41.76935 -87.61501

Note that the dates are formatted properly and both PrimaryType and FBICode have been
eliminated from the table. If everything looks as expected, then we can delete the crime_old
and the DateFix tables.

dbExecute(con, "DROP TABLE crime_old")

[1] 0

dbExecute(con, "DROP TABLE DateFix")

[1] 0

dbListTables(con)

[1] "crime" "iucr"

After all this work, the size of the chicagocrime.db database file can become quite large. Our
database file is now 3.4 Gb, much larger than the size of the file we downloaded from the City
of Chicago open data site. Even though we have deleted the crime_old and DateFix tables,
SQLite simply marks them as deleted, but does not necessarily give up the space that it had
allocated for their storage. It holds onto that space in case the user needs it. The VACUUM
statement will clean up unused space, but it can take a minute.

34

dbExecute(con, "VACUUM")

[1] 0

After VACUUM, our chicagocrime.db file is now 1.2 Gb… much better.

4 Joining data across tables

Now that data are split across tables, we need to link tables together to get information. Let’s
extract the first 10 crime incidents with their case numbers and FBI codes. Since FBICode is
no longer in the crime table, we need to add the table iucr to the FROM clause and link the
two tables with a JOIN.

timeIUCRjoin <-
system.time(
{

data <- dbGetQuery(con, "
SELECT crime.CaseNumber,

iucr.FBICode
FROM crime

INNER JOIN iucr
ON crime.iucr=iucr.iucr")

})
data |> head()

CaseNumber FBICode
1 JG503434 17
2 JG103252 18
3 JD327000 03
4 JB147599 02
5 JG415333 14
6 JG416325 06

timeIUCRjoin

user system elapsed
12.75 1.92 14.85

35

For each record in crime, SQLite looks up the crime’s IUCR code in the iucr table and links
in the FBI code. SQLite is fast. This query took 14.85 seconds, but this linking does take time,
especially for really large datasets and large lookup tables. For the above query, SQLite scans
through the iucr table until it finds the right IUCR code. This is not very efficient. If you
were to look up the word “query” in the dictionary, you would not start on page 1 and scan
through every word until you arrived at “query”. Instead, you would start about two-thirds of
the way through the dictionary, see if the words are before or after “query,” and revise your
search until you find the word. Rather than search hundreds of pages, you might only need to
look at nine pages.

In the same way, we can create an index for the iucr table to help speed up the search. An
index does not always make queries faster and can require storing a large index in some cases.
Let’s try this example.

dbExecute(con, "
CREATE INDEX iucr_idx on iucr(iucr)")

[1] 0

Let’s rerun the query now and see if it made a difference.

timeIUCRjoinIndex <-
system.time(
{

data <- dbGetQuery(con, "
SELECT crime.CaseNumber,

iucr.FBICode
FROM crime

INNER JOIN iucr
ON crime.iucr=iucr.iucr")

})
timeIUCRjoinIndex

user system elapsed
8.27 1.29 9.73

That query now takes 9.73 seconds. Creating an index is not always worth it. If you have
queries that are taking too long, it is worth experimenting with creating an index to see if it
helps.

You may come across SQL queries that join two tables with a WHERE clause like this.

36

data <- dbGetQuery(con, "
SELECT crime.CaseNumber,

iucr.FBICode
FROM crime, iucr
WHERE crime.iucr=iucr.iucr")

Technically this is a legal SQL join query. However, most SQL programmers prefer using JOIN
rather than using the WHERE clause. The primary reason is readability. The thinking is that
the WHERE clause should really be about filtering which cases to include, while joining tables
is quite a different operation.

There are also several different kinds of joins. What should the query return if a crime has an
IUCR code that does not appear in the iucr table? JOINs more carefully define the desired
behavior. An INNER JOIN returns only the rows where the join keys (the columns we use to
link tables like crime.iucr) exist in both tables. All other rows are dropped. SQL interprets
joins using the WHERE clause implicitly as an INNER JOIN.

Generally, in social science, we do not want to drop a row simply because its IUCR code
does not appear in the lookup table. We would probably rather code its PrimaryType and
FBICode as missing rather than drop the row. A LEFT JOIN forces every record in crime (the
“left” table) to appear in the final result set even if it cannot find an IUCR code in iucr. It
will simply report NA for its FBICode. More precisely, LEFT JOIN is synonymous with a LEFT
OUTER JOIN (the OUTER keyword is optional).

