Introduction to SQL, Part 2

Greg Ridgeway Ruth Moyer
2025-11-30

Table of contents

1 Creating an IUCR lookup table 1

1.1 Exercises . . . . . . . . . e e e e 27
2 SQL dates 27
3 Creating the final table 31
4 Joining data across tables 35

4.1 EXercises . . . . . . . e e e e e e 45
5 Subqueries 45

5.1 ExXercise . . . . . . . e e e e e e e 48
6 Solutions 49
[1] TRUE

1 Creating an IUCR lookup table

The crime table in our Chicago crime database is not ideal. It is overly complicated to extract
the year from a date. There is also a lot of redundant information in the table.

Let’s take a look at a few example rows.

Block IUCR PrimaryType FBICode Longitude  Latitude
040XX W 26TH ST 0560 ASSAULT 08A -87.67741 41.90842




Block IUCR PrimaryType FBICode Longitude Latitude

089XX S SOUTH 0498 BATTERY 04B -87.63394 41.88602

CHICAGO AVE

052XX S HARPER AVE 2820 OTHER 26 -87.62615 41.87183
OFFENSE

033XX N TROY ST 2825 OTHER 26 -87.69560 41.85655
OFFENSE

015XX W 107TH ST 1310 CRIMINAL 14 -87.59488 41.65512
DAMAGE

0000X N LARAMIE AVE 2018 NARCOTICS 18 -87.76673 41.94523

0000X N KEELER AVE 0554 ASSAULT 08A -87.61501 41.76935

026XX N ELSTON AVE 0560 ASSAULT 08A -87.57389 41.76742

076XX S ABERDEEN ST 0486 BATTERY 08B -87.64308 41.76094

3XX N SHEFFIELD AVE 1811 NARCOTICS 18 -87.70109 41.79261

Note that whenever IUCR is 0560, then PrimaryType is ASSAULT and FBICode is 08A. There
is no reason to store the IUCR code, the primary crime type, and the FBI code all in the same
file. We should keep a separate table that links the IUCR codes, the primary crime types,
and the FBI codes. Note that it is essential to store the IUCR code in the crime table. Both
IUCR codes 2018 and 1811 both link to NARCOTICS and FBI code 18. If we deleted IUCR
from the crime table and kept only the primary crime type, then we would lose some detailed
information. Here is Chicago PD’s listing of FBI codes.

Aside from reducing database size, eliminating redundant information also provides “update
consistency.” In the table’s current form, we could erroneously add a row that had IUCR 0560,
PrimaryType as BATTERY, and FBICode 14.

Block IUCR PrimaryType FBICode Longitude Latitude
040XX W 26TH ST 0560 ASSAULT 08A -87.67741 41.90842
040XX W 26TH ST 0560 BATTERY 14 -87.67741 41.90842

The database would not complain even though this is an incorrect combination. IUCR, code
0560 must link with ASSAULT and 08A. An IUCR lookup table avoids this possibility. The
lookup table has each IUCR, code showing up only once and always linking to the correct
PrimaryType and FBICode.

IUCR  PrimaryType FBICode
0486 BATTERY 08B
0498 BATTERY 04B
0554  ASSAULT 08A


https://www.chicagopolice.org/statistics-data/data-requests/

IUCR  PrimaryType FBICode

0560  ASSAULT 08A
1310 CRIMINAL DAMAGE 14
1811  NARCOTICS 18
2018  NARCOTICS 18

2820 OTHER OFFENSE 26
2825 ~ OTHER OFFENSE 26

Then we can remove PrimaryType and FBICode from the crime table and look up the associated
PrimaryType and FBICode from the IUCR lookup table whenever we need that information.

Let’s start by reconnecting to the Chicago crime database.

library(dplyr)
library (RSQLite)
con <- dbConnect(SQLite(), "chicagocrime.db")

The SQL keyword DISTINCT will filter out any duplicated rows in the result set so that every
row is a unique combination of values.

a <- dbGetQuery(con, "

SELECT DISTINCT IUCR, PrimaryType, FBIcode
FROM crime")

head(a)

IUCR PrimaryType FBICode
1 1582 OFFENSE INVOLVING CHILDREN 17
2 2017 NARCOTICS 18
3 0326 ROBBERY 03
4 0281 CRIM SEXUAL ASSAULT 02
5 1320 CRIMINAL DAMAGE 14
6 0810 THEFT 06

This creates a lookup table showing how IUCR links to the primary crime types and FBI
codes. We should check that each IUCR code uniquely links to a single primary type and a
single FBI code.

a |> count(IUCR) |> filter(n > 1)



O© 00 N O O WN -

SO DWW WWWWWWWWNNNNMNMNMNMNNMNMNNRERRPRPRPRPPR PR PR R R R
N, O O©W 0O NO”T O P WNEOOWONOLOMGP WNEFE O OUOWONO O P WwNDERe O

IUCR
0261
0262
0263
0264
0265
0266
0271
0272
0273
0274
0275
0281
0291
1030
1035
1261
1537
1540
1541
1576
1581
1710
1715
1725
1750
1751
1752
1755
1780
1790
1792
2091
2092
2093
2820
2850
2851
2890
2895
3300
3400
3960

NN DNDNNDNNDNNDNDNNDNNDNDNNNNDNNDNNDNNDNDNNNDNDNNNNODNDNNNDNNDMNDNNODNDNDNNDNDNDNDNDNDDNDDSB



43 3961 2
44 3966 2
45 5114 2

Unfortunately, it looks like several IUCR codes have multiple values for PrimaryType and/or
FBICode. Let’s start by examining codes 2091, 2092, and 2093.

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,
IUCR,
PrimaryType,
FBICode,
SUBSTR(Date, 7, 4) AS year
FROM crime
WHERE IUCR IN ('2091', '2092', '2093')
GROUP BY IUCR, PrimaryType, year, FBICode
ORDER BY IUCR, PrimaryType, year, FBICode")

crimecount IUCR PrimaryType FBICode year

1 389 2091  NARCOTICS 26 2001
2 267 2091  NARCOTICS 26 2002
3 238 2091  NARCOTICS 26 2003
4 288 2091  NARCOTICS 26 2004
5 253 2091  NARCOTICS 26 2005
6 232 2091  NARCOTICS 26 2006
7 221 2091  NARCOTICS 26 2007
8 225 2091  NARCOTICS 26 2008
9 246 2091  NARCOTICS 26 2009
10 208 2091  NARCOTICS 26 2010
11 178 2091  NARCOTICS 26 2011
12 1 2091  NARCOTICS 18 2012
13 205 2091  NARCOTICS 26 2012
14 2 2091  NARCOTICS 18 2013
15 195 2091  NARCOTICS 26 2013
16 27 2091  NARCOTICS 18 2014
17 166 2091  NARCOTICS 26 2014
18 136 2091  NARCOTICS 18 2015
19 28 2091  NARCOTICS 26 2015
20 123 2091  NARCOTICS 18 2016
21 113 2091  NARCOTICS 18 2017
22 1056 2091  NARCOTICS 18 2018
23 106 2091  NARCOTICS 18 2019



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

83
61
48
29
15

1675
2373
2775
3094
3130
3049
2726
1523
1435
1056
767
672
679
542
126
237
212
373
595
678
271
71
144
125
45
71
972
866
968
864
839
909
1033

1208

1099

2091
2091
2091
2091
2091
2091
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2092
2093
2093
2093
2093
2093
2093
2093
2093
2093
2093
2093

NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS
NARCOTICS

18
18
18
18
18
18
26
26
26
26
26
26
26
26
26
26
26
26
26
26
18
26
18
18
18
18
18
18
18
18
18
18
26
26
26
26
26
26
26
18
26
18
26

