
Making a Hotspot Map
Greg Ridgeway Ruth Moyer Li Sian Goh

2025-11-30

Table of contents

1 Introduction 1

2 Setting up the data 2

3 Creating leaflet maps 3
3.1 Hexagonal tiling . 4
3.2 Contour map . 13

3.2.1 Kernel density estimation . 13
3.2.2 Contour map with two-dimensional kernel density estimation 21

4 Visualizing changes in hotspots over time 29

5 Disconnect 40

Note: If you have skipped ahead and run the code in Lesson #8: SQL Part 2, then some of
the queries involving PrimaryType in this set of notes will not work. You will need to modify
those queries to left join with the iucr table.

1 Introduction

In the previous section, you built a SQLite database to store and manage the large Chicago
crime data. In this section, you will query the database to extract the latitude and longitude
of crime incidents and create a hotspot map with a large dataset. The concept of determining
the geographic locations where crime is most intense, a crime hotspot, is very important to
criminological theory as well as to the very practical question of where to focus public safety
efforts.

1

Here we will make hotspot maps with our Chicago crime data (which requires use of SQL). Of
course, if you have acquired a dataset with latitude and longitude not in a SQL database, you
could use these same methods to make a hotspot map using only R.

2 Setting up the data

Let’s first load up the RSQLite library and reconnect to our Chicago crime database.

library(RSQLite)
con <- dbConnect(SQLite(), dbname="chicagocrime.db")

Let’s run a SQL query to extract the two columns, Latitude and Longitude, from our crime
database, creating a data frame with one row for each crime incident.

dataAllcrime <- dbGetQuery(con, "
SELECT Latitude, Longitude
FROM crime
WHERE Latitude IS NOT NULL AND

Longitude IS NOT NULL")
nrow(dataAllcrime)

[1] 8296991

How would your query differ if you wanted to do a hotspot map of only assaults?

dataAssaults <- dbGetQuery(con, "
SELECT Latitude, Longitude
FROM crime
WHERE PrimaryType='ASSAULT' AND

Latitude IS NOT NULL AND
Longitude IS NOT NULL")

nrow(dataAssaults)

[1] 558818

Always do a quick check to make sure the data looks the way you expect it to look.

2

dataAssaults |> head()

Latitude Longitude
1 41.91944 -87.77556
2 41.96846 -87.70761
3 41.74878 -87.60517
4 41.76889 -87.61413
5 41.87296 -87.75366
6 41.88448 -87.63131

3 Creating leaflet maps

We will be using leaflet to make our maps, so be sure you have it installed. We will also use
the sf package for some of our spatial calculations. Here we avoid saying too much about the
sf package since we go into great detail about it in later parts of the course.

library(dplyr)
library(leaflet)
library(sf)

Let’s start small by creating a leaflet map just showing assaults in Ward 22.

dataWard22Assaults <- dbGetQuery(con, "
SELECT Latitude,Longitude
FROM crime
WHERE PrimaryType='ASSAULT' AND

Latitude IS NOT NULL AND
Longitude IS NOT NULL AND
Ward=22")

leaflet(dataWard22Assaults) |>
setView(lng=-87.73, lat=41.83, # selected map's center

zoom=13) |> # zoom in to "neighborhood" level
addTiles() |> # add the base street layer
addCircleMarkers(~Longitude, ~Latitude,

radius=3,
stroke=FALSE,
fillOpacity = 1)

file:///C:/Users/greg_/AppData/Local/Temp/RtmpQ1VLg2/file507430bf4732/widget50743b7e285e.html screenshot completed

3

Leaflet has placed dots all over the map for ward 22. With so many dots, it is rather difficult
to determine where exactly there is a higher crime density. It seems that crime is simply
everywhere in ward 22. Instead of showing all the dots, we are going to make a new map layer
that colors different areas depending on the number of crime incidents per square kilometer,
the crime density.

3.1 Hexagonal tiling

One strategy is to chop up the Chicago map into a bunch of smaller tiles. For this we are
going to overlay our leaflet map with hexagonal tiles. Then we will count how many dots
land within each hexagonal tile and color the tile according to that count. Hexagonal bins are
convenient because they produce smoother, more visually appealing density maps, especially
when compared with square tiles. Each hexagon has a consistent distance to its neighbors and
their geometry better approximates a circle, reducing distortion in how densities appear. This
uniformity makes patterns in the underlying data easier to interpret, especially when mapping
phenomena like crime incidents, where you want to highlight true spatial concentrations rather
than artifacts of the grid shape.