For a helpful, visual description of the different kinds of joins, visit this site.

Let’s determine how many assaults occurred in each ward. Since the crime type is stored in
iucr.PrimaryType, we need to join the tables.

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,

crime.Ward
-- Use LEFT JOIN to link the two tables
FROM crime

LEFT JOIN iucr
ON crime.iucr=iucr.iucr

-- Use WHERE to filter cases we want
WHERE iucr.PrimaryType='ASSAULT'
GROUP BY crime.Ward")

crimecount Ward
1 39807
2 7395 1

37

http://blog.codinghorror.com/a-visual-explanation-of-sql-joins/

3 12065 10
4 7413 11
5 6520 12
6 5472 13
7 6540 14
8 14872 15
9 17957 16
10 21168 17
11 9332 18
12 4580 19
13 14607 2
14 20353 20
15 17680 21
16 6657 22
17 5659 23
18 20247 24
19 8053 25
20 9471 26
21 16997 27
22 23558 28
23 13488 29
24 17378 3
25 6628 30
26 6725 31
27 4245 32
28 4462 33
29 17117 34
30 6461 35
31 5242 36
32 14383 37
33 4641 38
34 4138 39
35 11962 4
36 5003 40
37 3974 41
38 12144 42
39 2859 43
40 4000 44
41 4712 45
42 6840 46
43 3556 47
44 5230 48
45 7106 49

38

46 13812 5
47 4561 50
48 20364 6
49 17963 7
50 18017 8
51 17820 9

Let’s tabulate how many Part 1 crimes occur in each year. We will use PrimaryType to give
useful labels, STRFTIME() to extract the year in which each crime occurred, FBICode to pick
out the Part 1 crimes, and a LEFT JOIN to link the tables.

dbGetQuery(con, "
SELECT iucr.PrimaryType AS type,

STRFTIME('%Y', crime.date) AS year,
COUNT(*) AS crimecount

FROM crime
INNER JOIN iucr
ON crime.iucr=iucr.iucr

WHERE iucr.FBICode IN ('01A','02','03','04A','04B','05','06','07','09')
GROUP BY type, year")

type year crimecount
1 ARSON 2001 1011
2 ARSON 2002 1032
3 ARSON 2003 955
4 ARSON 2004 778
5 ARSON 2005 691
6 ARSON 2006 726
7 ARSON 2007 712
8 ARSON 2008 644
9 ARSON 2009 616
10 ARSON 2010 522
11 ARSON 2011 504
12 ARSON 2012 469
13 ARSON 2013 364
14 ARSON 2014 397
15 ARSON 2015 453
16 ARSON 2016 516
17 ARSON 2017 444
18 ARSON 2018 373
19 ARSON 2019 376
20 ARSON 2020 588

39

21 ARSON 2021 530
22 ARSON 2022 422
23 ARSON 2023 513
24 ARSON 2024 482
25 ARSON 2025 250
26 ASSAULT 2001 7871
27 ASSAULT 2002 7721
28 ASSAULT 2003 7372
29 ASSAULT 2004 7331
30 ASSAULT 2005 6754
31 ASSAULT 2006 6597
32 ASSAULT 2007 6335
33 ASSAULT 2008 6250
34 ASSAULT 2009 6000
35 ASSAULT 2010 5278
36 ASSAULT 2011 5157
37 ASSAULT 2012 4873
38 ASSAULT 2013 4268
39 ASSAULT 2014 4337
40 ASSAULT 2015 4480
41 ASSAULT 2016 5713
42 ASSAULT 2017 5793
43 ASSAULT 2018 6002
44 ASSAULT 2019 5842
45 ASSAULT 2020 6265
46 ASSAULT 2021 7242
47 ASSAULT 2022 7281
48 ASSAULT 2023 7712
49 ASSAULT 2024 7905
50 ASSAULT 2025 4345
51 BATTERY 2001 16388
52 BATTERY 2002 15196
53 BATTERY 2003 12477
54 BATTERY 2004 11529
55 BATTERY 2005 11327
56 BATTERY 2006 11001
57 BATTERY 2007 11153
58 BATTERY 2008 10805
59 BATTERY 2009 10142
60 BATTERY 2010 9432
61 BATTERY 2011 8402
62 BATTERY 2012 8005
63 BATTERY 2013 6634