2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2008
2009
2009



67 2 2093  NARCOTICS 18 2010

68 1017 2093  NARCOTICS 26 2010
69 2 2093  NARCOTICS 18 2011
70 934 2093  NARCOTICS 26 2011
71 16 2093  NARCOTICS 18 2012
72 935 2093  NARCOTICS 26 2012
73 16 2093  NARCOTICS 18 2013
74 760 2093  NARCOTICS 26 2013
75 15 2093  NARCOTICS 18 2014
76 676 2093  NARCOTICS 26 2014
77 323 2093  NARCOTICS 18 2015
78 332 2093  NARCOTICS 26 2015
79 846 2093  NARCOTICS 18 2016
80 1000 2093  NARCOTICS 18 2017
81 1067 2093  NARCOTICS 18 2018
82 1062 2093  NARCOTICS 18 2019
83 760 2093  NARCOTICS 18 2020
84 776 2093  NARCOTICS 18 2021
85 634 2093  NARCOTICS 18 2022
86 641 2093  NARCOTICS 18 2023
87 693 2093  NARCOTICS 18 2024
88 477 2093  NARCOTICS 18 2025

These are all narcotics cases, but we see that in some years, these charges are marked as FBI
code 18 (crimes of production, sale, use of drugs) and sometimes 26 (a miscellaneous category).
FBI code 26 appears more commonly, but the FBI code 26 appears to phase out after 2015.
2091 is a narcotics code for “forfeit property,” 2092 is for “soliciting narcotics on a public way,”
and 2093 is for “found suspect narcotics.” It appears that the CPD is now using the more
specific FBI codes rather than the generic miscellaneous. The most practical decision is to use
the most modern coding and use code 18 for these crimes.

A similar story applies to IUCR crimes 1710, 1715, 1725, 1755, and 1780. These are all offenses
involving children that prior to 2016 had been given the FBI miscellaneous code 26, but more
recently have been coded as 20 (offenses against family). Again, it seems reasonable to use
the most modern coding choice and use FBI code 20.

dbGetQuery(con, "
SELECT COUNT (*) AS crimecount,
IUCR,
PrimaryType,
FBICode,
SUBSTR(Date, 7, 4) AS year
FROM crime



WHERE IUCR IN ('1710','1715','1725','1755"','1780")
GROUP BY IUCR, PrimaryType, year, FBICode
ORDER BY IUCR, PrimaryType, year, FBICode")

© 0 N O O W N+~

W WWWWWWWNDNDNNNDNDNNNDNNMDMNNNMNNNMNNNRERERPRPRPRRERERRPRRPR R PP
~NOoO O WO, OO0 NP WNE O OO NO O WN - O

crimecount IUCR PrimaryType FBICode year
503 1710 OFFENSE INVOLVING CHILDREN 26 2001
506 1710 OFFENSE INVOLVING CHILDREN 26 2002
479 1710 OFFENSE INVOLVING CHILDREN 26 2003
427 1710 OFFENSE INVOLVING CHILDREN 26 2004
413 1710 OFFENSE INVOLVING CHILDREN 26 2005
392 1710 OFFENSE INVOLVING CHILDREN 26 2006
403 1710 OFFENSE INVOLVING CHILDREN 26 2007
337 1710 OFFENSE INVOLVING CHILDREN 26 2008
374 1710 OFFENSE INVOLVING CHILDREN 26 2009
362 1710 OFFENSE INVOLVING CHILDREN 26 2010
1 1710 OFFENSE INVOLVING CHILDREN 20 2011
331 1710 OFFENSE INVOLVING CHILDREN 26 2011
1 1710 OFFENSE INVOLVING CHILDREN 20 2012
333 1710 OFFENSE INVOLVING CHILDREN 26 2012
6 1710 OFFENSE INVOLVING CHILDREN 20 2013
270 1710 OFFENSE INVOLVING CHILDREN 26 2013
2 1710 OFFENSE INVOLVING CHILDREN 20 2014
315 1710 OFFENSE INVOLVING CHILDREN 26 2014
22 1710 OFFENSE INVOLVING CHILDREN 20 2015
265 1710 OFFENSE INVOLVING CHILDREN 26 2015
276 1710 OFFENSE INVOLVING CHILDREN 20 2016
8 1710 OFFENSE INVOLVING CHILDREN 26 2016
328 1710 OFFENSE INVOLVING CHILDREN 20 2017
334 1710 OFFENSE INVOLVING CHILDREN 20 2018
384 1710 OFFENSE INVOLVING CHILDREN 20 2019
289 1710 OFFENSE INVOLVING CHILDREN 20 2020
261 1710 OFFENSE INVOLVING CHILDREN 20 2021
289 1710 OFFENSE INVOLVING CHILDREN 20 2022
262 1710 OFFENSE INVOLVING CHILDREN 20 2023
349 1710 OFFENSE INVOLVING CHILDREN 20 2024
219 1710 OFFENSE INVOLVING CHILDREN 20 2025
4 1715 OFFENSE INVOLVING CHILDREN 26 2003

1 1715 OFFENSE INVOLVING CHILDREN 26 2006

1 1715 OFFENSE INVOLVING CHILDREN 26 2007

3 1715 OFFENSE INVOLVING CHILDREN 26 2008

2 1715 OFFENSE INVOLVING CHILDREN 26 2009

3 1715 OFFENSE INVOLVING CHILDREN 26 2010



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

WD O PO, PNNEFPLPNMNNDNONRFRERER,REFEDMND

= = =
E NDNDNDNDNO®

1715
1715
1715
1715
1715
1715
1715
1715
1715
1715
1715
1725
1725
1725
1725
1725
1725
1725
1725
1725
1725
1725
1725
1725
1725
1725

9 1725

[
[

W o, NO

O N O N W
© O b O U1 N

1725
1725
1725
1725
1725
1725
1725
1725
1725
1725
1755
1755
1755
1755
1755
1755

OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE

INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING

CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN

26
26
26
26
20
20
20
20
20
20
20
26
26
26
26
26
26
26
26
26
26
26
26
20
26
20
26
20
20
20
20
20
20
20
20
20
20
26
26
26
26
26
26

2011
2012
2013
2015
2016
2017
2018
2019
2020
2021
2024
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2014
2015
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2002
2003
2004
2005
2006
2007



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

49
34
52
52
39
49
43

32
32
46
29
38
36
36
30
59
53
41
11
166
352
559
465
504
613
624
658

616

649

628

628

608

17

516

540

38
415

1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1755
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780
1780

OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE

INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING

CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN

10

26
26
26
26
26
26
26
20
26
20
20
20
20
20
20
20
20
20
20
26
26
26
26
26
26
26
26
26
20
26
20
26
20
26
20
26
20
26
20
26
20
26
20

2008
2009
2010
2011
2012
2013
2014
2015
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2010
2011
2011
2012
2012
2013
2013
2014
2014
2015
2015
2016
2016
2017



124 398 1780 OFFENSE INVOLVING CHILDREN 20 2018

125 341 1780 OFFENSE INVOLVING CHILDREN 20 2019
126 419 1780 OFFENSE INVOLVING CHILDREN 20 2020
127 393 1780 OFFENSE INVOLVING CHILDREN 20 2021
128 330 1780 OFFENSE INVOLVING CHILDREN 20 2022
129 260 1780 OFFENSE INVOLVING CHILDREN 20 2023
130 261 1780 OFFENSE INVOLVING CHILDREN 20 2024
131 208 1780 OFFENSE INVOLVING CHILDREN 20 2025

IUCR codes 1030 and 1035, which involve possession of incendiary devices, are now being
coded as arson (09) rather than miscellaneous (26).