This time we will make a hotspot map of all assaults in Chicago. First, we need to communicate
to R that latitude and longitude are special geographic coordinates. We will use a special
coordinate system, the Universal Transverse Mercator coordinate system, for the part of globe

4

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

sharing Chicago’s longitude area (CRS 26916 = UTM zone 16N) to avoid distortion (because
we are projecting points on a round earth to a two dimensional screen). The problem with
using latitude and longitude coordinates is that differences in coordinates are measured in
degrees rather than meters. At the equator 0.01° longitude is about 1 kilometer, but 0.01°
degree gets shorter and shorter as you move toward the earth’s poles. Therefore, all of our
tiling and counting will be done in the UTM Zone 16N coordinate system that has distances
measured in meters. After we have done all of our calculations, we will convert back to latitude
and longitude to overlay our results on top of leaflet.

convert to an sf object
tells R that Longitude and Latitude are special columns
dataAssaults <- dataAssaults |>

st_as_sf(coords = c("Longitude", "Latitude"),
crs = 4326, # lat/long coordinate system (WGS 84)
remove = FALSE) |> # don't remove the lat/long columns

st_transform(crs = 26916) # project to UTM 16N, Chicago

Next, we will create the set of hexagonal tiles that covers the assault locations. We need to
set the size of the hexagons, specifically the distance between opposite edges of each hexagon.
First check what units of distance R will use with these data.

check the distance units dataAssaults is in
st_crs(dataAssaults)$units

[1] "m"

Confirming that the distance measurements are in meters, let’s set the hexagon size to 0.5 km
or 500 meters. After that, we can use st_make_grid() to make an R object (an sf object)
that creates the hexagons and stores them in a convenient format.

set distance (meters) between opposite sides of each hexagon
sizeHex <- 500
create hexagonal tiles
gridHex <- st_make_grid(dataAssaults,

cellsize = sizeHex,
square = FALSE) |> # prefer hexagons

st_as_sf() |> # convert to sf object
rename(geometry = x)

gridHex

5

Simple feature collection with 6762 features and 0 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 422095.9 ymin: 4610178 xmax: 456845.9 ymax: 4652757
Projected CRS: NAD83 / UTM zone 16N
First 10 features:

geometry
1 POLYGON ((422345.9 4610611,...
2 POLYGON ((422345.9 4611477,...
3 POLYGON ((422345.9 4612343,...
4 POLYGON ((422345.9 4613209,...
5 POLYGON ((422345.9 4614075,...
6 POLYGON ((422345.9 4614941,...
7 POLYGON ((422345.9 4615807,...
8 POLYGON ((422345.9 4616673,...
9 POLYGON ((422345.9 4617539,...
10 POLYGON ((422345.9 4618405,...

gridHex is like a regular data frame with one column containing polygon objects as each row’s
data element. There is also a header that gives some summary information like how many
hexagons there are in gridHex (6,762) and its coordinate system (NAD83 / UTM zone 16N).

Let’s check our work so far by displaying the hexagons over a leaflet map of Chicago.

leaflet() |>
addTiles() |>
zoom=11 -> tight city level view
setView(lng = -87.8, lat = 41.85, zoom = 11) |>
addPolygons(

convert coordinates back to lat/long (CRS 4326)
data = gridHex |> st_transform(crs=4326),
fillOpacity = 0, # don't color in the hexagons
color = "darkgray", # border of hexagons
weight = 2, # border thickness
opacity = 1) # border transparency

file:///C:/Users/greg_/AppData/Local/Temp/RtmpQ1VLg2/file5074b9c6086/widget507433ca2ca5.html screenshot completed

6

We are making progress. We have covered the map of Chicago with 6,762 hexagons. Some of
our hexagons are tiling parts of Lake Michigan. We will end up dropping those by filtering
our hexagons with 0 crime counts.

Now we need to count how many of the assaults land in each of these hexagonal tiles.
st_intersects() will figure out which points in dataAssaults land inside each hexagon
and lengths() will count their number. We will also compute the crime density (incidents
per square kilometer per year), eliminate any hexagons with 0 assaults (like all those in Lake
Michigan), and project coordinates back to latitude/longitude, which leaflet requires.

We will need to know the number of years of data we have so we can normalize results to a
“per year” rate.

a <- dbGetQuery(con, "SELECT Date FROM crime") |>
mutate(Date = lubridate::mdy_hms(Date)) |>
summarize(firstDate = min(Date),

lastDate = max(Date))
nYears <- as.numeric(difftime(a$lastDate, a$firstDate, units = "days") / 365.25)
nYears

[1] 24.64066

7

st_intersects(), when used with polygon shapes (gridHex) and points (dataAssaults),
returns for each polygon a list of the indices of points that the polygon intersects. Here is what
the results of st_intersects() look like for 10 hexagons plucked from the middle of Chicago.
For some hexagons, the list is empty signalling that no assaults landed in that hexagon. For
other hexagons we see lists of points. These are the row numbers from dataAssaults of points
that landed in that specific hexagonal tile.

gridHex |>
slice(3480:3489) |>
st_intersects(dataAssaults)