40

64 BATTERY 2014 6577
65 BATTERY 2015 7018
66 BATTERY 2016 8085
67 BATTERY 2017 7845
68 BATTERY 2018 7734
69 BATTERY 2019 7858
70 BATTERY 2020 8319
71 BATTERY 2021 8346
72 BATTERY 2022 7495
73 BATTERY 2023 8080
74 BATTERY 2024 8182
75 BATTERY 2025 4597
76 BURGLARY 2001 26014
77 BURGLARY 2002 25623
78 BURGLARY 2003 25157
79 BURGLARY 2004 24564
80 BURGLARY 2005 25503
81 BURGLARY 2006 24324
82 BURGLARY 2007 24858
83 BURGLARY 2008 26218
84 BURGLARY 2009 26767
85 BURGLARY 2010 26422
86 BURGLARY 2011 26620
87 BURGLARY 2012 22844
88 BURGLARY 2013 17894
89 BURGLARY 2014 14569
90 BURGLARY 2015 13184
91 BURGLARY 2016 14289
92 BURGLARY 2017 13001
93 BURGLARY 2018 11747
94 BURGLARY 2019 9639
95 BURGLARY 2020 8758
96 BURGLARY 2021 6661
97 BURGLARY 2022 7594
98 BURGLARY 2023 7486
99 BURGLARY 2024 8425
100 BURGLARY 2025 5679
101 CRIMINAL SEXUAL ASSAULT 2001 1814
102 CRIMINAL SEXUAL ASSAULT 2002 1839
103 CRIMINAL SEXUAL ASSAULT 2003 1617
104 CRIMINAL SEXUAL ASSAULT 2004 1583
105 CRIMINAL SEXUAL ASSAULT 2005 1562
106 CRIMINAL SEXUAL ASSAULT 2006 1488

41

107 CRIMINAL SEXUAL ASSAULT 2007 1565
108 CRIMINAL SEXUAL ASSAULT 2008 1566
109 CRIMINAL SEXUAL ASSAULT 2009 1450
110 CRIMINAL SEXUAL ASSAULT 2010 1397
111 CRIMINAL SEXUAL ASSAULT 2011 1516
112 CRIMINAL SEXUAL ASSAULT 2012 1468
113 CRIMINAL SEXUAL ASSAULT 2013 1355
114 CRIMINAL SEXUAL ASSAULT 2014 1398
115 CRIMINAL SEXUAL ASSAULT 2015 1461
116 CRIMINAL SEXUAL ASSAULT 2016 1627
117 CRIMINAL SEXUAL ASSAULT 2017 1697
118 CRIMINAL SEXUAL ASSAULT 2018 1742
119 CRIMINAL SEXUAL ASSAULT 2019 1673
120 CRIMINAL SEXUAL ASSAULT 2020 1255
121 CRIMINAL SEXUAL ASSAULT 2021 1530
122 CRIMINAL SEXUAL ASSAULT 2022 1606
123 CRIMINAL SEXUAL ASSAULT 2023 1668
124 CRIMINAL SEXUAL ASSAULT 2024 1598
125 CRIMINAL SEXUAL ASSAULT 2025 1041
126 HOMICIDE 2001 667
127 HOMICIDE 2002 657
128 HOMICIDE 2003 601
129 HOMICIDE 2004 454
130 HOMICIDE 2005 451
131 HOMICIDE 2006 472
132 HOMICIDE 2007 448
133 HOMICIDE 2008 513
134 HOMICIDE 2009 461
135 HOMICIDE 2010 438
136 HOMICIDE 2011 437
137 HOMICIDE 2012 514
138 HOMICIDE 2013 430
139 HOMICIDE 2014 427
140 HOMICIDE 2015 496
141 HOMICIDE 2016 786
142 HOMICIDE 2017 672
143 HOMICIDE 2018 588
144 HOMICIDE 2019 499
145 HOMICIDE 2020 787
146 HOMICIDE 2021 806
147 HOMICIDE 2022 730
148 HOMICIDE 2023 632
149 HOMICIDE 2024 589