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,
IUCR,
PrimaryType,
FBICode,
SUBSTR(Date,7,4) AS year
FROM crime
WHERE IUCR IN ('1030','1035")
GROUP BY IUCR, PrimaryType, year, FBICode
ORDER BY IUCR, PrimaryType, year, FBICode")

crimecount IUCR PrimaryType FBICode year

1 6 1030 ARSON 26 2001
2 2 1030 ARSON 26 2002
3 5 1030 ARSON 26 2003
4 4 1030 ARSON 26 2004
5 3 1030 ARSON 26 2005
6 7 1030 ARSON 26 2006
7 5 1030 ARSON 26 2007
8 7 1030 ARSON 26 2008
9 5 1030 ARSON 26 2009
10 9 1030 ARSON 26 2010
11 5 1030 ARSON 26 2011
12 2 1030 ARSON 26 2012
13 6 1030 ARSON 26 2013
14 2 1030 ARSON 26 2014
15 5 1030 ARSON 26 2015
16 2 1030 ARSON 09 2016
17 1 1030 ARSON 26 2016
18 3 1030 ARSON 09 2017

11



19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

1030
1030
1030
1030
1030
1030
1030
1030
1035
1035
1035
1035
1035
1035
1035
1035
1035
1035
1035

R R R R DO 00 W NSNS N DO W R

ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON
ARSON

09
09
09
09
09
09
09
09
26
26
26
26
26
26
26
26
26
26
09

2018
2019
2020
2021
2022
2023
2024
2025
2002
2004
2005
2006
2007
2008
2009
2010
2011
2012
2016

This all points to a modernization of FBI codes where Chicago adopted more specific FBI
codes rather than placing them in the miscellaneous category.

Lastly, there are some inconsistent spellings of primary crime types. The spelling of the
primary type for 5114 has changed to remove the extra spaces. Even though they differ only
by a few spaces, SQL will conclude that these are different values.

dbGetQuery(con,

B wWw N -

"SELECT COUNT(*) AS crimecount,

IUCR,

PrimaryType,
FBICode,

SUBSTR(Date, 7, 4) AS year

FROM crime

WHERE IUCR='5114"

GROUP BY IUCR, PrimaryType, FBICode, year")

crimecount IUCR

3 5114 NON - CRIMINAL
10 5114 NON - CRIMINAL
20 5114 NON - CRIMINAL

5 5114 NON - CRIMINAL

PrimaryType FBICode year

26 2013
26 2014
26 2015
26 2016

12



5 1 5114  NON-CRIMINAL 26 2015
6 14 5114  NON-CRIMINAL 26 2016
7 7 5114  NON-CRIMINAL 26 2017
8 15 5114  NON-CRIMINAL 26 2018
9 1 5114  NON-CRIMINAL 26 2019

Criminal sexual assault also has an inconsistent spelling.

dbGetQuery(con, "
SELECT COUNT(*) AS crimcount,
PrimaryType,
year
FROM crime
WHERE iucr IN ('0261','0263','0264','0265','0266','0271"','0281"','0291")
GROUP BY PrimaryType, year
ORDER BY year")

crimcount PrimaryType Year
1 1712 CRIM SEXUAL ASSAULT 2001
2 42 CRIMINAL SEXUAL ASSAULT 2001
3 1740 CRIM SEXUAL ASSAULT 2002
4 38 CRIMINAL SEXUAL ASSAULT 2002
5 1532 CRIM SEXUAL ASSAULT 2003
6 53 CRIMINAL SEXUAL ASSAULT 2003
7 1495 CRIM SEXUAL ASSAULT 2004
8 56 CRIMINAL SEXUAL ASSAULT 2004
9 1485 CRIM SEXUAL ASSAULT 2005
10 52 CRIMINAL SEXUAL ASSAULT 2005
11 1402 CRIM SEXUAL ASSAULT 2006
12 59 CRIMINAL SEXUAL ASSAULT 2006
13 1469 CRIM SEXUAL ASSAULT 2007
14 66 CRIMINAL SEXUAL ASSAULT 2007
15 1477 CRIM SEXUAL ASSAULT 2008
16 65 CRIMINAL SEXUAL ASSAULT 2008
17 1366 CRIM SEXUAL ASSAULT 2009
18 59 CRIMINAL SEXUAL ASSAULT 2009
19 1291 CRIM SEXUAL ASSAULT 2010
20 78 CRIMINAL SEXUAL ASSAULT 2010
21 1414 CRIM SEXUAL ASSAULT 2011
22 74 CRIMINAL SEXUAL ASSAULT 2011
23 1360 CRIM SEXUAL ASSAULT 2012
24 89 CRIMINAL SEXUAL ASSAULT 2012

13



25 1224 CRIM SEXUAL ASSAULT 2013

26 103 CRIMINAL SEXUAL ASSAULT 2013
27 1275 CRIM SEXUAL ASSAULT 2014
28 104 CRIMINAL SEXUAL ASSAULT 2014
29 1311 CRIM SEXUAL ASSAULT 2015
30 131 CRIMINAL SEXUAL ASSAULT 2015
31 1453 CRIM SEXUAL ASSAULT 2016
32 156 CRIMINAL SEXUAL ASSAULT 2016
33 1453 CRIM SEXUAL ASSAULT 2017
34 229 CRIMINAL SEXUAL ASSAULT 2017
35 1364 CRIM SEXUAL ASSAULT 2018
36 364 CRIMINAL SEXUAL ASSAULT 2018
37 884 CRIM SEXUAL ASSAULT 2019
38 771 CRIMINAL SEXUAL ASSAULT 2019
39 75 CRIM SEXUAL ASSAULT 2020
40 1169 CRIMINAL SEXUAL ASSAULT 2020
41 1516 CRIMINAL SEXUAL ASSAULT 2021
42 1591 CRIMINAL SEXUAL ASSAULT 2022
43 1646 CRIMINAL SEXUAL ASSAULT 2023
44 1576 CRIMINAL SEXUAL ASSAULT 2024
45 1034 CRIMINAL SEXUAL ASSAULT 2025

The conclusion of all of this is that if there is any inconsistency in the connection between
IUCR, PrimaryType, and FBICode, then we should choose the most recent combination and
delete the rest as options. The following SQL query finds for each ITUCR the most recent year
that it occurred in the dataset. Not all codes appear in the most recent year. Several IUCR
codes last occurred before 2015.

dbGetQuery(con, "
SELECT IUCR, MAX(year) AS maxyear
FROM crime
GROUP BY IUCR")

IUCR maxyear

1 0110 2025
2 0130 2022
3 0141 2022
4 0142 2025
5 0261 2025
6 0262 2025
7 0263 2025
8 0264 2025

14



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

0265
0266
0271
0272
0273
0274
0275
0281
0291
0312
0313
031A
031B
0320
0325
0326
0330
0331
0334
0337
033A
033B
0340
041A
041B
0420
0430
0440
0450
0451
0452
0453
0454
0460
0461
0462
0470
0475
0479
0480
0481
0482
0483

2025
2025
2025
2024
2025
2024
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2021
2025
2025
2025
2025
2025
2025
2025
2025
2025
2021
2015
2025
2025

15



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

0484
0485
0486
0487
0488
0489
0490
0492
0493
0494
0495
0496
0497
0498
0499
0510
051A
051B
0520
0530
0545
0550
0551
0552
0553
0554
0555
0556
0557
0558
0560
0580
0581
0583
0584
0585
0610
0620
0630
0650
0710
0760
0810

2025
2025
2025
2025
2025
2024
2006
2005
2006
2006
2025
2025
2025
2025
2009
2020
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2018
2025
2025
2025
2025
2025
2025
2025

16



95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

0820
0830
0840
0841
0842
0843
0850
0860
0865
0870
0880
0890
0895
0910
0915
0917
0918
0920
0925
0927
0928
0930
0935
0937
0938
1010
1020
1025
1030
1035
1050
1055
1090
1101
1102
1110
1120
1121
1122
1130
1135
1140
1145

2025
2016
2014
2014
2014
2014
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2016
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025

17



138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

1147
1150
11561
1152
1153
1154
11565
1156
1160
1170
1185
1187
1192
1195
1197
1199
1200
1205
1206
1210
1220
1230
1235
1240
1241
1242
1245
1255
1260
1261
1262
1263
1265
1305
1310
1320
1330
1335
1340
1345
1350
1360
1365

2025
2025
2025
2025
2025
2025
2025
2025
2018
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2023
2024
2025
2025
2025
2025
2018
2025
2025
2025
2025
2024
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025

18



181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

1370
1375
141A
141B
141C
142A
142B
1435
143A
143B
143C
1440
1450
1460
1476
1477
1478
1479
1480
1481
1504
1505
1506
1507
1510
1511
1512
15613
1515
1518
1519
1520
1521
1525
1526
1530
1531
1535
1636
1537
1540
1541
1542

