Introduction to SQL

Greg Ridgeway Ruth Moyer Li Sian Goh

2025-11-30
Table of contents
1 [Introduction 1
2 Getting the data into proper form 2
3 Setting up the database 6
4 SQL queries (SELECT, WHERE, FROM) 7
4.1 EXercises e e e 11
5 GROUP BY and aggregation functions 12
5.1 Exerciseso 13
6 ORDER BY and UPDATE 14
6.1 EXercises 19
7 Solutions to the exercises 20

1 Introduction

Some datasets are far too large for R to handle by itself. Structured Query Language (“SQL”)
is a widely used international standard language for managing data stored in a relational
database management system (RDMS). A relational database management system itself is an
approach to managing data using a structure that can be contrasted against the “flat file”
approach we have been using thus far with R. Why use SQL? R does not work very well
with really huge datasets. A relational database management system offers a way of storing
large amounts of information more efficiently and reducing the size of the dataset that we are
working with. There are numerous relational database management systems such as Oracle
DBMS, Microsoft Access, Microsoft SQL Server, PostgreSQL, and MySQL. We are going to

use SQLite, which is probably the most widely deployed database system. SQLite is in your
phone, car, airplanes, thermostats, and numerous appliances. We are going to hook up SQLite
to R so that R can handle large datasets.

These are some basic clauses in a SQL query that we will explore:

SELECT fields or functions of fields
FROM tables queried

WHERE conditions for selecting a record
GROUP BY list of fields to group
ORDER BY list of fields to sort by

However, before being able to use SQL as a tool in R, we first need to load the RSQLite
package, which provides the software tools to connect to a SQLite database.

library(dplyr)
library (RSQLite)

2 Getting the data into proper form

We will be working with Chicago crime data, which is accessible in comma-separated value
(csv) format. Before we can even begin learning SQL, we are going to have to do a fair bit of
work to acquire the dataset, format it so that it is ready for SQLite, and then load it into the
SQLite database.

Navigate to the Chicago open data website to get the data. Click the “Export” button and
select the “CSV” option, or directly download from here

The Chicago crime data is huge, more than 2.0 Gb. It contains over 8.3 million records on all
crimes reported to the Chicago police department since 2001. R does not handle really large
datasets well. By using SQL, you will learn how to more efficiently work with large datasets
and learn a data language that is used absolutely everywhere.

Let’s use scan() to just peek at the first five rows of the file.

scan(what="", file="Crimes_-_2001_to_present.csv", nlines=5, sep="\n")

[1] "ID,Case Number,Date,Block,IUCR,Primary Type,Description,Location Description,Arrest,Dom
[2] "13311263,JG503434,07/29/2022 03:39:00 AM,023XX S TROY ST, 1582,0FFENSE INVOLVING CHILDRE]
[3] "13053066,JG103252,01/03/2023 04:44:00 PM,039XX W WASHINGTON BLVD,2017,NARCOTICS,MANUFAC
[4] "12131221,JD327000,08/10/2020 09:45:00 AM,015XX N DAMEN AVE,0326,ROBBERY,AGGRAVATED VEHI(
[6] "11227634,JB147599,08/26/2017 10:00:00 AM,001XX W RANDOLPH ST,0281,CRIM SEXUAL ASSAULT,N

https://www.sqlite.org/index.html
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2
https://data.cityofchicago.org/api/views/ijzp-q8t2/rows.csv?accessType=DOWNLOAD

scan() is a very basic R function that reads in plain text files. We have told it to read in text
(what=""), the name of the file, to only read in 5 lines (nlines=5), and to start a new row
whenever it reaches a line feed character (sep="\n"). Using scan() without nlines=5 would
cause R to try to read in the whole dataset and that could take a lot of time and you might
run out of memory.

You can see that the first row contains the column names. The second row contains the first
reported crime in the file. You can see date and time, address, crime descriptions, longitude
and latitude of the crime, and other information.

Let’s try to load this file into a SQLite database. There are two steps. First, using
dbConnect () we need to tell R to make a connection to a new SQLite database that we will
call chicagocrime.db. This will be a file in your working folder that SQLite will use to store
the data.

create a connection to the database
con <- dbConnect(SQLite(), dbname="chicagocrime.db")

Then using dbWriteTable() we tell R to read in the csv file and store its contents in a new
table in the database. We will call that new table crime. Make sure that your path is set to
the correct folder where you want the database to be stored.

write a table called "crime" into the SQLite database
dbWriteTable(con,
"crime", # the new table in the database
"Crimes_-_2001_to_present.csv",
row.names=FALSE,
header=TRUE) # first row has column names

Error in connection_import_file(conn@ptr, name, value, sep, eol, skip): RS_sqlite_import: Cr:

Looks like there is a problem with the dataset. SQLite was expecting 22 columns, but row
4 had 23. Notice from when we ran scan() earlier, the fourth row has a "(41.908417822,
-87.67740693)". SQLite thinks that these two numbers belong in two different columns
instead of a single Location column.

SQLite is very particular about the formatting of a file. It can easily read in a csv file, but

this dataset has some commas in places that confuse SQLite. For example, there is a row in
this file that looks like this:

[1] "10000153,HY189345,03/18/2015 12:20:00 PM,091XX S UNIVERSITY AVE,0483,BATTERY,AGG PRO.EM

You see that the location description for this crime is "SCHOOL, PUBLIC, BUILDING". Those
commas inside the quotes are going to cause SQLite problems. SQLite is going to think that
SCHOOL, PUBLIC, and BUILDING are all separate columns rather than in one column describing
the location.