Sparse geometry binary predicate list of length 10, where the predicate
was `intersects'
1: (empty)
2: (empty)
3: (empty)
4: (empty)
5: (empty)
6: 12, 3388, 6990, 7234, 7427, 7487, 18671, 19383, 20382, 27899, ...
7: 9391, 14772, 18939, 19219, 25839, 30542, 31298, 31433, 33959, 43093, ...
8: 29554, 30517, 37125, 49610, 54531, 58886, 95328, 121634, 127734, 169693, ...
9: 7158, 11118, 17345, 20968, 42204, 92537, 99277, 134123, 141605, 142731, ...
10: 146043, 150540, 378392

If we apply lengths() to this list it will return the number of points in each of these lists.

gridHex |>
slice(3480:3489) |>
st_intersects(dataAssaults) |>
lengths()

[1] 0 0 0 0 0 94 98 34 38 3

Now for all of our hexagons covering Chicago let’s compute the number of assaults per km2

per year.

gridHex <- gridHex |>
find which dots each hex intersects...
mutate(nAssaults = geometry |>

st_intersects(dataAssaults) |>

8

lengths(), # ...and count them
get area in square kilometers
areakm2 = as.numeric(st_area(geometry)) / 10^6,
compute incidents per km2 per year
density = nAssaults / areakm2 / nYears) |>

filter(nAssaults > 0) |> # drop those that are empty
st_transform(crs=4326) # transform back to lat/long for leaflet

gridHex

Simple feature collection with 2668 features and 3 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: -87.94064 ymin: 41.64168 xmax: -87.51863 ymax: 42.02491
Geodetic CRS: WGS 84
First 10 features:

geometry nAssaults areakm2 density
1 POLYGON ((-87.93757 41.9944... 1 0.2165064 0.1874464
2 POLYGON ((-87.93472 42.0061... 1 0.2165064 0.1874464
3 POLYGON ((-87.93153 41.9944... 1 0.2165064 0.1874464
4 POLYGON ((-87.92789 41.9516... 1 0.2165064 0.1874464
5 POLYGON ((-87.928 41.9594, ... 1 0.2165064 0.1874464
6 POLYGON ((-87.92846 41.9905... 1 0.2165064 0.1874464
7 POLYGON ((-87.92538 41.9867... 4 0.2165064 0.7497855
8 POLYGON ((-87.92561 42.0023... 3 0.2165064 0.5623392
9 POLYGON ((-87.92186 41.9516... 1 0.2165064 0.1874464
10 POLYGON ((-87.92197 41.9594... 1 0.2165064 0.1874464

Now gridHex has three new columns associating to each hexagon an assault count, the area
of the hexagon (all should be identical), and the assault density. We want to break up that
density into bins and assign a color to each bin. This way we can color-code each hexagon
based on the assault density. colorBin() creates a function that will take a density value
and return a color. The combination of bins = 10 and pretty = TRUE will create some nice
intervals for the different colors. Viridis is a family of color palettes that has been engineered to
be perceptually uniform (equal steps in data values look like equal steps in color), colorblind-
friendly, printer-friendly (maintains contrast in grayscale), and is readable on screens and
projectors.

pal <- colorBin("viridis",
domain = gridHex$density,
bins = 10,
pretty = TRUE) # choose "nice" breakpoints

9

So what is this pal() function? If we give pal() a number it will produce a color code.

pal(125)

[1] "#3B528B"

pal(125) produces the color code #3B528B, which gives the hexadecimal code for mixing the
primary source colors red (3B), green (52), and blue (8B). That mix is like a deep indigo blue.
When creating the hexagon overlay, each hexagon’s density will be run through pal() which
will determine how to color the hexagon.

What breakpoints did pal() decide on?

pal |> attr("colorArgs")

$bins
[1] 0 50 100 150 200 250 300 350 400 450

$na.color
[1] "#808080"

The bins value shows that pal() will assign one color to 0-50, another color to 50-100, and
so on up to the last bin 400-450. It also shows that if there happens to be any hexagons
with missing values for density (there are in fact none), those hexagons will get colored with
#808080, which is gray.

Let’s make our leaflet map!

leaflet() |>
addTiles() |>
setView(lng = -87.8, lat = 41.85, zoom = 10) |>
addPolygons(

data = gridHex,
fillColor = ~pal(density),
fillOpacity = 0.5,
color = "darkgray", # border of hexagons
weight = 0.5, # border thickness
opacity = 0.8, # border transparency
make popup box when hovering
label = ~paste("Count:",

format(nAssaults, big.mark=","),

10

"
Density: ",
format(round(density,1), nsmall=1),
"/ km² / year") |>

lapply(htmltools::HTML), # signal HTML so
 is linebreak
highlightOptions = highlightOptions(color = "red", # hover highlight

weight = 2,
bringToFront = FALSE)) |>

addLegend(position = "bottomright",
pal = pal,
values = gridHex$density,
title = "Incidents / km² / year",
opacity = 0.7,
labFormat = labelFormat()) # use pal() to figure out format

file:///C:/Users/greg_/AppData/Local/Temp/RtmpQ1VLg2/file507448fb253/widget507457e4393.html screenshot completed

You can zoom in on specific neighborhoods or specific hexagons. You can also hover your
mouse over a hexagon to see the assault density.