2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2008
2025
2025
2023
2025
2025
2025
2025
2025
2025
2025
2025
2025
2017
2020
2024
2025
2023
2025
2025
2025
2006
2019
2018
2024
2025
2025
2025
2024
2025
2025
2015

19



224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

1544
1549
1562
1563
1564
1565
1566
1570
1572
1573
1574
1576
1577
1578
1580
1581
1582
1585
1590
1599
1610
1611
1620
1621
1622
1624
1625
1626
1627
1630
1631
1633
1640
1650
1651
1661
1670
1680
1681
1682
1697
1710
1715

2025
2025
2025
2025
2024
2025
2025
2025
2007
2025
2024
2024
2025
2005
2023
2025
2025
2025
2025
2025
2008
2012
2008
2009
2008
2008
2005
2009
2011
2007
2011
2004
2008
2008
2021
2025
2024
2025
2006
2022
2002
2025
2024

20



267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

1720
1725
1726
1750
1751
1752
1753
1754
1755
1780
1790
1791
1792
1811
1812
1821
1822
1840
1850
1860
1900
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031

2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2023
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2024
2025

21



310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

2032
2033
2034
2040
2050
2060
2070
2080
2090
2091
2092
2093
2094
2095
2110
2111
2120
2160
2170
2210
2220
2230
2240
2250
2251
2820
2825
2826
2830
2840
2850
2851
2860
2870
2890
2895
2896
2900
3000
3100
3200
3300
3400

2025
2025
2025
2025
2025
2016
2022
2024
2025
2025
2025
2025
2024
2025
2025
2014
2007
2025
2025
2025
2025
2025
2023
2025
2023
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2024
2025
2025
2025
2025
2025
2025
2020

22



353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

3610
3710
3720
3730
3731
3740
3750
3751
3760
3770
3800
3910
3920
3960
3961
3966
3970
3975
3980
4210
4220
4230
4240
4255
4310
4386
4387
4388
4389
4510
4625
4650
4651
4652
4740
4750
4800
4810
4860
5000
5001
5002
5003

2024
2025
2020
2025
2025
2016
2025
2021
2025
2016
2025
2024
2025
2025
2024
2022
2024
2016
2019
2025
2025
2025
2025
2025
2025
2025
2025
2025
2025
2024
2025
2025
2025
2025
2025
2021
2025
2025
2025
2025
2025
2025
2025

23



396 5004 2025
397 5005 2002
398 5007 2025
399 5008 2013
400 5009 2025
401 500E 2025
402 500N 2025
403 5011 2025
404 5013 2025
405 501A 2025
406 501H 2025
407 502P 2025
408 502R 2025
409 502T 2025
410 5073 2018
411 5093 2018
412 5094 2017
413 5110 2025
414 5111 2025
415 5112 2025
416 5113 2017
417 5114 2019
418 5120 2018
419 5121 2024
420 5122 2025
421 5130 2025
422 5131 2025
423 5132 2025
424 9901 2001

Now that we have a query that tells us the most recent year for each IUCR code, we should look
up what the PrimaryType and FBICode are for each IUCR in its most recent year. We are going
to temporarily create a table with the results from the previous query using “Common Table
Expressions” (CTE). A CTE is a temporary table that only lasts for the one query in which it
is created. You can have multiple CTEs in one query. Also, here we have our first encounter
with a JOIN. We will cover more about JOIN later in these notes. For now, study the query
and see how it solves our problem. With a CTE (the part following the keyword WITH) we
create a temporary table called recentIUCR that has two columns, IUCR and maxyear. Then
the main query looks for rows in the crime table that match the rows in recentIUCR. When it
finds a match, it merges in that crime’s PrimaryType and FBICode. Since many crimes with
the same value of TUCR show up, we use DISTINCT to keep just the unique combinations.

24



iucrLookupTable <- dbGetQuery(con, "

II)

#

WITH
recentIUCR AS
(SELECT IUCR, MAX(year) AS maxyear
FROM crime
GROUP BY IUCR)

SELECT DISTINCT crime.IUCR,
crime.PrimaryType,
crime.FBICode

FROM crime

INNER JOIN recentIUCR

ON crime.iucr = recentIUCR.iucr AND
crime.year = recentIUCR.maxyear

ORDER BY crime.IUCR

check for a few IUCRs

iucrLookupTable |>

O Ok WN -

#
#

filter (IUCR %in} c(2091,2092,2093,1030,1035,5114))

IUCR PrimaryType FBICode

1030 ARSON 09
1035 ARSON 09
2091 NARCOTICS 18
2092 NARCOTICS 18
2093 NARCOTICS 18
5114 NON-CRIMINAL 26

make sure that each IUCR code shows up in only one row
should be empty

iucrLookupTable |>

count (IUCR) |[>
filter(n > 1)

[1] IUCR n
<0 rows> (or O-length row.names)

With questions about IUCR to FBI codes resolved, let’s create the IUCR, primary type, and
FBI code lookup table in our Chicago crime database. We can use dbWriteTable() to post
our data frame iucrLookupTable to the database, creating a new table called iucr.

25



# remove iucr table if it is there already
if (dbExistsTable(con,"iucr")) dbRemoveTable(con, "iucr")

# import the data frame into SQLite
dbWriteTable(con, "iucr", iucrLookupTable,

row.names=FALSE)

# check
dbListFields(con,"iucr"

(1] "IUCR" "PrimaryType" "FBICode"

# check whether the table looks correct
dbGetQuery(con, "SELECT * FROM iucr LIMIT 5")

IUCR PrimaryType FBICode
1 0110 HOMICIDE 01A
2 0130 HOMICIDE 01A
3 0141 HOMICIDE 01B
4 0142 HOMICIDE 01B
5 0261 CRIMINAL SEXUAL ASSAULT 02

Everything looks correct!

Note that we ran a SQL query to pull this lookup table into iucrLookupTable, then we wrote
that table back to the database with dbWriteTable(). There really was no need to pull the
table into R, only to post it right back into the database. We can use a CREATE TABLE clause
to create this lookup table directly in our database.

# remove iucr table if it is there already
if (dbExistsTable(con,"iucr")) dbRemoveTable(con, "iucr")

# use dbExecute() since we are creating a table, not retrieving data
dbExecute(con, "
CREATE TABLE iucr AS
WITH
recentIUCR AS
(SELECT IUCR, MAX(year) AS maxyear
FROM crime
GROUP BY IUCR)
SELECT DISTINCT crime.IUCR, crime.PrimaryType, crime.FBICode

26



FROM crime
INNER JOIN recentIUCR

ON crime.iucr = recentIUCR.iucr AND
recentIUCR.maxyear

crime.year
ORDER BY crime.IUCR
n)

(11 O

We now see that our database has two tables, the original crime table and the new iucr
lookup table.

dbListTables (con)
[1] "crime" "iucr"

1.1 Exercises

With the new table iucr in the database, complete the following exercises.
1. Print out all of the rows in iucr
2. Print out all the IUCR codes for “KIDNAPPING”
3. How many IUCR codes are there for “ASSAULT”?
4. Try doing the prior exercise again using COUNT (*) if you did not use it the first time

2 SQL dates

SQLite has no special date/time data type. The Date column is currently stored in the crime
table as plain text. The PRAGMA statement is a way to modify or query the SQLite database
itself. Here we can ask SQLite the data types it is using to store each of the columns. All
the entries, including Date, are stored as text, integers, or doubles (numbers with decimal
points).

dbGetQuery(con, "PRAGMA table_info(crime)")

27



cid name  type notnull dflt_value pk

1 0 ID INT
2 1 CaseNumber TEXT
3 2 Date TEXT
4 3 Block  TEXT
5 4 IUCR  TEXT
6 5 PrimaryType  TEXT
7 6 Description = TEXT
8 7 LocationDescription  TEXT
9 8 Arrest TEXT
10 9 Domestic TEXT
11 10 Beat INT
12 11 District TEXT
13 12 Ward  TEXT
14 13 CommunityArea = TEXT
15 14 FBICode TEXT
16 15 XCoordinate INT
17 16 YCoordinate INT
18 17 Year INT
19 18 UpdatedOn  TEXT
20 19 Latitude DOUBLE
21 20 Longitude DOUBLE
22 21 Location  TEXT

The standard date format in computing is yyyy-mm-dd hh:mm:ss, where the hours are on the
24-hour clock (so no AM/PM). The reason for this format is that you can sort the data in this
format to get events in order. For some reason, the producers of the Chicago crime dataset did
not use this standard format. If you sort events in the current database, then all the January
events will come first (regardless of the year in which they occurred) and any events occurring
at 1pm will show up before those occurring at 2am. Putting the dates in a standard format
also allows us to use some useful SQLite date functions for extracting the year, day of the
week, time of day, and other features of the date and time.