To resolve this, we are going to change all the commas that separate the columns into something
else besides commas, leaving the commas in elements like "SCHOOL, PUBLIC, BUILDING" alone.
It does not matter what we use to separate the fields, but it should be an unusual character
that would not appear anywhere else in the dataset. Popular choices include the vertical
bar (1) and the semicolon (;). So let’s take a slight detour to find out how to convert a
comma-separated file into a semicolon separated file.

You will know if you need to convert your file if, when you try to set up your SQL database,
you receive an error message about an “extra column.”

We are going to use a while loop to read in 1,000,000 rows of the CSV file at a time. R
can handle 1,000,000 rows. With 1,000,000 rows read in, we will use a regular expression to
replace all the commas used for separating columns with semicolons. Then we will write out
the resulting cleaned up rows into a new file. It is a big file so this code can take a few minutes
to run to completion.

infile <- file("Crimes_-_2001_to_present.csv", 'r') # 'r' for 'read'
outfile <- file("Crimes_-_2001_to_present-clean.csv", 'w') # 'w' for 'write'

fix the Row #1 with the columns names

readlLines(infile, n=1) |>
gsub(",", ";", x=_) |> # separate with ;
gsub(" ", "", x=_) |> # SQL doesn't like field names with .,-,space
writeLines(con=outfile)

cLines <- 0 # just a counter for the number of lines read

read in 1000000 lines. keep going if more than O lines read
while ((length(a <- readLines(infile, n=1000000)) > 0))
{
cLines <- clLines + length(a) # increase the line counter
cLines |> format(big.mark=",", scientific=FALSE) |> message()
remove any semicolons if they are there
a <- gsub(";", "", a)
use 7= to "lookahead" for paired quotes
a <= gsub(", (?=C[T\"TI\"["\"]*x\")*$)", ";", a, perl=TRUE)
write the cleaned up data to storage
writeLines(a, con=outfile)

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

8,390,646

close(infile)
close(outfile)

Now, let’s take a look at the first five lines of the new file we just created.

scan(what="",file="Crimes_-_2001_to_present-clean.csv",nlines=5,sep="\n")

[1]
[2]
(3]
[4]
(5]

"ID;CaseNumber;Date;Block; IUCR;PrimaryType;Description;LocationDescription;Arrest;Domest:
"13311263;JG503434;07/29/2022 03:39:00 AM;023XX S TROY ST;1582;0FFENSE INVOLVING CHILDREI
"13053066;JG103252;01/03/2023 04:44:00 PM;039XX W WASHINGTON BLVD;2017;NARCOTICS;MANUFAC
"12131221;JD327000;08/10/2020 09:45:00 AM;015XX N DAMEN AVE;0326;ROBBERY; AGGRAVATED VEHI(
"11227634;JB147599;08/26/2017 10:00:00 AM;001XX W RANDOLPH ST;0281;CRIM SEXUAL ASSAULT;N

You now see that semicolons separate the columns rather than commas. That previous record
that had the location description “SCHOOL, PUBLIC, BUILDING” now looks like this:

[1]

"10000153;HY189345;03/18/2015 12:20:00 PM;091XX S UNIVERSITY AVE;0483;BATTERY;AGG PRO.EM

Note that the commas are still there inside the quotes. Now we will be able to tell SQLite to
look for semicolons to separate the columns.

3 Setting up the database

Now that the csv file containing the data is ready, we can load it into SQLite.

peek at the first few rows of the dataset
a <- read.table("Crimes_-_2001_to_present-clean.csv",

sep=";",nrows=5,header=TRUE)
ask SQLite what data type it plans to use to store each column (eg number, text)
variabletypes <- dbDataType(con, a)
make sure these features are stored as TEXT
variabletypes[c("IUCR","FBICode","Ward","District","CommunityArea")] <- "TEXT"

just in case you already created a '"crime" table, delete it

if (dbExistsTable(con, "crime")) dbRemoveTable(con, "crime")

import the data file into the database

dbWriteTable(con, "crime", # create crime table
"Crimes_-_2001_to_present-clean.csv", # from our cleaned up file
row.names=FALSE,

header=TRUE, # first row has column names
field.types=variabletypes,
sep=";") # columns separated with ;

does the table exist?

dbListTables (con)

[1] "crime"

a quick check to see if all the columns are there
dbListFields(con,"crime")

(1] "ID" "CaseNumber" "Date"

[4] "Block" "TUCR" "PrimaryType"
[7] "Description" "LocationDescription" "Arrest"

[10] "Domestic" "Beat" "District"
[13] "Ward" "CommunityArea" "FBICode"
[16] "XCoordinate" "YCoordinate" "Year"

[19] "UpdatedOn" "Latitude" "Longitude"

[22] "Location"

disconnect from the database to finalize
dbDisconnect (con)

You will know if the database has been successfully set up if you find a chicagocrime.db file
that has about 2 Gb of data in it. If the file size is 0 or really small, then you may be looking
in the wrong folder or the data cleaning and import did not finish.

how many gigabytes?
(file.size("chicagocrime.db")/1079) |[>
round (1) |[>
format (nsmall=1, scientific=FALSE)

[1] ny.9n

Once you have successfully set up your database, there is no reason to run these lines of code
again. You should never again need to turn commas into semicolons or run dbWriteTable().
Instead, every time you want to work with your database, you can simply need to reconnect
to the database with:

con <- dbConnect(SQLite(), dbname="chicagocrime.db")

Note that if you are using a cloud-based backup service like iCloud, OneDrive, or Google Drive,
you might need to wait until your “db” file has completely synced before you can access your
database. For this reason I typically put my SQLite databases in a folder that does not get
backed up. If I accidentally delete it, then I just rerun the code to rebuild the database.