You can try to make your own color palettes, like

11

palGreg <- colorNumeric(
palette = c("springgreen", "hotpink"),
domain = c(0, 450))

leaflet() |>
addTiles() |>
setView(lng = -87.8, lat = 41.85, zoom = 10) |>
addPolygons(

data = gridHex,
fillColor = ~palGreg(density),
fillOpacity = 0.5,
color = "darkgray",
weight = 0.5,
opacity = 0.8,
label = ~paste("Count:",

format(nAssaults, big.mark=","),
"
Density: ",
format(round(density,1), nsmall=1),
"/ km² / year") |>

lapply(htmltools::HTML),
highlightOptions = highlightOptions(color = "red",

weight = 2,
bringToFront = FALSE)) |>

addLegend(position = "bottomright",
pal = palGreg,
values = gridHex$density,
title = "Incidents / km² / year",
opacity = 0.7,
labFormat = labelFormat())

file:///C:/Users/greg_/AppData/Local/Temp/RtmpQ1VLg2/file507464544553/widget50747b832a15.html screenshot completed

12

Yikes! I have made awful color choices here. The gradation of the palette is not sufficiently
varied for us to see where the hotspots are, except for the few hexagons colored hot pink. I find
it best to rely on the built in color palettes that have been more thoughtfully constructed.

3.2 Contour map

You can also create a map that shows the high crime areas in a way that is akin to elevation
on a topographical map. The more concentrated the concentric areas, the higher the crime
(or, in the case of a topographical map, the higher the terrain).

3.2.1 Kernel density estimation

We are going to use a two-dimensional kernel density estimate. Two-dimensional kernel density
estimation (2D KDE) is a smoothing technique that transforms a set of crime incident points
into a smooth looking surface, highlighting areas where events are more concentrated. Instead
of plotting individual dots, KDE places a smooth “bump” (the kernel) over each point and
sums them up, producing a measure of how many incidents are expected per unit area. When
used for crime hotspot mapping, this method makes clusters of incidents visually stand out,
reduces noise from random scatter, and allows analysts to interpret patterns of concentration
at a chosen spatial scale (controlled by a bandwidth parameter).

13

To give the general idea how this works, let’s look at a one-dimensional version. Imagine we
have single street that is 6 kilometers long and we know the crime locations of 8 crimes along
this street. I have marked those 8 crime locations on the horizontal axis.

Small set of points (e.g., crime locations on a 1D street axis)
x <- c(1.0, 1.8, 2.0, 2.7, 3.1, 3.9, 4.2, 5.0)
plot(0, 0, type = "n",

xlim=c(0, 6),
ylim = c(0, 1.8),
xlab = "x", ylab = "",
axes = FALSE)

axis(1)
rug(x, lwd = 2)
points(x, rep(0, length(x)), pch = 19)

Centered on each point place a bell-shaped curve. I have used the normal distribution here,
but other choices are possible. The parameter bandwidth controls how wide these bell curves
are around each point. The total area under these bell curves adds up to 8, the total number
of incidents. Rather than treat the incident as occurring at one specific point, the kernels kind
of smudge the incident so that the weight of any one incident is spread over nearby areas.

plot(0, 0, type = "n",
xlim=c(0, 6),

14

ylim = c(0, 1.8),
xlab = "x", ylab = "Incidents")

rug(x, lwd = 2)
points(x, rep(0, length(x)), pch = 19)

Bandwidth (controls smoothness)
h <- 0.35

Grid to evaluate densities
g <- seq(min(x) - 3*h, max(x) + 3*h, length.out = 1000)

compute kernels
kernels <- sapply(x, function(xi) dnorm((g - xi)/h) / h)

Overlay individual kernels (light lines)
apply(kernels, 2,

function(y) lines(g, y,
col = rgb(0.2, 0.2, 0.2, 0.35),
lwd = 1.5))

To estimate the number of incidents we can sum those kernel values at any point 𝑥. So if you
want to compute the KDE of the incidents at 2.5.