42

150 HOMICIDE 2025 264
151 MOTOR VEHICLE THEFT 2001 27555
152 MOTOR VEHICLE THEFT 2002 25121
153 MOTOR VEHICLE THEFT 2003 22749
154 MOTOR VEHICLE THEFT 2004 22805
155 MOTOR VEHICLE THEFT 2005 22497
156 MOTOR VEHICLE THEFT 2006 21818
157 MOTOR VEHICLE THEFT 2007 18573
158 MOTOR VEHICLE THEFT 2008 18881
159 MOTOR VEHICLE THEFT 2009 15482
160 MOTOR VEHICLE THEFT 2010 19029
161 MOTOR VEHICLE THEFT 2011 19388
162 MOTOR VEHICLE THEFT 2012 16490
163 MOTOR VEHICLE THEFT 2013 12582
164 MOTOR VEHICLE THEFT 2014 9911
165 MOTOR VEHICLE THEFT 2015 10068
166 MOTOR VEHICLE THEFT 2016 11285
167 MOTOR VEHICLE THEFT 2017 11380
168 MOTOR VEHICLE THEFT 2018 9985
169 MOTOR VEHICLE THEFT 2019 8978
170 MOTOR VEHICLE THEFT 2020 9962
171 MOTOR VEHICLE THEFT 2021 10605
172 MOTOR VEHICLE THEFT 2022 21472
173 MOTOR VEHICLE THEFT 2023 29253
174 MOTOR VEHICLE THEFT 2024 21709
175 MOTOR VEHICLE THEFT 2025 10731
176 OFFENSE INVOLVING CHILDREN 2001 380
177 OFFENSE INVOLVING CHILDREN 2002 383
178 OFFENSE INVOLVING CHILDREN 2003 386
179 OFFENSE INVOLVING CHILDREN 2004 366
180 OFFENSE INVOLVING CHILDREN 2005 354
181 OFFENSE INVOLVING CHILDREN 2006 327
182 OFFENSE INVOLVING CHILDREN 2007 318
183 OFFENSE INVOLVING CHILDREN 2008 239
184 OFFENSE INVOLVING CHILDREN 2009 248
185 OFFENSE INVOLVING CHILDREN 2010 244
186 OFFENSE INVOLVING CHILDREN 2011 221
187 OFFENSE INVOLVING CHILDREN 2012 233
188 OFFENSE INVOLVING CHILDREN 2013 218
189 OFFENSE INVOLVING CHILDREN 2014 239
190 OFFENSE INVOLVING CHILDREN 2015 253
191 OFFENSE INVOLVING CHILDREN 2016 244
192 OFFENSE INVOLVING CHILDREN 2017 297

43

193 OFFENSE INVOLVING CHILDREN 2018 312
194 OFFENSE INVOLVING CHILDREN 2019 258
195 OFFENSE INVOLVING CHILDREN 2020 251
196 OFFENSE INVOLVING CHILDREN 2021 226
197 OFFENSE INVOLVING CHILDREN 2022 235
198 OFFENSE INVOLVING CHILDREN 2023 204
199 OFFENSE INVOLVING CHILDREN 2024 181
200 OFFENSE INVOLVING CHILDREN 2025 97
201 RITUALISM 2001 8
202 RITUALISM 2002 1
203 RITUALISM 2003 1
204 RITUALISM 2004 1
205 RITUALISM 2005 2
206 RITUALISM 2006 6
207 RITUALISM 2007 1
208 RITUALISM 2020 1
209 ROBBERY 2001 18441
210 ROBBERY 2002 18523
211 ROBBERY 2003 17332
212 ROBBERY 2004 15978
213 ROBBERY 2005 16047
214 ROBBERY 2006 15969
215 ROBBERY 2007 15450
216 ROBBERY 2008 16703
217 ROBBERY 2009 15981
218 ROBBERY 2010 14275
219 ROBBERY 2011 13983
220 ROBBERY 2012 13484
221 ROBBERY 2013 11819
222 ROBBERY 2014 9800
223 ROBBERY 2015 9638
224 ROBBERY 2016 11960
225 ROBBERY 2017 11881
226 ROBBERY 2018 9681
227 ROBBERY 2019 7995
228 ROBBERY 2020 7855
229 ROBBERY 2021 7920
230 ROBBERY 2022 8964
231 ROBBERY 2023 11052
232 ROBBERY 2024 9116
233 ROBBERY 2025 3970
234 THEFT 2001 99290
235 THEFT 2002 98334