4 SQL queries (SELECT, WHERE, FROM)

You have now created a database chicagocrime.db containing a table called crime that contains
those 8 million crime records.

Two important clauses with an SQL query are SELECT and FROM. Unlike R, SQL queries are
not case-sensitive and column names are not case-sensitive. So if we were to type “SELECT”
as “select” or “Description” as “dEsCrIpTiOn”, the SQL query would do the same thing.
However, the tradition is to put SQL keywords in all uppercase to make it easier to distinguish
them from table and column names.

The SELECT clause tells SQL which columns in particular you would like to see. The FROM
clause simply tells SQL from which table it should pull the data. In this query, we are interested
in only the ID and Description columns.

dbGetQuery(con,
"SELECT ID, Description
FROM crime",
n = 10) # just the first 10 rows

ID Description

1 13311263 CHILD PORNOGRAPHY
2 13053066 MANUFACTURE / DELIVER - CRACK
3 12131221 AGGRAVATED VEHICULAR HIJACKING
4 11227634 NON-AGGRAVATED
5 13203321 TO VEHICLE
6 13204489 OVER $500
7 11695116 UNLAWFUL ENTRY
8 12419690 SEXUAL EXPLOITATION OF A CHILD
9 12729745 ATTEMPT STRONG ARM - NO WEAPON
10 12835559 AUTOMOBILE

dbGetQuery() pulls the selected rows (first 10) from the selected columns (ID and

Description). Sometimes it is preferable to get large datasets in smaller chunks using

dbSendQuery () and dbFetch().

res <- dbSendQuery(con, "
SELECT ID,Description
FROM crime")

pull the first 10 lines

dbFetch(res, n = 10)

ID Description
1 13311263 CHILD PORNOGRAPHY
2 13053066 MANUFACTURE / DELIVER - CRACK
3 12131221 AGGRAVATED VEHICULAR HIJACKING
4 11227634 NON-AGGRAVATED
5 13203321 TO VEHICLE
6 13204489 OVER $500
7 11695116 UNLAWFUL ENTRY
8 12419690 SEXUAL EXPLOITATION OF A CHILD
9 12729745 ATTEMPT STRONG ARM - NO WEAPON
10 12835559 AUTOMOBILE

pull the next 10 lines
dbFetch(res, n = 10)

ID Description
1 13003649 FORCIBLE ENTRY
2 13061203 DOMESTIC BATTERY SIMPLE
3 13256787 DOMESTIC BATTERY SIMPLE

4 13116982 RECKLESS HOMICIDE
5 13364090 "PROTECTED EMPLOYEE - HANDS, FISTS, FEET, NO / MINOR INJURY"
6 13376308 "AGGRAVATED P.0. - HANDS, FISTS, FEET, NO / MINOR INJURY"
7 27382 FIRST DEGREE MURDER
8 27547 FIRST DEGREE MURDER
9 6255892 ARMED - HANDGUN
10 6272641 STRONG ARM - NO WEAPON

when finished, clear the rest of the results
dbClearResult (res)

dbClearResult(res) tells SQLite that we are all done with this query. We have displayed
the first 20 rows. SQLite is standing by with another 8 million rows to show us, but
dbClearResult(res) tells SQLite that we are no longer interested in this query and it can
clear out whatever it has stored for us.

In the previous SQL query we just asked for ID and Description. Typing out all of the
column names would be tiresome, so SQL lets you use a * to select all the columns. If we want
to look at the first 10 rows but all of the columns, we would use this query:

dbGetQuery(con, "
SELECT =*
FROM crime",
n = 3)

Warning: Column “XCoordinate : mixed type, first seen values of type string,
coercing other values of type integer

Warning: Column “YCoordinate : mixed type, first seen values of type string,
coercing other values of type integer

Warning: Column "Latitude’: mixed type, first seen values of type string,
coercing other values of type real

Warning: Column "Longitude’™: mixed type, first seen values of type string,
coercing other values of type real

ID CaseNumber Date Block IUCR
1 13311263 JG503434 07/29/2022 03:39:00 AM 023XX S TROY ST 1582
2 13053066 JG103252 01/03/2023 04:44:00 PM 039XX W WASHINGTON BLVD 2017
3 12131221 JD327000 08/10/2020 09:45:00 AM 015XX N DAMEN AVE 0326

PrimaryType Description LocationDescription

1 OFFENSE INVOLVING CHILDREN CHILD PORNOGRAPHY RESIDENCE

2 NARCOTICS MANUFACTURE / DELIVER - CRACK SIDEWALK

3 ROBBERY AGGRAVATED VEHICULAR HIJACKING STREET
Arrest Domestic Beat District Ward CommunityArea FBICode XCoordinate

1 true false 1033 010 25 30 17

2 true false 1122 011 28 26 18

3 true false 1424 014 1 24 03 1162795
YCoordinate Year UpdatedOn Latitude Longitude

1 2022 04/18/2024 03:40:59 PM

2 2023 01/20/2024 03:41:12 PM

3 1909900 2020 05/17/2025 03:40:52 PM 41.908417822 -87.67740693

Location

1 \r

2 \r

3 "(41.908417822, -87.67740693)"\r

In addition to showing us the first three rows in their entirety, we get some warnings here
regarding the coordinates of the crime that we will have to deal with later. The issue involves
how SQL stores missing values.