The plan is to create a data frame in R with each crime’s ID and Date. Then we will use
lubridate to clean up the dates and put them in the standard format. Then we will push a
new table into the database containing each crime’s ID and its newly formatted date.

library(lubridate)

data <- dbGetQuery(con, "SELECT ID, Date FROM crime")

data |> head()

ID Date

28

0

O O O O O O O OO OO OO0 O0O OO oOo oo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

O O O O O O OO O OO OO OO0 OoOoooo



13311263 07/29/2022 03:39:00 AM
13053066 01/03/2023 04:44:00 PM
12131221 08/10/2020 09:45:00 AM
11227634 08/26/2017 10:00:00 AM
13203321 09/06/2023 05:00:00 PM
13204489 09/06/2023 11:00:00 AM

o O WN -

Since the dates are in mm/dd/yyyy hh:mm:ss format, we will use mdy_hms() from the
lubridate package to clean these up. Fortunately, this function can also handle the
AM/PM.

data <- data |>
mutate(datefix = mdy_hms(Date),
datefix = as.character(datefix)) |[> # convert to plain text
# delete the original date from the data frame
select(-Date)

# check that the reformatting worked
data |> head()

ID datefix
13311263 2022-07-29 03:39:00
13053066 2023-01-03 16:44:00
12131221 2020-08-10 09:45:00
11227634 2017-08-26 10:00:00
13203321 2023-09-06 17:00:00
13204489 2023-09-06 11:00:00

o O WN -

With the dates in standard format, let’s push the fixed dates table to the database.

# remove DateFix table if it already exists
if (dbExistsTable(con, "DateFix")) dbRemoveTable(con, "DateFix")

# save a table with ID and the properly formatted date
dbWriteTable(con, "DateFix", data, row.names=FALSE)
dbListTables (con)

[1] "DateFix" "crime" "jucr"

Our database now has three tables with the addition of the new DateFix table.

29



Before we used SUBSTR() to extract the year from the date. That was not very elegant and
required figuring out which characters held the four characters representing the year. Even
though SQLite does not have a date/time type, it does have some functions that help us work
with dates. We will use SQLite’s STRFTIME() function. It stands for “string format time”. It
is a decades-old function that you will find in almost all languages. Even R has its own version
of strftime(). Early programming language compilers limited functions to at most eight
characters, so programmers got rather creative in shrinking complicated function descriptions
down to eight characters.

The STRFTIME() function has two primary arguments (and some optional modifiers). The first
is a format parameter in which you tell STRFTIME () what you want it to extract from the date.
The second argument is the column containing the dates. There are a lot of options for the
format parameter. For example, you can extract just the year (%Y), just the month (%m),
just the minute (%M), the day of the week (%w) with Sunday represented as 0 and Saturday
as 6, or the week of the year (%W). You can also combine to get, for example, the year and
month (%Y-%m). You can find a complete listing here.

Let’s write a query to test out STRFTIME(). Here we will select some dates from DateFix and
determine on which day of the week the crime occurred.

a <- dbGetQuery(con, "
SELECT 1ID,
datefix,
STRFTIME('%w',datefix) AS weekday
FROM DateFix")
a |> head()

ID datefix weekday
13311263 2022-07-29 03:39:00
13053066 2023-01-03 16:44:00
12131221 2020-08-10 09:45:00
11227634 2017-08-26 10:00:00
13203321 2023-09-06 17:00:00
13204489 2023-09-06 11:00:00

Ok WwN -
W w o= NGO

For the first date, 2022-07-29, STRFTIME() tells us that this was day 5 of the week, which is
Friday (remember that 0 is Sunday).

STRFTIME() always returns values that are text. That is, if you ask for the year using
STRFTIME('%Y',datefix) and you get values like 2017 and 2018, your results will be char-
acter strings rather than numeric. You will have to convert them using as.numeric() in R
or, preferably, using a CAST () expression in SQL. CAST() is particularly useful if you want to
select records that, say, occur after 2010 or after noon.

30


https://sqlite.org/lang_datefunc.html#modifiers
https://www.sqlite.org/lang_datefunc.html

Let’s count cases that occurred between Monday and Friday after noon.

dbGetQuery(con, "
SELECT COUNT(*) as crimecount,
CAST(STRFTIME('%w',datefix) AS INTEGER) AS weekday
FROM DateFix
WHERE (weekday>=1) AND (weekday<=5) AND
(CAST(STRFTIME('%H',datefix) AS INTEGER) >= 12)
GROUP BY weekday")

crimecount weekday

1 746915 1
2 768661 2
3 774035 3
4 760030 4
5 810449 5

In the SELECT clause, we told SQLite to store the weekday as an integer. In the WHERE clause
we extracted the hour (24-hour clock) so that we could make a numerical comparison with the
number 12.

3 Creating the final table

Now we can put it all together, drop columns we do not want, remove redundant information,
and clean up the dates.

Removing columns from tables in SQLite used to not be simple. Only after March 2021 could
you run ALTER TABLE crime DROP COLUMN Date to remove a single column. We are going to
use an old-school approach since we are going to make many changes to our database. We
are going to rename the current crime table, then copy only the columns we want into a
new crime table, while at the same time replacing the old format dates with dates in a more
preferable format.

First, rename the crime table to crime_old, which we will delete as soon as we are done.

dbExecute(con, "ALTER TABLE crime RENAME TO crime_old")

(11 O

There should be a new table.

31



dbListTables (con)

[1] "DateFix" "crime_old" "iucr"

This will create our new crime table. It can take a few minutes.

dbExecute(con, "

CREATE TABLE crime AS

SELECT crime_old.ID,
crime_old.CaseNumber,
DateFix.datefix AS date,
crime_old.Block,
crime_old.IUCR,
crime_old.Description,
crime_old.LocationDescription,
crime_old.Arrest,
crime_old.Domestic,
crime_old.Beat,
crime_old.District,
crime_old.Ward,
crime_old.CommunityArea,
crime_old.Latitude,
crime_old.Longitude

FROM crime_old

INNER JOIN DateFix
ON crime_old.ID=DateFix.ID")

(11 O

This query requires a bit of discussion. First, note that the FROM clause joins two tables,
crime_old and DateFix. The ON clause tells SQLite how to link these two tables together. It
says that if there is a row in crime_old with a particular ID, then it can find its associated
row in the DateFix table by finding the matching value in the DateFix’s ID column. For
every column in the SELECT clause, we have included the table from where SQLite should
find the column. Technically, we only need to prefix the column with the table name when
there might be confusion. For example, both crime_old and DateFix have a column called
ID. However, we like to be explicit in complicated queries to remind ourselves from where all
the data comes.

You can also see in this SELECT query why periods in column names cause problems. SQL
uses the period to separate the table name from the column name. If we were to include

32



Case.Number in a SELECT statement, then SQL would think we had a table called Case with
a column called Number. Are you not glad we fixed this way back when we first created our
database? When we were cleaning up the Chicago crime CSV file we ran this code on the first

line in the CSV file.

readLines(infile, n=1)

gsub(",", ";", x=_) |> # separate with ;

gsub(“ n’ un’ X=_)

| >

|> # SQL doesn't like field names with .,-,space

writeLines (con=outfile)

R typically renames column names with spaces by replacing the spaces with periods. Right at
the beginning we deleted any spaces in column names so that we get CaseNumber instead of
Case Number or Case.Number.