15

plot(0, 0, type = "n",
xlim=c(0, 6), ylim = c(0, 1.8),
xlab = "x", ylab = "Incidents")

rug(x, lwd = 2)
points(x, rep(0, length(x)), pch = 19)
apply(kernels, 2,

function(y) lines(g, y,
col = rgb(0.2, 0.2, 0.2, 0.35),
lwd = 1.5))

find the kernel heights near 2.5
i <- abs(g-2.5) |> which.min()
points(rep(2.5, 8), c(kernels[i,1:8]), col=rgb(1,0,0,0.35), pch=19)
points(2.5, sum(kernels[i,1:8]), col="red", pch=19)

That sum is 1.8. A more useful measure is an incident rate per kilometer. Since we have a
6-kilometer street segment, the crime incident rate at the 2.5 km marker divides that sum by
6, 0.30 incidents per kilometer. I will divide the KDE by 6 through the rest of this section so
that the vertical axis is incidents / km.

Repeat this process for a range of values of 𝑥. Note that I am summing up the kernel values
and then dividing by 6 (the length of the road) to get an incident per kilometer rate.

16

plot(0, 0, type = "n",
xlim=c(0, 6), ylim = c(0, 1.2),
xlab = "x", ylab = "Incidents / km")

rug(x, lwd = 2)
points(x, rep(0, length(x)), pch = 19)
apply(kernels, 2,

function(y) lines(g, y,
col = rgb(0.2, 0.2, 0.2, 0.35),
lwd = 1.5))

KDE = sum of kernels
kde <- rowSums(kernels) / 6 # divide by number of kms -> incidents/km
lines(g, kde, col = "#2C7BB6", lwd = 3)

Selecting a bandwidth can be a little tricky. A bandwidth that is too small gives a KDE that
is unstable and too jagged. A bandwidth that is too large smooths away interesting features
and fails to highlight hotspots. The R MASS package has useful tools for choosing reasonable
bandwidth parameters that we will use on our Chicago data.

plot(0, 0, type = "n",
xlim=c(0, 6), ylim = c(0, 1.2),
xlab = "x", ylab = "Incidents / km")

17

rug(x, lwd = 2)
points(x, rep(0, length(x)), pch = 19)

too small
h <- 0.1
kernels <- sapply(x, function(xi) dnorm((g - xi)/h) / h)
lines(g, rowSums(kernels) / 6, col = "#E66101", lwd = 3)

too big
h <- 1.0
kernels <- sapply(x, function(xi) dnorm((g - xi)/h) / h)
lines(g, rowSums(kernels) / 6, col = "#4DAF4A", lwd = 3)

original h=0.35
h <- 0.35
kernels <- sapply(x, function(xi) dnorm((g - xi)/h) / h)
lines(g, kde, col = "#2C7BB6", lwd = 3)

legend("topright",
legend = c("h=0.10", "h=0.35", "h=1.00"),
fill = c("#E66101","#2C7BB6","#4DAF4A"),
border = NA,
bty = "n",
title = "Bandwidth")

18

The color that we would apply to any stretch of the road depends on how high the crime
density is at a particular point. I have shaded the regions showing the relationship between
the KDE estimate and what color we would shade the road segment.

plot(0, 0, type = "n",
xlim=c(0, 6), ylim = c(0, 1.2),
xlab = "x", ylab = "")

pal1dKDE <- colorBin("viridis",
domain = kde,
bins = 4,
pretty = TRUE)

rect(par()$usr[1], 0.3, par()$usr[2], par()$usr[4],
col=pal1dKDE(0.35) |> adjustcolor(alpha.f = 0.5))

rect(par()$usr[1], 0.2, par()$usr[2], 0.3,
col=pal1dKDE(0.25) |> adjustcolor(alpha.f = 0.5))

rect(par()$usr[1], 0.1, par()$usr[2], 0.2,
col=pal1dKDE(0.15) |> adjustcolor(alpha.f = 0.5))

rect(par()$usr[1], 0.0, par()$usr[2], 0.1,
col=pal1dKDE(0.05) |> adjustcolor(alpha.f = 0.5))

rug(x, lwd = 2)
points(x, rep(0, length(x)), pch = 19)

19

lines(g, kde, col = "#2C7BB6", lwd = 3)

To simplify, we draw the road colored by crime incident rate.

plot(g, rep(0,1000), ylim = c(0, 1.2),
xlab = "x", ylab = "",
col=pal1dKDE(kde))

rug(x, lwd = 2)
points(x, rep(0, length(x)), pch = 19)
bins <- attr(pal1dKDE, "colorArgs")$bins
mid <- (bins[-1] + bins[-length(bins)]) / 2
bins <- bins |> format(nsmall=1)
labs <- paste0("(", bins[-length(bins)], ", ", bins[-1], ")")
legend("topright",

legend = labs,
fill = pal1dKDE(mid),
border = NA,
bty = "n",
title = "Incidents / km")

20

The process of computing a KDE for a two-dimensional collection of points is similar. We use
a two-dimensional version of the normal distribution kernel and create a two-dimensional grid
of values at which we will compute the incident rate per square kilometer.