Just as SELECT filters the columns, the WHERE clause filters the rows. Note the use of
AND and OR in the WHERE clause. Here we select three columns: ID, Description, and
LocationDescription. Also, we want only rows where

e the value in the Beat column is “611”
e the value in the Arrest column is “true”
e the value in the TUCR column is either “0486” or “0498”

Importantly, note the use of single (not double) quotation marks in the WHERE line. The reason
is that if we used double quotes, then R will think that the double quote signals the end of
the query.

a <- dbGetQuery(con, "
SELECT ID, Description, LocationDescription
FROM crime
WHERE ((Beat=611) AND
(Arrest='true')) AND
((IUCR='0486"') OR (IUCR='0498'))")
show the first few rows of the results
head(a, 3)

ID Description LocationDescription

10

1 13248950 DOMESTIC BATTERY SIMPLE APARTMENT
2 13254239 DOMESTIC BATTERY SIMPLE SIDEWALK
3 13287327 DOMESTIC BATTERY SIMPLE APARTMENT

SQLite allows regular expressions in the WHERE clause. First you have to initialize the reg-
ular expression SQL extension. Then you can insert a regular expression after the keyword
REGEXP.

once per R session initialize regexp
initExtension(con, "regexp")
get crimes from beats that start with "12"
a <- dbGetQuery(con, "

SELECT Beat

FROM crime

WHERE Beat REGEXP '~[12]..$%'",

n=-1)

unique (a$Beat)

[1] 122 123 224 232 133 222 132 215 124 211 221 114 225 214 131 231 112 113 233
[20] 111 234 235 121 213 223 212 134

There is a full list of all available SQLite extensions. Frankly, I have only ever used the REGEXP
extension.

SQL does not like column names with special characters. Only letters (first character must be
a letter), numbers, and underscores (_). Column names also cannot be a SQL keyword, like
SELECT or WHERE. If you happen to have a table with any special characters, like periods,
hyphens, or spaces, you can “protect” the column name in square brackets. For example,
SELECT [incident id], [text-description], [location.description], [where].

4.1 Exercises

1. Select records from Beat 234
2. Select Beat, District, Ward, and Community Area for all “ASSAULT”s
3. Select records on assaults from Beat 234

4. Make a table of the number of assaults (IUCR 0560) by Ward

11

https://sqlite.org/src/file/ext/misc

5 GROUP BY and aggregation functions

We have already covered SQL clauses SELECT, WHERE, and FROM. The SQL function COUNT (*)
and GROUP BY are also very useful. For example, the following query counts how many assaults
(IUCR 0560) occurred by ward. COUNT() is a SQL “aggregate” function, a function that
performs a calculation on a group of values and returns a single number. Other SQL aggregate
functions include AVG(), MIN(), MAX(), and SUM(). This query will group all the records
by Ward and then apply the aggregate function COUNT() and report that value in a column
called crimecount. AS allows us to give clear column names in the results. Without the AS
crimecount column of counts would be called COUNT (%), which has several characters about
which SQL will complain.

a <- dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,
Ward
FROM crime
WHERE IUCR='0560"
GROUP BY Ward")
print(a)

crimecount Ward

1 29470

2 5306 1
3 8100 10
4 5085 11
5 4273 12
6 3859 13
7 4265 14
8 9556 15
9 11339 16
10 13662 17
11 6130 18
12 3546 19
13 10779 2
14 13107 20
15 11488 21
16 4350 22
17 4083 23
18 12604 24
19 5326 25
20 6479 26
21 11721 27

12

22 15148 28

23 8899 29
24 11767 3
25 4448 30
26 4499 31
27 3244 32
28 3004 33
29 11107 34
30 4468 35
31 3738 36
32 9354 37
33 3424 38
34 2935 39
35 8565 4
36 3734 40
37 3233 41
38 9691 42
39 2191 43
40 3173 44
41 3617 45
42 5200 46
43 2695 47
44 3967 48
45 5195 49
46 9269 5
47 3326 50
48 12936 6
49 11797 7
50 11727 8
51 11744 9

The GROUP BY clause is critical. If you forget it then the result is not well defined. That
is, different implementations of SQL may produce different results. The rule you should
remember is that “every non-aggregated column in the SELECT clause should appear in the
GROUP BY clause.” Here Ward is not part of the aggregate function COUNT () so it must appear
in the GROUP BY clause.

5.1 Exercises

5. Count the number of crimes by PrimaryType

6. Count the number of crimes resulting in arrest

13

7. Count the number of crimes by LocationDescription. LocationDescription is the
variable that tells us where (e.g., a parking lot, a barbershop, a fire station, a CTA train,
or a motel) a crime occurred

6 ORDER BY and UPDATE

MAX, MIN, SUM, AVG are common (and useful) aggregating functions. The ORDER BY clause sorts
the results for us. It is the SQL version of the sort() or arrange() functions. Here is an
illustration that gives the range of beat numbers in each policing district.

dbGetQuery(con, "
SELECT MIN(Beat) AS min_beat,
MAX (Beat) AS max_beat,
District
FROM crime
GROUP BY District
ORDER BY District")

min_beat max_beat District

1 124 2535

2 111 2535 001
3 131 2232 002
4 133 2222 003
5 324 2514 004
6 333 2233 005
7 123 2424 006
8 233 2431 007
9 333 2411 008
10 131 2522 009
11 133 2534 010
12 624 2535 011
13 111 2525 012
14 411 2535 014
15 726 2533 015
16 811 2521 016
17 734 2523 017
18 111 25633 018
19 112 2533 019
20 112 2433 020
21 2112 2112 021
22 214 2234 022

14

23 123 2433 024

24 725 2535 025
25 124 2535 031
26 1614 1614 16

Remember that the GROUP BY clause should include every element of the SELECT clause that
is not involved with an aggregate function. We have MIN() and MAX() operating on Beat, but
District is on its own and should be placed in the GROUP BY clause.