Technically, Beat, District, Ward, and CommunityArea are all redundant information once
we have Latitude and Longitude. However, “spatial joins,” linking coordinates to spatial
areas, is computationally expensive so that it is more efficient to simply leave this redundant
information here. Lastly, note that the first line is a CREATE TABLE statement that will store
the results of this query in a new table called crime.

Let’s look at the newly cleaned up table.

dbGetQuery(con, "
SELECT *
FROM crime
LIMIT 10")

ID CaseNumber

1 13311263  JG503434 2022-07-29
2 13053066  JG103252 2023-01-03
3 12131221  JD327000 2020-08-10
4 11227634  JB147599 2017-08-26
5 13203321  JG415333 2023-09-06
6 13204489  JG416325 2023-09-06
7 11695116  JC272771 2019-05-21
8 12419690  JE295655 2021-07-07
9 12729745  JF279458 2022-06-14
10 12835559  JF406130 2022-09-21

Description
1 CHILD PORNOGRAPHY
2 MANUFACTURE / DELIVER - CRACK
3 AGGRAVATED VEHICULAR HIJACKING
4 NON-AGGRAVATED

03:
16:
09:
10:
17:
11:
08:
10:
14:
22:

date

39:
44
45:
00:
00:
00:
20:
30:
47
00:

33

00
00
00
00
00
00
00
00
00
00

Block IUCR

023XX S TROY ST 1582

039XX W WASHINGTON BLVD 2017
015XX N DAMEN AVE 0326
001XX W RANDOLPH ST 0281
002XX N Wells st 1320

0000X E 8TH ST 0810

018XX S CALIFORNIA AVE 0620
132XX S GREENWOOD AVE 1544
035XX N CENTRAL AVE 0340
004XX E 69TH ST 0910

LocationDescription Arrest

RESIDENCE
SIDEWALK
STREET
HOTEL/MOTEL

true
true
true
false



© 00 N O O

10

Domestic
false
false
false
false
false
false
false
false
false
false

© 0 N O O WN -

[EY
o

1033
1122
1424
122
122
123
1023
533
1633
322

TO VEHICLE PARKING LOT / GARAGE (NON RESIDENTIAL)
OVER $500 PARKING LOT / GARAGE (NON RESIDENTIAL)

UNLAWFUL ENTRY
SEXUAL EXPLOITATION OF A CHILD
ATTEMPT STRONG ARM - NO WEAPON
AUTOMOBILE
Beat District Ward CommunityArea

010
011
014
001
001
001
010
005
016
003

25
28

1
42
42

4
25
10
30

6

30
26
24
32
32
32
29
54
15
69

Latitude

41.

41.
41.
41.
41.
41.
41.

NA

NA
90842

NA
88602
87183
85655
65512
94523
76935

RESIDENCE

RESIDENCE

BANK

OTHER (SPECIFY)
Longitude
NA
NA
-87.67741
NA
-87.63394
-87.62615
-87.69560
-87.59488
-87.76673
-87.61501

false
false
false
false
true
true

Note that the dates are formatted properly and both PrimaryType and FBICode have been
eliminated from the table. If everything looks as expected, then we can delete the crime_old
and the DateFix tables.

dbExecute(con, "DROP TABLE crime_old")

(1] O

dbExecute(con, "DROP TABLE DateFix")

(11 0

dbListTables (con)

[1] "crime" "iucr"

After all this work, the size of the chicagocrime.db database file can become quite large. Our
database file is now 3.4 Gb, much larger than the size of the file we downloaded from the City
of Chicago open data site. Even though we have deleted the crime_old and DateFix tables,
SQLite simply marks them as deleted, but does not necessarily give up the space that it had
allocated for their storage. It holds onto that space in case the user needs it. The VACUUM
statement will clean up unused space, but it can take a minute.

34



dbExecute (con, "VACUUM")

(11 0

After VACUUM, our chicagocrime.db file is now 1.2 Gb.. much better.

4 Joining data across tables

Now that data are split across tables, we need to link tables together to get information. Let’s
extract the first 10 crime incidents with their case numbers and FBI codes. Since FBICode is
no longer in the crime table, we need to add the table iucr to the FROM clause and link the
two tables with a JOIN.

timeIUCRjoin <-
system. time(
{
data <- dbGetQuery(con, "
SELECT crime.CaseNumber,
iucr.FBICode
FROM crime
INNER JOIN iucr
ON crime.iucr=iucr.iucr")
b
data |> head()

CaseNumber FBICode

1 JG503434 17
2 JG103252 18
3 JD327000 03
4  JB147599 02
5 JG415333 14
6 JG416325 06
timeIUCRjoin

user system elapsed
12.75 1.92 14.85

35



For each record in crime, SQLite looks up the crime’s IUCR code in the iucr table and links
in the FBI code. SQLite is fast. This query took 14.85 seconds, but this linking does take time,
especially for really large datasets and large lookup tables. For the above query, SQLite scans
through the iucr table until it finds the right ITUCR code. This is not very efficient. If you
were to look up the word “query” in the dictionary, you would not start on page 1 and scan
through every word until you arrived at “query”. Instead, you would start about two-thirds of
the way through the dictionary, see if the words are before or after “query,” and revise your
search until you find the word. Rather than search hundreds of pages, you might only need to
look at nine pages.

In the same way, we can create an index for the iucr table to help speed up the search. An
index does not always make queries faster and can require storing a large index in some cases.
Let’s try this example.

dbExecute(con, "

CREATE INDEX iucr_idx on iucr(iucr)")

(11 O

Let’s rerun the query now and see if it made a difference.

timeIUCRjoinIndex <-
system. time(
{
data <- dbGetQuery(con, "
SELECT crime.CaseNumber,
iucr.FBICode
FROM crime
INNER JOIN iucr
ON crime.iucr=iucr.iucr")
1))
timeIUCRjoinIndex

user system elapsed
8.27 1.29 9.73

That query now takes 9.73 seconds. Creating an index is not always worth it. If you have
queries that are taking too long, it is worth experimenting with creating an index to see if it
helps.

You may come across SQL queries that join two tables with a WHERE clause like this.

36



data <- dbGetQuery(con, "
SELECT crime.CaseNumber,
iucr.FBICode
FROM crime, iucr
WHERE crime.iucr=iucr.iucr")

Technically this is a legal SQL join query. However, most SQL programmers prefer using JOIN
rather than using the WHERE clause. The primary reason is readability. The thinking is that
the WHERE clause should really be about filtering which cases to include, while joining tables
is quite a different operation.

There are also several different kinds of joins. What should the query return if a crime has an
IUCR code that does not appear in the iucr table? JOINs more carefully define the desired
behavior. An INNER JOIN returns only the rows where the join keys (the columns we use to
link tables like crime.iucr) exist in both tables. All other rows are dropped. SQL interprets
joins using the WHERE clause implicitly as an INNER JOIN.

Generally, in social science, we do not want to drop a row simply because its IUCR code
does not appear in the lookup table. We would probably rather code its PrimaryType and
FBICode as missing rather than drop the row. A LEFT JOIN forces every record in crime (the
“left” table) to appear in the final result set even if it cannot find an IUCR code in iucr. It
will simply report NA for its FBICode. More precisely, LEFT JOIN is synonymous with a LEFT
OUTER JOIN (the OUTER keyword is optional).

For a helpful, visual description of the different kinds of joins, visit this site.

Let’s determine how many assaults occurred in each ward. Since the crime type is stored in
iucr.PrimaryType, we need to join the tables.