3.2.2 Contour map with two-dimensional kernel density estimation

The MASS package provides a two-dimensional KDE function kde2d(). However, the MASS
package also has a select() function that clashes with dplyr’s select() function. This
makes it either easy to cause bugs or confusing why an apparently simple line of code does
not work. So we will not run library(MASS) and just prefix any calls to MASS functions with
MASS:: to avoid problems completely.

We will also use the isoband package. Isobands are the filled regions between pairs of contour
lines representing areas where the incident rate values fall within a given range.

for computing 2-dimensional kernel density estimates
prefer not to load it, MASS::select() clash with dplyr::select()
library(MASS)
for creating polygons from contours
library(isoband)

Here we use MASS::bandwidth.nrd() to select bandwidths, one for the x direction and one
for the y direction. kde2d() will compute the KDE on a 200 x 200 grid of points.

21

extract the (x,y) coordinates
xy <- dataAssaults |>

st_coordinates() |>
data.frame()

simple bandwidth guess for how much smoothing
h <- c(MASS::bandwidth.nrd(xy$X),

MASS::bandwidth.nrd(xy$Y))
kdeAssaults <- MASS::kde2d(

xyX, xyY, # coordinates
n = 200, # a 200 x 200 grid
h = h) # bandwidth

Stored in kdeAssaults is a component z that contains the crime density estimate. As we
requested, MASS::kde2d() chopped the map of Chicago into a 200 x 200 grid of dimension
and z contains the estimated crime density at those grid points. Those points are centered in
a box with width and height equal to:

width in meters
diff(kdeAssaults$x[1:2])

[1] 169.6576

height in meters
diff(kdeAssaults$y[1:2])

[1] 211.274

z is scaled so that z times the width times the height equals the fraction of expected crime
incidents in that box. So z is like the fraction of crime incidents per square meter. If we
multiply each value of z by the width and height of the boxes (which all have the same size)
and add them up, we should get a number close to 1.

sum(kdeAssaults$z * diff(kdeAssaults$x[1:2]) * diff(kdeAssaults$y[1:2]))

[1] 0.9973942

If we multiply all the values of z by the total number of crime incidents, then rather than
describing the fraction of incidents per square meter (a hard to understand quantity), we
estimate the expected number of incidents per square meter. Multiply that by 106 to convert

22

square meters to square kilometers and divide by the number of years of data that we have
so that we get an estimated number of crime incidents per km2 per year, a measurement that
describes the pace of incidents over space and time.

scale so that the units are incidents/km2/year
kdeAssaults$zKM2Year <- kdeAssaults$z * nrow(dataAssaults) * 10^6 / nYears
hist(kdeAssaults$zKM2Year,

xlab = "Crime rate",
ylab = "Number of points",
main = "")

Figure 1: Histogram of estimated crime intensity (incidents per km² per year)

The histogram shows that a large number of areas have very low crime rates, but this histogram
has a long right tail, meaning some parts of Chicago have high crime rates. Let’s determine
some nice breakpoints for our map.

breaks <- kdeAssaults$zKM2Year |>
range() |>
pretty(n=10)

breaks

[1] 0 20 40 60 80 100 120 140 160 180

23

Now we ask isobands() to find level sets for each value of breaks. That is, isobands() will
find curves through x and y where the value of zKM2Year is close to each value of breaks.

contourAssaults <-
isobands(kdeAssaults$x,

kdeAssaults$y,
kdeAssaults$zKM2Year,
levels_low = breaks[-length(breaks)],
levels_high = breaks[-1]) |>

iso_to_sfg() |> # convert to sf geometry object
st_sfc(crs = 26916) |> # convert to sf data column
st_sf(levels_low = breaks[-length(breaks)], # convert to sf object

levels_high = breaks[-1],
geometry = _) |>

st_transform(4326)

show the result so far
contourAssaults |>

slice(-1) |> # drop the outer edge
st_geometry() |>
plot()

Figure 2: Isobands for Chicago assault incident rate

24

Let’s create a viridis color palette to shade the areas between these contour lines.

pal <- colorBin("viridis",
domain = (contourAssaults$levels_low +

contourAssaults$levels_high)/2,
bins = breaks,
pretty = FALSE)

Now we are ready to overlay a colored contour map on top of our Chicago leaflet map.