Let’s look at our Latitude and Longitude columns, which will be extremely useful for mapping
data points. The following query will give unexpected results.

dbGetQuery(con, "

SELECT MIN(Latitude) AS min_lat,
MAX (Latitude) AS max_lat,
MIN(Longitude) AS min_lon,
MAX (Longitude) AS max_lon,
District

FROM crime

GROUP BY District

ORDER BY District")

Warning: Column "max_lat™: mixed type, first seen values of type real, coercing
other values of type string

Warning: Column "max_lon : mixed type, first seen values of type real, coercing
other values of type string

min_lat max_lat min_lon max_lon District

1 41.69991 42.00030 -87.87742 -87.59533

2 36.61945 0.00000 -91.68657 0.00000 001
3 36.61945 0.00000 -91.68657 0.00000 002
4 36.61945 0.00000 -91.68657 0.00000 003
5 36.61945 0.00000 -91.68657 0.00000 004
6 36.61945 0.00000 -91.68657 0.00000 005
7 36.61945 0.00000 -91.68657 0.00000 006
8 36.61945 0.00000 -91.68657 0.00000 007
9 36.61945 0.00000 -91.68657 0.00000 008
10 36.61945 0.00000 -91.68657 0.00000 009
11 36.61945 0.00000 -91.68657 0.00000 010
12 36.61945 0.00000 -91.68657 0.00000 011
13 36.61945 0.00000 -91.68657 0.00000 012

15

14
15
16
17
18
19
20
21
22
23
24
25
26

36.
36.
36.
36.
36.
.80933
41.
41.
36.
36.
36.
41.
41.

41

61945
61945
61945
61945
61945

79145
83790
61945
61945
61945
64619
98531

.00000
.00000
.00000
.00000
.00000
.00000
.00000
41.83790

0.00000

0.00000

0.00000
42.01939
41.98552

O O OO O O o

-91.
-91.
-91.
-91.
-91.
-87.
-87.
-87.
-91.
-91.
-91.
-87.
-87.

68657 O
68657 0
68657 O
68657 0.
68657 O
76791 O
76303 O
62192 -87.
68657 0.
68657 0.
68657 0.
93973 -87.
83047 -87.

.00000
.00000
.00000
00000
.00000
.00000
.00000
62192
00000
00000
00000
53528
82900

014
015
016
017
018
019
020
021
022
024
025
031

16

We get some strange results here. max_lat equal to 0.0 is on the equator! It is doubtful that
Chicago reported any equatorial crimes. The problem is that we have some blank values in
Longitude and Latitude. Here are some of them.

dbGetQuery(con, "SELECT * FROM crime WHERE Longitude=''", n=3)

ID CaseNumber

1 13311263
2 13053066
3 11227634

[y

w N =

N

true
true
false

Date

JG503434 07/29/2022 03:39:00 AM
JG103252 01/03/2023 04:44:00 PM 039XX W WASHINGTON BLVD 2017
JB147599 08/26/2017 10:00:00 AM

PrimaryType
OFFENSE INVOLVING CHILDREN
NARCOTICS MANUFACTURE / DELIVER - CRACK SIDEWALK
CRIM SEXUAL ASSAULT
Arrest Domestic Beat District Ward CommunityArea FBICode XCoordinate
false 1033
false 1122
false 122
YCoordinate Year
2022 04/18/2024 03:40:59 PM
2023 01/20/2024 03:41:12 PM
2017 02/11/2018 03:57:41 PM

010
011
001

25
28
42

De
CHILD PO

NON-A

3

2
3

Block IUCR
023XX S TROY ST 15682

001XX W RANDOLPH ST 0281
scription LocationDescription
RNOGRAPHY RESIDENCE
GGRAVATED HOTEL/MOTEL
0 17

6 18
2 02

UpdatedOn Latitude Longitude Location

\r
\r
\r

Note that the Latitude and the Longitude columns are blank. Also, look at these

dbGetQuery(con, "SELECT * FROM crime where Latitude<36.61946", n=3)

16

ID CaseNumber Date Block IUCR PrimaryType

1 1482 HH367441 05/13/2002 05:00:00 AM 061XX S ARTESIAN ST 0110 HOMICIDE
838 G311269 05/29/2001 11:35:00 PM 059XX S MORGAN AV 0110 HOMICIDE

3 637 G005960 01/06/2001 10:35:00 AM 014XX N HARDING ST 0110 HOMICIDE
Description LocationDescription Arrest Domestic Beat District Ward

1 FIRST DEGREE MURDER HOUSE true false 825 008
2 FIRST DEGREE MURDER DUMPSTER true false 712 007
3 FIRST DEGREE MURDER STREET true false 2535 025
CommunityArea FBICode XCoordinate YCoordinate Year UpdatedOn
1 01A 0 0 2002 01/28/2024 03:40:59 PM
01A 0 0 2001 01/28/2024 03:40:59 PM
3 01A 0 0 2001 01/28/2024 03:40:59 PM
Latitude Longitude Location

1 36.61945 -91.68657 "(36.619446395, -91.686565684) "\r
2 36.61945 -91.68657 "(36.619446395, -91.686565684)"\r
3 36.61945 -91.68657 "(36.619446395, -91.686565684)"\r

The point (-91.68657, 36.61945) lands in Brandsville, Missouri, also a highly unlikely location
for Chicago crime.