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,
crime.Ward
-— Use LEFT JOIN to link the two tables
FROM crime
LEFT JOIN iucr
ON crime.iucr=iucr.iucr
-— Use WHERE to filter cases we want
WHERE iucr.PrimaryType='ASSAULT'
GROUP BY crime.Ward")

crimecount Ward
1 39807
2 7395 1

37


http://blog.codinghorror.com/a-visual-explanation-of-sql-joins/

12065
7413
6520
5472
6540

14872

17957

21168
9332
4580

14607

20353

17680
6657
5659

20247
8053
9471

16997

23558

13488

17378
6628
6725
4245
4462

17117
6461
5242

14383
4641
4138

11962
5003
3974

12144
2859
4000
4712
6840
3556
5230
7106

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

38



46 13812 5
47 4561 50
48 20364 6
49 17963 7
50 18017 8
51 17820 9

Let’s tabulate how many Part 1 crimes occur in each year. We will use PrimaryType to give
useful labels, STRFTIME() to extract the year in which each crime occurred, FBICode to pick
out the Part 1 crimes, and a LEFT JOIN to link the tables.

dbGetQuery(con, "
SELECT iucr.PrimaryType AS type,
STRFTIME('%Y', crime.date) AS year,
COUNT (*) AS crimecount
FROM crime

INNER JOIN iucr
ON crime.iucr=iucr.iucr
WHERE iucr.FBICode IN ('O1A','02','03','04A','04B','05','06','07','09")
GROUP BY type, year")

type year crimecount

1 ARSON 2001 1011
2 ARSON 2002 1032
3 ARSON 2003 955
4 ARSON 2004 778
5 ARSON 2005 691
6 ARSON 2006 726
7 ARSON 2007 712
8 ARSON 2008 644
9 ARSON 2009 616
10 ARSON 2010 522
11 ARSON 2011 504
12 ARSON 2012 469
13 ARSON 2013 364
14 ARSON 2014 397
15 ARSON 2015 453
16 ARSON 2016 516
17 ARSON 2017 444
18 ARSON 2018 373
19 ARSON 2019 376
20 ARSON 2020 588

39



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

ARSON

ARSON

ARSON

ARSON

ARSON
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY

2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013

40

530
422
513
482
250
7871
7721
7372
7331
6754
6597
6335
6250
6000
5278
5157
4873
4268
4337
4480
5713
5793
6002
5842
6265
7242
7281
7712
7905
4345
16388
15196
12477
11529
11327
11001
111563
10805
10142
9432
8402
8005
6634



64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL

SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL

BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BATTERY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
BURGLARY
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT

2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006

41

6577
7018
8085
7845
7734
7858
8319
8346
7495
8080
8182
4597
26014
25623
25157
24564
25503
24324
24858
26218
26767
26422
26620
22844
17894
14569
13184
14289
13001
11747
9639
8758
6661
7594
7486
8425
5679
1814
1839
1617
1583
1562
1488



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL
CRIMINAL

SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL
SEXUAL

ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
ASSAULT
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE
HOMICIDE

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

42

1565
1566
1450
1397
1516
1468
13565
1398
1461
1627
1697
1742
1673
1255
1530
1606
1668
1598
1041
667
657
601
454
451
472
448
513
461
438
437
514
430
427
496
786
672
588
499
787
806
730
632
589



150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE

HOMICIDE

MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT
MOTOR VEHICLE THEFT

INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING

CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN

2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

43

264
27555
25121
22749
22805
22497
21818
18573
18881
15482
19029
19388
16490
125682

9911
10068
11285
11380

9985

8978

9962
10605
21472
29253
21709
10731

380

383

386

366

354

327

318

239

248

244

221

233

218

239

253

244

297



193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE
OFFENSE

INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING
INVOLVING

CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
CHILDREN
RITUALISM
RITUALISM
RITUALISM
RITUALISM
RITUALISM
RITUALISM
RITUALISM
RITUALISM
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
ROBBERY
THEFT
THEFT

2018
2019
2020
2021
2022
2023
2024
2025
2001
2002
2003
2004
2005
2006
2007
2020
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2001
2002

44

312
258
251
226
235
204
181

©
~

B = OO N R B = 0

18441
185623
17332
15978
16047
15969
15450
16703
15981
14275
13983
13484
11819
9800
9638
11960
11881
9681
7995
7855
7920
8964
11052
9116
3970
99290
98334



236 THEFT 2003 98876

237 THEFT 2004 95464
238 THEFT 2005 85684
239 THEFT 2006 86241
240 THEFT 2007 85156
241 THEFT 2008 88437
242 THEFT 2009 80977
243 THEFT 2010 76758
244 THEFT 2011 75153
245 THEFT 2012 75464
246 THEFT 2013 71536
247 THEFT 2014 61569
248 THEFT 2015 57353
249 THEFT 2016 61625
250 THEFT 2017 64386
251 THEFT 2018 65290
252 THEFT 2019 62498
253 THEFT 2020 41350
254 THEFT 2021 40822
255 THEFT 2022 54899
256 THEFT 2023 57490
257 THEFT 2024 60495
258 THEFT 2025 35635

4.1 Exercises

5. Count the number of arrests for “MOTOR VEHICLE THEFT”

6. Which District has the most thefts?. You can first try doing this with a mix of SQL and
R. Once you do that, try finding another solution that only uses SQL (and two CTEs in
a WITH clause separated by a comma).

5 Subgqueries

Sometimes we would like to use the results of one query as part of another query. You can put
SELECT statements inside FROM statements to accomplish this. We will use this method to see
if addresses are always geocoded to the same coordinates. Here are the unique combinations
of addresses and coordinates. We will just show the first 20.

45



dbGetQuery(con, "
SELECT DISTINCT Block, Longitude, Latitude

FROM crime
LIMIT 20")

Block Longitude Latitude
1 023XX S TROY ST NA NA
2 039XX W WASHINGTON BLVD NA NA
3 015XX N DAMEN AVE -87.67741 41.90842
4 001XX W RANDOLPH ST NA NA
5 002XX N Wells st -87.63394 41.88602
6 0000X E 8TH ST -87.62615 41.87183
7 018XX S CALIFORNIA AVE -87.69560 41.85655
8 132XX S GREENWOOD AVE -87.59488 41.65512
9 035XX N CENTRAL AVE -87.76673 41.94523
10 004XX E 69TH ST -87.61501 41.76935
11 070XX S CLYDE AVE -87.57389 41.76742
12 073XX S EMERALD AVE -87.64308 41.76094
13 055XX S ALBANY AVE -87.70109 41.79261
14 040XX W 59TH ST -87.72327 41.78593
15 002XX W 47TH ST -87.63191 41.80913
16 044XX S KEDZIE AVE -87.70416 41.81281
17 004XX E 88TH ST -87.61318 41.73470
18 020XX N KIMBALL AVE -87.71191 41.91849
19 101XX S LAFAYETTE AVE -87.62480 41.71004
20 105XX S PERRY AVE -87.62578 41.70301

The crime table has at least one row with each of these combinations of Block, Longitude
and Latitude.

We would like to know if Block shows up multiple times in these results or just once. We use
the results of this query in the FROM clause and count up the frequency of each Block.

dbGetQuery(con, "
SELECT COUNT (*) AS Blockcount,
Block
FROM
(SELECT DISTINCT block,
Longitude,
Latitude
FROM crime)
GROUP BY block

46



ORDER BY blockcount DESC

LIMIT 20")

Blockcount block
1 117 034XX N CLARK ST
2 108 048XX N BROADWAY
3 106 016XX W HOWARD ST
4 105 002XX N PULASKI RD
5 104 013XX W RANDOLPH ST
6 103 044XX N BROADWAY
7 100 028XX N CLARK ST
8 100 024XX N CLARK ST
9 97 010XX W ARGYLE ST
10 96 045XX N BROADWAY
11 95 045XX N SHERIDAN RD
12 94 0000X W DIVISION ST
13 93 031XX W MADISON ST
14 93 031XX S GREEN ST
15 93 015XX N KINGSBURY ST
16 93 001XX W DIVISION ST
17 92 027XX W CERMAK RD
18 90 054XX W MADISON ST
19 87 049XX W MADISON ST
20 87 008XX W RANDOLPH ST

Clearly, the coordinates are not unique to each address. The addresses are “rounded” to
provide some privacy, but the coordinates appear to be scattered. Why? The Chicago data
portal notes “This location is shifted from the actual location for partial redaction but falls
on the same block.”