leaflet() |>
addTiles() |>
setView(lng = -87.8, lat = 41.85, zoom = 10) |>
addPolygons(

data = contourAssaults,
fillColor = ~pal((levels_low + levels_high)/2),
fillOpacity = 0.4,
color = "#808080", # contour band edges
weight = 0.5,
opacity = 0.5,
label = ~paste0("Density: ",

format(levels_low, scientific=FALSE), "-",
format(levels_high, scientific=FALSE)) |>

lapply(htmltools::HTML),
highlightOptions =

highlightOptions(weight = 2, bringToFront = TRUE)) |>
addLegend(

position = "bottomright",
pal = pal,
values = (contourAssaults$levels_low +

contourAssaults$levels_high)/2,
title = "Incidents / km² / year",
opacity = 0.7)

file:///C:/Users/greg_/AppData/Local/Temp/RtmpQ1VLg2/file5074c471abc/widget50745263638a.html screenshot completed

25

Figure 3: Chicago assault hot spots

The contours have been created over the Chicago bounding box, which ends up looking a little
strange, with areas highlighted in Lake Michigan. We are going to intersect the contours with
the data points’ concave hull, a tight-fitting polygon that wraps a point set while allowing
some inward dents. The ratio parameter sets how tight the fit is, roughly the fraction of the
convex hull’s area to keep. This leaflet map shows the convex hull (the smallest polygon that
contains all the data points with no inward dents) in gray and the concave hull with ratio
set to 0.2 in purple. We could use either one to trim the KDE contour map to places where
assaults actually occur.

leaflet() |>
addTiles() |>
setView(lng = -87.8, lat = 41.85, zoom = 10) |>
addPolygons(

data = dataAssaults |>
st_geometry() |>
st_combine() |>
st_convex_hull() |>
st_buffer(200) |> # add a little extra at the edges

26

st_transform(crs = 4326),
color = "#808080",
weight = 0.5,
opacity = 0.9) |>

addPolygons(
data = dataAssaults |>

st_geometry() |>
st_combine() |>
st_concave_hull(ratio=0.2) |>
st_buffer(200) |> # add a little extra at the edges
st_transform(crs = 4326),

color = "purple",
weight = 0.5,
opacity = 0.9,

highlightOptions =
highlightOptions(weight = 2, bringToFront = TRUE))

file:///C:/Users/greg_/AppData/Local/Temp/RtmpQ1VLg2/file5074192b3ff9/widget507450b5215.html screenshot completed

27

Also, let’s make the hotspot map only highlight the hottest spots, those with a crime rate
exceeding 80 incidents per km2 per year. Zoom in on some of the brightest areas to see what
is in these high assault rate areas.

legendMid <- (contourAssaults$levels_low +
contourAssaults$levels_high)/2

legendMid <- legendMid[legendMid > 80]
legendCol <- pal(legendMid)
legendLabs <- paste0(contourAssaults$levels_low, "-",

contourAssaults$levels_high)
legendLabs <- legendLabs[contourAssaults$levels_low >= 80]

leaflet() |>
addTiles() |>
setView(lng = -87.8, lat = 41.85, zoom = 10) |>
addPolygons(

data = contourAssaults |>
st_intersection(dataAssaults |>

st_geometry() |>
st_combine() |>
st_concave_hull(ratio=0.2) |>
st_buffer(200) |> # add a little extra at the edges
st_transform(crs = 4326)) |>

filter(levels_low >= 80), # highlight just the hottest spots
fillColor = ~pal((levels_low + levels_high)/2),
fillOpacity = 0.4,
color = "#808080",
weight = 0.5,
opacity = 0.5,
label = ~paste0("Density: ",

format(levels_low, scientific=FALSE), "-",
format(levels_high, scientific=FALSE)),

highlightOptions =
highlightOptions(weight = 2, bringToFront = TRUE)) |>

addLegend(
position = "bottomright",
colors = legendCol,
labels = legendLabs,
title = "Incidents / km² / year",
opacity = 0.7)

28

Figure 4: Chicago assault hot spots

4 Visualizing changes in hotspots over time

Let’s create hotspot maps with just motor vehicle theft, making a separate map for each year
between 2018 and 2024. Take a look at the Date column in our initial dataset.

dbGetQuery(con, "SELECT Date
FROM crime
LIMIT 5")

Date
1 07/29/2022 03:39:00 AM
2 01/03/2023 04:44:00 PM
3 08/10/2020 09:45:00 AM
4 08/26/2017 10:00:00 AM
5 09/06/2023 05:00:00 PM

29

We want only the year part of these dates. The year starts with the 7th character and has
a length of 4 characters. So to extract just the year we can use the built-in SQL function
SUBSTR().

dataCarTheft <- dbGetQuery(con, "
SELECT Latitude,

Longitude,
SUBSTR(Date, 7, 4) AS year

FROM crime
WHERE PrimaryType='MOTOR VEHICLE THEFT' AND

Latitude IS NOT NULL AND
Longitude IS NOT NULL AND
year >= 2018 AND year <= 2024")

dataCarTheft |> head()

Latitude Longitude year
1 41.76935 -87.61501 2022
2 41.80890 -87.61814 2023
3 41.76170 -87.71864 2023
4 41.90969 -87.79601 2023
5 41.76342 -87.70524 2023
6 41.98896 -87.78277 2023

In the WHERE clause, note the use of the alias year that was defined in the SELECT clause. Most
standard SQL implementations do not allows using aliases in the WHERE clause, but SQLite
does. If you are working with a SQL database that does not allow aliases to be used like this,
then you need to replace year with SUBSTR(Date, 7, 4) every time it is used outside of the
SELECT clause. Or you can create all the aliases in a Common Table Expression (CTE), which
we will discuss in later lessons.