We can tell SQLite to make the empty or missing values NULL, a more proper way to encode
that these rows have missing coordinates. The UPDATE clause edits our table. R will read in
NULL values as NA. After we do the update, we can rerun the MIN(), MAX() query. We can also
assign NULL to latitudes and longitudes that are very close to 0.

Note that we use dbExecute () when updating since we are not asking for any rows of data to
come back to us.

dbExecute(con, "
UPDATE crime SET Latitude=NULL
WHERE (Latitude='') OR (ABS(Latitude-0.0) < 0.01) OR (Latitude < 36.7)")

[1] 93655

dbExecute(con, "
UPDATE crime SET Longitude=NULL
WHERE (Longitude='') OR (ABS(Longitude-0.0) < 0.01) OR (Longitude < -91.6)")

[1] 93655

Let’s rerun that query and check that we get more sensible results.

17

dbGetQuery(con, "

SELECT MIN(Latitude) AS min_lat,
MAX (Latitude) AS max_lat,
MIN(Longitude) AS min_lon,
MAX (Longitude) AS max_lon,
District

FROM crime

GROUP BY District

ORDER BY District")

min_lat max_lat min_lon max_lon District

1 41.69991 42.00030 -87.87742 -87.59533

2 41.72827 41.98740 -87.84349 -87.54925 001
3 41.73298 41.97608 -87.70277 -87.56954 002
4 41.71424 41.79946 -87.73941 -87.55261 003
5 41.64467 41.79220 -87.72436 -87.52453 004
6 41.64459 41.88693 -87.73145 -87.54348 005
7 41.69249 42.01876 -87.77138 -87.55810 006
8 41.66806 42.01369 -87.68723 -87.57906 007
9 41.73453 42.01765 -87.80161 -87.55239 008
10 41.77015 41.97645 -87.71397 -87.60282 009
11 41.68357 41.94304 -87.74364 -87.61895 010
12 41.77163 41.90624 -87.76332 -87.62328 011
13 41.68544 41.96539 -87.76321 -87.60502 012
14 41.77688 42.01938 -87.80222 -87.65657 014
15 41.76641 41.94234 -87.77535 -87.63087 015
16 41.78464 42.01938 -87.93457 -87.58256 016
17 41.77950 42.01390 -87.75780 -87.66131 017
18 41.85952 41.96879 -87.76313 -87.60136 018
19 41.80933 41.98397 -87.76791 -87.58775 019
20 41.79145 42.00458 -87.76303 -87.62992 020
21 41.83790 41.83790 -87.62192 -87.62192 021
22 41.67709 41.85572 -87.74328 -87.58965 022
23 41.75988 42.02291 -87.79757 -87.62545 024
24 41.83930 41.94586 -87.81648 -87.64093 025
25 41.64619 42.01939 -87.93973 -87.53528 031
26 41.98531 41.98552 -87.83047 -87.82900 16

Now we have results that are more in line with where Chicago actually is. Make it a habit to
do some checks of your data before doing too much analysis.

18

And what city does the following plot have the shape of? Let’s plot the location of these
crimes. Plotting all 8 million would be overkill, so let’s take a random sample of 10,000 crimes.
Here is a SQL query that will randomly order the rows and select just the first 10,000. Does
the shape of the plot look right?

a <- dbGetQuery(con, "
SELECT Longitude, Latitude
FROM crime
ORDER BY RANDOM() -- scramble the order of the rows
LIMIT 10000")

plot(Latitude~Longitude, data=a,
pCh=” 0
xlab="Longitude", ylab="Latitude")

41.9
I

Latitude

41.7
I

-87.9 -87.8 -87.7 -87.6

Longitude

6.1 Exercises

8. Plot the longitude and latitude of all “ASSAULT”s for Ward 22

9. What is the most common (Long,Lat) for assaults in Ward 22?7 Add the point to your
plot using the points () function. points() simply draws a point (or sequence of points)
at the specified coordinates

19

And always disconnect when you are done.

dbDisconnect (con)

7 Solutions to the exercises

1. Select records from Beat 234

dbGetQuery(con, "
SELECT *
FROM crime
WHERE Beat=234",
n=5)

Warning: Column ~“XCoordinate : mixed type, first seen values of type integer,
coercing other values of type string

Warning: Column “YCoordinate ™ : mixed type, first seen values of type integer,
coercing other values of type string

ID CaseNumber Date Block IUCR
1 13208531 JG408244 08/01/2023 12:00:00 PM 054XX S EAST VIEW PARK 0820
2 13203370 JG415497 09/07/2023 07:30:00 PM 051XX S KENWOOD AVE 1310
3 13207450 JG420345 09/07/2023 01:54:00 PM 054XX S BLACKSTONE AVE 0890
4 13203210 JG415469 09/07/2023 06:30:00 PM 052XX S BLACKSTONE AVE 0890
5 13206379 JG418537 01/01/2007 04:40:00 PM 053XX S SHORE DR 1153
PrimaryType Description LocationDescription
1 THEFT $500 AND UNDER STREET
2 CRIMINAL DAMAGE TO PROPERTY APARTMENT
3 THEFT FROM BUILDING APARTMENT
4 THEFT FROM BUILDING APARTMENT
5 DECEPTIVE PRACTICE FINANCIAL IDENTITY THEFT OVER $ 300
Arrest Domestic Beat District Ward CommunityArea FBICode XCoordinate
1 false false 234 002 5 41 06 1188934
2 false true 234 002 4 41 14 1185980
3 false false 234 002 5 41 06 1186841
4 false false 234 002 4 41 06 1186800
5 false false 234 002 5 41 11 0
YCoordinate Year UpdatedOn Latitude Longitude
1 1869643 2023 09/14/2023 03:41:59 PM 41.79736 -87.58268