44

236 THEFT 2003 98876
237 THEFT 2004 95464
238 THEFT 2005 85684
239 THEFT 2006 86241
240 THEFT 2007 85156
241 THEFT 2008 88437
242 THEFT 2009 80977
243 THEFT 2010 76758
244 THEFT 2011 75153
245 THEFT 2012 75464
246 THEFT 2013 71536
247 THEFT 2014 61569
248 THEFT 2015 57353
249 THEFT 2016 61625
250 THEFT 2017 64386
251 THEFT 2018 65290
252 THEFT 2019 62498
253 THEFT 2020 41350
254 THEFT 2021 40822
255 THEFT 2022 54899
256 THEFT 2023 57490
257 THEFT 2024 60495
258 THEFT 2025 35635

4.1 Exercises

5. Count the number of arrests for “MOTOR VEHICLE THEFT”

6. Which District has the most thefts?. You can first try doing this with a mix of SQL and
R. Once you do that, try finding another solution that only uses SQL (and two CTEs in
a WITH clause separated by a comma).

5 Subqueries

Sometimes we would like to use the results of one query as part of another query. You can put
SELECT statements inside FROM statements to accomplish this. We will use this method to see
if addresses are always geocoded to the same coordinates. Here are the unique combinations
of addresses and coordinates. We will just show the first 20.

45

dbGetQuery(con, "
SELECT DISTINCT Block, Longitude, Latitude
FROM crime
LIMIT 20")

Block Longitude Latitude
1 023XX S TROY ST NA NA
2 039XX W WASHINGTON BLVD NA NA
3 015XX N DAMEN AVE -87.67741 41.90842
4 001XX W RANDOLPH ST NA NA
5 002XX N Wells st -87.63394 41.88602
6 0000X E 8TH ST -87.62615 41.87183
7 018XX S CALIFORNIA AVE -87.69560 41.85655
8 132XX S GREENWOOD AVE -87.59488 41.65512
9 035XX N CENTRAL AVE -87.76673 41.94523
10 004XX E 69TH ST -87.61501 41.76935
11 070XX S CLYDE AVE -87.57389 41.76742
12 073XX S EMERALD AVE -87.64308 41.76094
13 055XX S ALBANY AVE -87.70109 41.79261
14 040XX W 59TH ST -87.72327 41.78593
15 002XX W 47TH ST -87.63191 41.80913
16 044XX S KEDZIE AVE -87.70416 41.81281
17 004XX E 88TH ST -87.61318 41.73470
18 020XX N KIMBALL AVE -87.71191 41.91849
19 101XX S LAFAYETTE AVE -87.62480 41.71004
20 105XX S PERRY AVE -87.62578 41.70301

The crime table has at least one row with each of these combinations of Block, Longitude,
and Latitude.

We would like to know if Block shows up multiple times in these results or just once. We use
the results of this query in the FROM clause and count up the frequency of each Block.

dbGetQuery(con, "
SELECT COUNT(*) AS Blockcount,

Block
FROM

(SELECT DISTINCT block,
Longitude,
Latitude

FROM crime)
GROUP BY block

46

ORDER BY blockcount DESC
LIMIT 20")

Blockcount block
1 117 034XX N CLARK ST
2 108 048XX N BROADWAY
3 106 016XX W HOWARD ST
4 105 002XX N PULASKI RD
5 104 013XX W RANDOLPH ST
6 103 044XX N BROADWAY
7 100 028XX N CLARK ST
8 100 024XX N CLARK ST
9 97 010XX W ARGYLE ST
10 96 045XX N BROADWAY
11 95 045XX N SHERIDAN RD
12 94 0000X W DIVISION ST
13 93 031XX W MADISON ST
14 93 031XX S GREEN ST
15 93 015XX N KINGSBURY ST
16 93 001XX W DIVISION ST
17 92 027XX W CERMAK RD
18 90 054XX W MADISON ST
19 87 049XX W MADISON ST
20 87 008XX W RANDOLPH ST

Clearly, the coordinates are not unique to each address. The addresses are “rounded” to
provide some privacy, but the coordinates appear to be scattered. Why? The Chicago data
portal notes “This location is shifted from the actual location for partial redaction but falls
on the same block.”