Now that we have the car theft data pulled out of our SQL database, convert to a spatial data
frame with st_as_sf() and make a color palette for the range of car theft rates.

dataCarTheft <- dataCarTheft |>
st_as_sf(coords = c("Longitude", "Latitude"),

crs = 4326, # lat/long coordinate system
remove = FALSE) |>

st_transform(crs = 26916)

breaks <- seq(0, 140, by=20)

pal <- colorBin("viridis",

30

domain = (breaks[-length(breaks)]+breaks[-1])/2,
bins = breaks,
pretty = FALSE)

We then loop through the years 2018 to 2024, subsetting the data to one of those years at a
time, and generate a hotspot map.

maps <- lapply(2018:2024,
function(year0)
{

message(paste("Mapping", year0))

xy <- dataCarTheft |>
filter(year == year0) |> # for just one year
st_coordinates() |>
data.frame()

h <- c(MASS::bandwidth.nrd(xy$X),
MASS::bandwidth.nrd(xy$Y))

kdeCarTheft <- MASS::kde2d(xyX, xyY, n = 200, h = h)

no need to divide by year here... only one year of data
kdeCarTheft$zKM2Year <- kdeCarTheft$z * nrow(xy) * 10^6

contourCarTheft <-
isobands(kdeCarTheft$x,

kdeCarTheft$y,
kdeCarTheft$zKM2Year,
levels_low = breaks[-length(breaks)],
levels_high = breaks[-1]) |>

iso_to_sfg() |>
st_sfc(crs = 26916) |>
st_sf(levels_low = breaks[-length(breaks)],

levels_high = breaks[-1],
geometry = _) |>

st_transform(4326) # back to lat/long

leaflet() |>
addTiles() |>
setView(lng = -87.8, lat = 41.85, zoom = 10) |>
addPolygons(

data = contourCarTheft |>
st_intersection(dataCarTheft |>

31

st_geometry() |>
st_combine() |>
st_concave_hull(ratio=0.7) |>
st_buffer(200) |>
st_transform(crs = 4326)) |>

filter(levels_low >= 25), # highlight just the hottest spots
fillColor = ~pal((levels_low + levels_high)/2),
fillOpacity = 0.4,
color = "#808080",
weight = 0.5,
opacity = 0.5,
label = ~paste0("Density: ",

format(levels_low, scientific=FALSE), "-",
format(levels_high, scientific=FALSE)) |>

lapply(htmltools::HTML),
highlightOptions =

highlightOptions(weight = 2, bringToFront = TRUE)) |>
addLegend(

position = "bottomright",
pal = pal,
values = (contourCarTheft$levels_low +

contourCarTheft$levels_high)/2,
title = paste(year0, "Incidents / km² / year"),
opacity = 0.7)

})

dir.create("figs", showWarnings = FALSE)

yrs <- 2018:2024
pngs <- character(length(maps))

for (i in seq_along(maps)) {
htmlf <- tempfile(fileext = ".html")
pngf <- file.path("figs", paste0("car-theft-",yrs[i],".png"))
htmlwidgets::saveWidget(maps[[i]], htmlf, selfcontained = TRUE)
webshot2::webshot(htmlf, pngf, vwidth = 1200, vheight = 900, zoom = 2)
pngs[i] <- pngf

}

knitr::include_graphics(pngs)

32

33

34

35

36

37

38

Car thefts spiked in between 2022 and 2024.

dataCarTheft |>
count(year) |>
plot(n~year, data=_,

xlab = "Year",
ylab = "Number of car thefts")

39

That spike was fueled by thefts of Kia and Hyundai vehicles, which lacked passive immobilizer
antitheft devices as standard equipment and lead to a social media trend describing how to
steal Kia and Hyundai vehicles.

Many cities other than Chicago have accessible incident-level data. You can easily modify
the code here to make a hotspot map for Philadelphia, Los Angeles, Seattle, San Francisco,
Baltimore, or Washington, DC.

5 Disconnect

Remember to disconnect from the database when you are done.

dbDisconnect(con)

40

	Introduction
	Setting up the data
	Creating leaflet maps
	Hexagonal tiling
	Contour map
	Kernel density estimation
	Contour map with two-dimensional kernel density estimation

	Visualizing changes in hotspots over time
	Disconnect