20

2 1871242 2023 09/15/2023 03:42:23 PM 41.80182 -87.59346

3 1869253 2023 09/15/2023 03:42:23 PM 41.79634 -87.59037

4 1870814 2023 09/15/2023 03:42:23 PM 41.80063 -87.59047

5 0 2007 09/16/2023 03:42:58 PM NA NA
Location

1 "(41.79736226, -87.582679493)"\r
2 "(41.801820311, -87.593461583)"\r
3 "(41.796341968, -87.590367054)"\r
4 "(41.80062644, -87.590467932)"\r
5 \r

2. Select Beat, District, Ward, and Community Area for all “ASSAULT”s

dbGetQuery(con, "
SELECT Beat, District, Ward, CommunityArea, PrimaryType
FROM crime
WHERE PrimaryType='ASSAULT'",
n=>5)

Beat District Ward CommunityArea PrimaryType

1 2515 0256 36 19 ASSAULT
2 1713 017 33 14 ASSAULT
3 631 006 6 44 ASSAULT
4 322 003 6 69 ASSAULT
5 1533 015 29 25 ASSAULT

3. Select records on assaults from Beat 234

dbGetQuery(con, "

SELECT *

FROM crime

WHERE (Beat=234) AND (PrimaryType='ASSAULT')",

n=5)

ID CaseNumber Date Block IUCR

1 13276965 JG502615 11/10/2023 09:00:00 AM 015XX E HYDE PARK BLVD 0560
2 13207370 JG420456 09/10/2023 05:19:00 PM 053XX S HYDE PARK BLVD 0560
3 13210166 JG421339 09/12/2023 01:30:00 PM 015XX E 53RD ST 0560
4 13273166 JG499223 11/10/2023 04:39:00 PM 015XX E 53RD ST 0560
5 13225905 JG442370 09/11/2023 04:15:00 PM 054XX S CORNELL AVE 0560

PrimaryType Description LocationDescription Arrest Domestic Beat District
1 ASSAULT SIMPLE ATHLETIC CLUB false false 234 002

21

2 ASSAULT SIMPLE APARTMENT false false 234 002
3 ASSAULT SIMPLE STREET false false 234 002
4 ASSAULT SIMPLE SMALL RETAIL STORE false false 234 002
5 ASSAULT SIMPLE APARTMENT false false 234 002

Ward CommunityArea FBICode XCoordinate YCoordinate Year
1 4 41 084 1187293 1871488 2023
2 5 41 08A 1188556 1870311 2023
3 4 41 08A 1187634 1870434 2023
4 5 41 08A 1187748 1870436 2023
5 5 41 08A 1188178 1869513 2023

UpdatedOn Latitude Longitude Location

1 11/18/2023 03:40:25 PM 41.80246 -87.58864 "(41.802464238, -87.588638554)"\r
2 09/18/2023 03:42:32 PM 41.79920 -87.58404 "(41.799204348, -87.584044296)"\r
3 09/20/2023 03:42:29 PM 41.79956 -87.58742 "(41.799563873, -87.587421525)"\r
4 11/18/2023 03:40:25 PM 41.79957 -87.58700 "(41.799566646, -87.5870034)"\r
5 09/30/2023 03:41:20 PM 41.79702 -87.58546 "(41.797023613, -87.585455951)"\r

4. Make a table of the number of assaults (IUCR 0560) by Ward

We could select all the IUCR, codes and ward with SQL and then filter and tabulate the data
in R.

system.time() reports how long it takes to run the SQL query
How long if we retrieve data from SQL and tabulate in R?
system. time(

{
data <- dbGetQuery(con, "
SELECT IUCR,Ward
FROM crime")
data |>
filter (IUCR=="0560") |>
count (Ward)
1))

user system elapsed
4.03 1.70 5.75

Or we could make SQL do all the work selecting and tabulating.

How long if we make SQL do all the work?
system.time (

{

22

a <- dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,
Ward
FROM crime
WHERE IUCR='0560"
GROUP BY Ward")
1))

user system elapsed
0.84 2.03 2.91

Generally, SQL will be much faster for general selecting, filtering, tabulating, and linking
data.

5. Count the number of crimes by PrimaryType

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount,
PrimaryType
FROM crime
GROUP BY PrimaryType")

crimecount PrimaryType
1 14368 ARSON
2 561234 ASSAULT
3 1528740 BATTERY
4 443840 BURGLARY
5 1620 CONCEALED CARRY LICENSE VIOLATION
6 27296 CRIM SEXUAL ASSAULT
7 954180 CRIMINAL DAMAGE
8 11220 CRIMINAL SEXUAL ASSAULT
9 225885 CRIMINAL TRESPASS
10 385782 DECEPTIVE PRACTICE
11 1 DOMESTIC VIOLENCE
12 14661 GAMBLING
13 13906 HOMICIDE
14 139 HUMAN TRAFFICKING
15 20090 INTERFERENCE WITH PUBLIC OFFICER
16 5077 INTIMIDATION
17 7483 KIDNAPPING
18 15357 LIQUOR LAW VIOLATION

23

19 428309 MOTOR VEHICLE THEFT

20 762793 NARCOTICS
21 38 NON - CRIMINAL
22 190 NON-CRIMINAL
23 9 NON-CRIMINAL (SUBJECT SPECIFIED)
24 945 OBSCENITY
25 60232 OFFENSE INVOLVING CHILDREN
26 162 OTHER NARCOTIC VIOLATION
27 522986 OTHER OFFENSE
28 70379 PROSTITUTION
29 215 PUBLIC INDECENCY
30 54633 PUBLIC PEACE VIOLATION
31 24 RITUALISM
32 313817 ROBBERY
33 34026 SEX OFFENSE
34 6052 STALKING
35 1780782 THEFT
36 124175 WEAPONS VIOLATION