Rather than place subqueries in the FROM clause, the more modern preference is to use Common
Table Expressions like we did earlier. Rewritten as a CTE:

dbGetQuery(con, "
WITH
XYBlockUnique AS
(SELECT DISTINCT block,
Longitude,
Latitude
FROM crime)
SELECT COUNT(*) AS blockcount,
block

47



FROM XYBlockUnique
GROUP BY block
ORDER BY blockcount DESC

LIMIT 20")

blockcount block
1 117 034XX N CLARK ST
2 108 048XX N BROADWAY
3 106 016XX W HOWARD ST
4 105 002XX N PULASKI RD
5 104 013XX W RANDOLPH ST
6 103 044XX N BROADWAY
7 100 028XX N CLARK ST
8 100 024XX N CLARK ST
9 97 010XX W ARGYLE ST
10 96 045XX N BROADWAY
11 95 045XX N SHERIDAN RD
12 94 O0000X W DIVISION ST
13 93 031XX W MADISON ST
14 93 031XX S GREEN ST
15 93 015XX N KINGSBURY ST
16 93 001XX W DIVISION ST
17 92 027XX W CERMAK RD
18 90 054XX W MADISON ST
19 87 049XX W MADISON ST
20 87 008XX W RANDOLPH ST

If you are going to use the CTE or subquery in multiple queries, then it is better to CREATE
TEMPORARY TABLE, which we will encounter later.

After completing the final exercise, remember to run dbDisconnect (con) to disconnect from
the database.

5.1 Exercise

As a final exercise that does not involve a subquery:

7. Count the number of assaults, since 2016, that occurred on Fridays and Saturdays, after
6pm, reporting the date, day of week, hour of the day, and year

48



6 Solutions

1. Print out all of the rows in iucr

dbGetQuery(con, "
SELECT * from iucr
LIMIT 20")

TUCR PrimaryType FBICode
1 0110 HOMICIDE 01A
2 0130 HOMICIDE 01A
3 0141 HOMICIDE 01B
4 0142 HOMICIDE 01B
5 0261 CRIMINAL SEXUAL ASSAULT 02
6 0262 CRIMINAL SEXUAL ASSAULT 02
7 0263 CRIMINAL SEXUAL ASSAULT 02
8 0264 CRIMINAL SEXUAL ASSAULT 02
9 0265 CRIMINAL SEXUAL ASSAULT 02
10 0266 CRIMINAL SEXUAL ASSAULT 02
11 0271 CRIMINAL SEXUAL ASSAULT 02
12 0272 CRIMINAL SEXUAL ASSAULT 02
13 0273 CRIMINAL SEXUAL ASSAULT 02
14 0274 CRIMINAL SEXUAL ASSAULT 02
15 0275 CRIMINAL SEXUAL ASSAULT 02
16 0281 CRIMINAL SEXUAL ASSAULT 02
17 0291 CRIMINAL SEXUAL ASSAULT 02
18 0312 ROBBERY 03
19 0313 ROBBERY 03
20 031A ROBBERY 03

2. Print out all the IUCR codes for “KIDNAPPING”

dbGetQuery(con, "
SELECT iucr
FROM iucr
WHERE PrimaryType='KIDNAPPING'")

TIUCR
1 1792
2 4210
3 4220

49



4 4230
5 4240
6 4255

3. How many IUCR codes are there for “ASSAULT”?

dbGetQuery(con, "
SELECT *
FROM iucr
WHERE PrimaryType='ASSAULT'")

IUCR PrimaryType FBICode

1 O051A ASSAULT 04A
2 O051B ASSAULT 04A
3 0520 ASSAULT 04A
4 0530 ASSAULT 04A
5 0545 ASSAULT 08A
6 0550 ASSAULT 04A
7 0551 ASSAULT 04A
8 05652 ASSAULT 04A
9 05653 ASSAULT 04A
10 0554 ASSAULT 08A
11 0555 ASSAULT 04A
12 0556 ASSAULT 04A
13 0557 ASSAULT 04A
14 0558 ASSAULT 04A
15 0560 ASSAULT 08A

4. Try doing the prior exercise again using COUNT (*) if you did not use it the first time
dbGetQuery(con, "

SELECT COUNT (*)

FROM iucr

WHERE PrimaryType='ASSAULT'")

COUNT (*)

1 15

5. Count the number of arrests for “MOTOR VEHICLE THEFT”

50



dbGetQuery(con, "
SELECT COUNT(*) as MVTArrestCount
FROM crime
INNER JOIN iucr ON
crime.iucr=iucr.iucr
WHERE crime.Arrest='true' AND
iucr.PrimaryType='MOTOR VEHICLE THEFT'")

MVTArrestCount
1 32533

6. Which District has the most thefts?

a <- dbGetQuery(con, "

SELECT COUNT(*) AS crimecount,
District

FROM crime

INNER JOIN iucr ON

crime.iucr=iucr.iucr

WHERE iucr.PrimaryType='THEFT'

GROUP BY District")

a |>
filter(crimecount==max(crimecount))

crimecount District

1 159430 018
# or
a |>

slice_max(crimecount, with_ties=TRUE)

crimecount District
1 159430 018

# or with a CTE

dbGetQuery(con, "

WITH
-- first CTE counts thefts by district
DistrictCountCTE AS

51



(SELECT COUNT(*) AS crimecount,
District
FROM crime
INNER JOIN iucr ON
crime.iucr=iucr.iucr
WHERE jucr.PrimaryType='THEFT'
GROUP BY District),
-— second CTE finds the max theft count
MaxCountCTE AS
(SELECT MAX(crimecount) AS MaxCrimeCount
FROM DistrictCountCTE)
-- main query selects the district(s) matching the max
SELECT District, crimecount
FROM DistrictCountCTE
INNER JOIN MaxCountCTE
ON DistrictCountCTE.crimecount = MaxCountCTE.MaxCrimeCount

n)

District crimecount
1 018 159430

7. Count the number of assaults, since 2016, that occurred on Fridays and Saturdays, after
6pm, reporting the date, day of week, hour of the day, and year

# count 1) assaults

# 2) since 2016 on

# 3) Fridays and Saturdays
# 4) after 6pm

# report 5) count,

# 6) date,

# 7) day of week, and

# 8) hour of the day

# 9) year

dbGetQuery(con, "

SELECT COUNT (%),
DATE(crime.date) AS crimdate,
CAST(STRFTIME('%w',crime.date) AS INTEGER) AS weekday,
CAST(STRFTIME('}H',crime.date) AS INTEGER) AS hour,
CAST(STRFTIME(')Y',crime.date) AS INTEGER) AS year
FROM crime
INNER JOIN jucr ON
crime.iucr=iucr.iucr

52



WHERE Jjucr.PrimaryType='ASSAULT' AND
year>=2016 AND
weekday>=5 AND
hour>=18
GROUP BY crimdate, weekday, hour, year
LIMIT 20")

COUNT(*)  crimdate weekday hour year

1 2 2016-01-01 5 18 2016
2 3 2016-01-01 5 19 2016
3 1 2016-01-01 5 20 2016
4 3 2016-01-01 5 21 2016
5 1 2016-01-01 5 22 2016
6 3 2016-01-01 5 23 2016
7 2 2016-01-02 6 18 2016
8 2 2016-01-02 6 19 2016
9 2 2016-01-02 6 20 2016
10 1 2016-01-02 6 21 2016
11 2 2016-01-02 6 22 2016
12 1 2016-01-02 6 23 2016
13 6 2016-01-08 5 18 2016
14 2 2016-01-08 5 19 2016
15 1 2016-01-08 5 21 2016
16 4 2016-01-08 5 23 2016
17 2 2016-01-09 6 18 2016
18 2 2016-01-09 6 19 2016
19 4 2016-01-09 6 20 2016
20 2 2016-01-09 6 21 2016

dbDisconnect (con)

93



	Creating an IUCR lookup table
	Exercises

	SQL dates
	Creating the final table
	Joining data across tables
	Exercises

	Subqueries
	Exercise

	Solutions