Rather than place subqueries in the FROM clause, the more modern preference is to use Common
Table Expressions like we did earlier. Rewritten as a CTE:

dbGetQuery(con, "
WITH

XYBlockUnique AS
(SELECT DISTINCT block,

Longitude,
Latitude

FROM crime)
SELECT COUNT(*) AS blockcount,

block

47

FROM XYBlockUnique
GROUP BY block
ORDER BY blockcount DESC
LIMIT 20")

blockcount block
1 117 034XX N CLARK ST
2 108 048XX N BROADWAY
3 106 016XX W HOWARD ST
4 105 002XX N PULASKI RD
5 104 013XX W RANDOLPH ST
6 103 044XX N BROADWAY
7 100 028XX N CLARK ST
8 100 024XX N CLARK ST
9 97 010XX W ARGYLE ST
10 96 045XX N BROADWAY
11 95 045XX N SHERIDAN RD
12 94 0000X W DIVISION ST
13 93 031XX W MADISON ST
14 93 031XX S GREEN ST
15 93 015XX N KINGSBURY ST
16 93 001XX W DIVISION ST
17 92 027XX W CERMAK RD
18 90 054XX W MADISON ST
19 87 049XX W MADISON ST
20 87 008XX W RANDOLPH ST

If you are going to use the CTE or subquery in multiple queries, then it is better to CREATE
TEMPORARY TABLE, which we will encounter later.

After completing the final exercise, remember to run dbDisconnect(con) to disconnect from
the database.

5.1 Exercise

As a final exercise that does not involve a subquery:

7. Count the number of assaults, since 2016, that occurred on Fridays and Saturdays, after
6pm, reporting the date, day of week, hour of the day, and year

48

6 Solutions

1. Print out all of the rows in iucr

dbGetQuery(con, "
SELECT * from iucr
LIMIT 20")

IUCR PrimaryType FBICode
1 0110 HOMICIDE 01A
2 0130 HOMICIDE 01A
3 0141 HOMICIDE 01B
4 0142 HOMICIDE 01B
5 0261 CRIMINAL SEXUAL ASSAULT 02
6 0262 CRIMINAL SEXUAL ASSAULT 02
7 0263 CRIMINAL SEXUAL ASSAULT 02
8 0264 CRIMINAL SEXUAL ASSAULT 02
9 0265 CRIMINAL SEXUAL ASSAULT 02
10 0266 CRIMINAL SEXUAL ASSAULT 02
11 0271 CRIMINAL SEXUAL ASSAULT 02
12 0272 CRIMINAL SEXUAL ASSAULT 02
13 0273 CRIMINAL SEXUAL ASSAULT 02
14 0274 CRIMINAL SEXUAL ASSAULT 02
15 0275 CRIMINAL SEXUAL ASSAULT 02
16 0281 CRIMINAL SEXUAL ASSAULT 02
17 0291 CRIMINAL SEXUAL ASSAULT 02
18 0312 ROBBERY 03
19 0313 ROBBERY 03
20 031A ROBBERY 03

2. Print out all the IUCR codes for “KIDNAPPING”

dbGetQuery(con, "
SELECT iucr
FROM iucr
WHERE PrimaryType='KIDNAPPING'")

IUCR
1 1792
2 4210
3 4220

49

4 4230
5 4240
6 4255

3. How many IUCR codes are there for “ASSAULT”?

dbGetQuery(con, "
SELECT *
FROM iucr
WHERE PrimaryType='ASSAULT'")

IUCR PrimaryType FBICode
1 051A ASSAULT 04A
2 051B ASSAULT 04A
3 0520 ASSAULT 04A
4 0530 ASSAULT 04A
5 0545 ASSAULT 08A
6 0550 ASSAULT 04A
7 0551 ASSAULT 04A
8 0552 ASSAULT 04A
9 0553 ASSAULT 04A
10 0554 ASSAULT 08A
11 0555 ASSAULT 04A
12 0556 ASSAULT 04A
13 0557 ASSAULT 04A
14 0558 ASSAULT 04A
15 0560 ASSAULT 08A

4. Try doing the prior exercise again using COUNT(*) if you did not use it the first time

dbGetQuery(con, "
SELECT COUNT(*)
FROM iucr
WHERE PrimaryType='ASSAULT'")

COUNT(*)
1 15

5. Count the number of arrests for “MOTOR VEHICLE THEFT”

50

dbGetQuery(con, "
SELECT COUNT(*) as MVTArrestCount
FROM crime

INNER JOIN iucr ON
crime.iucr=iucr.iucr

WHERE crime.Arrest='true' AND
iucr.PrimaryType='MOTOR VEHICLE THEFT'")

MVTArrestCount
1 32533

6. Which District has the most thefts?

a <- dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,

District
FROM crime

INNER JOIN iucr ON
crime.iucr=iucr.iucr

WHERE iucr.PrimaryType='THEFT'
GROUP BY District")

a |>
filter(crimecount==max(crimecount))

crimecount District
1 159430 018

or
a |>

slice_max(crimecount, with_ties=TRUE)

crimecount District
1 159430 018

or with a CTE
dbGetQuery(con, "
WITH

-- first CTE counts thefts by district
DistrictCountCTE AS

51

(SELECT COUNT(*) AS crimecount,
District

FROM crime
INNER JOIN iucr ON

crime.iucr=iucr.iucr
WHERE iucr.PrimaryType='THEFT'
GROUP BY District),

-- second CTE finds the max theft count
MaxCountCTE AS

(SELECT MAX(crimecount) AS MaxCrimeCount
FROM DistrictCountCTE)

-- main query selects the district(s) matching the max
SELECT District, crimecount
FROM DistrictCountCTE

INNER JOIN MaxCountCTE
ON DistrictCountCTE.crimecount = MaxCountCTE.MaxCrimeCount

")

District crimecount
1 018 159430

7. Count the number of assaults, since 2016, that occurred on Fridays and Saturdays, after
6pm, reporting the date, day of week, hour of the day, and year

count 1) assaults
2) since 2016 on
3) Fridays and Saturdays
4) after 6pm
report 5) count,
6) date,
7) day of week, and
8) hour of the day
9) year
dbGetQuery(con, "

SELECT COUNT(*),
DATE(crime.date) AS crimdate,
CAST(STRFTIME('%w',crime.date) AS INTEGER) AS weekday,
CAST(STRFTIME('%H',crime.date) AS INTEGER) AS hour,
CAST(STRFTIME('%Y',crime.date) AS INTEGER) AS year

FROM crime
INNER JOIN iucr ON

crime.iucr=iucr.iucr

52

WHERE iucr.PrimaryType='ASSAULT' AND
year>=2016 AND
weekday>=5 AND
hour>=18

GROUP BY crimdate, weekday, hour, year
LIMIT 20")

COUNT(*) crimdate weekday hour year
1 2 2016-01-01 5 18 2016
2 3 2016-01-01 5 19 2016
3 1 2016-01-01 5 20 2016
4 3 2016-01-01 5 21 2016
5 1 2016-01-01 5 22 2016
6 3 2016-01-01 5 23 2016
7 2 2016-01-02 6 18 2016
8 2 2016-01-02 6 19 2016
9 2 2016-01-02 6 20 2016
10 1 2016-01-02 6 21 2016
11 2 2016-01-02 6 22 2016
12 1 2016-01-02 6 23 2016
13 6 2016-01-08 5 18 2016
14 2 2016-01-08 5 19 2016
15 1 2016-01-08 5 21 2016
16 4 2016-01-08 5 23 2016
17 2 2016-01-09 6 18 2016
18 2 2016-01-09 6 19 2016
19 4 2016-01-09 6 20 2016
20 2 2016-01-09 6 21 2016

dbDisconnect(con)

53

	Creating an IUCR lookup table
	Exercises

	SQL dates
	Creating the final table
	Joining data across tables
	Exercises

	Subqueries
	Exercise

	Solutions