6. Count the number of crimes resulting in arrest

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount, PrimaryType
FROM crime
WHERE Arrest='true'
GROUP BY PrimaryType")

crimecount PrimaryType
1 1774 ARSON
2 113725 ASSAULT
3 331346 BATTERY
4 25365 BURGLARY
5 1565 CONCEALED CARRY LICENSE VIOLATION
6 4365 CRIM SEXUAL ASSAULT
7 62083 CRIMINAL DAMAGE
8 816 CRIMINAL SEXUAL ASSAULT
9 153649 CRIMINAL TRESPASS
10 47750 DECEPTIVE PRACTICE
11 1 DOMESTIC VIOLENCE
12 14555 GAMBLING
13 6671 HOMICIDE
14 13 HUMAN TRAFFICKING

24

15 18407 INTERFERENCE WITH PUBLIC OFFICER

16 731 INTIMIDATION
17 798 KIDNAPPING
18 15207 LIQUOR LAW VIOLATION
19 32533 MOTOR VEHICLE THEFT
20 757836 NARCOTICS
21 6 NON - CRIMINAL
22 18 NON-CRIMINAL
23 3 NON-CRIMINAL (SUBJECT SPECIFIED)
24 700 OBSCENITY
25 11643 OFFENSE INVOLVING CHILDREN
26 108 OTHER NARCOTIC VIOLATION
27 92385 OTHER OFFENSE
28 70068 PROSTITUTION
29 211 PUBLIC INDECENCY
30 34107 PUBLIC PEACE VIOLATION
31 3 RITUALISM
32 29017 ROBBERY
33 8666 SEX OFFENSE
34 731 STALKING
35 193124 THEFT
36 90159 WEAPONS VIOLATION

Or, if we were not interested in differentiating based on the PrimaryType, we could simply do
the following:

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount
FROM crime
WHERE Arrest='true'")

crimecount
1 2120139

7. Count the number of crimes by LocationDescription

dbGetQuery(con, "
SELECT COUNT(*) AS crimecount, LocationDescription
FROM crime
GROUP BY LocationDescription
ORDER BY crimecount DESC")

25

crimecount
2192032
1379598
994878
760617
269956
202933
1863884
168253
146368
140867
135279
132886
124166
110961
104800
93644
75140
69131
63309
56098
47020
44857
41261
40430
39609
34389
33058
30249
29723
27692
27417
25021
24679
24674
23050
22458
22189
18560
17707
16296
15488
15296

LocationDescription

STREET

RESIDENCE

APARTMENT

SIDEWALK

OTHER

PARKING LOT/GARAGE(NON.RESID.)
ALLEY

SMALL RETAIL STORE

"SCHOOL, PUBLIC, BUILDING"
RESTAURANT

RESIDENCE-GARAGE

VEHICLE NON-COMMERCIAL
RESIDENCE PORCH/HALLWAY
DEPARTMENT STORE

GROCERY FOOD STORE

GAS STATION

RESIDENTIAL YARD (FRONT/BACK)
COMMERCIAL / BUSINESS OFFICE
PARK PROPERTY

CHA PARKING LOT/GROUNDS

BAR OR TAVERN

PARKING LOT / GARAGE (NON RESIDENTIAL)
CTA PLATFORM

CHA APARTMENT

DRUG STORE

CTA TRAIN

BANK

"SCHOOL, PUBLIC, GROUNDS"
HOTEL/MOTEL

CONVENIENCE STORE

CTA BUS

CHA HALLWAY/STAIRWELL/ELEVATOR
VACANT LOT/LAND

DRIVEWAY - RESIDENTIAL

OTHER (SPECIFY)

TAVERN/LIQUOR STORE

HOSPITAL BUILDING/GROUNDS
POLICE FACILITY/VEH PARKING LOT
RESIDENCE - PORCH / HALLWAY
AIRPORT/AIRCRAFT
CHURCH/SYNAGOGUE/PLACE OF WORSHIP
RESIDENCE - YARD (FRONT / BACK)

26

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

14770
14757
14656
14460
14329
14182
12409
12182
10698
10276
10258
8824
8779
8707
7838
7816
7582
7487
T4TT
7429
6892
6753
6727
5930
5787
5644
5615
5335
5290
4292
4243
4090
3877
3764
3603
3576
2822
2732
2703
2676
2603
2377
2369

GOVERNMENT BUILDING/PROPERTY
NURSING HOME/RETIREMENT HOME
RESIDENCE - GARAGE

CONSTRUCTION SITE

"SCHOOL, PRIVATE, BUILDING"
CURRENCY EXCHANGE

ABANDONED BUILDING

WAREHOUSE

CTA GARAGE / OTHER PROPERTY
ATHLETIC CLUB

CTA BUS STOP

BARBERSHOP

ATM (AUTOMATIC TELLER MACHINE)
CTA STATION

TAXICAB

SCHOOL - PUBLIC BUILDING

HOSPITAL BUILDING / GROUNDS
LIBRARY

MEDICAL/DENTAL OFFICE
FACTORY/MANUFACTURING BUILDING
SCHOOL - PUBLIC GROUNDS

HOTEL / MOTEL

OTHER RAILROAD PROP / TRAIN DEPQT
COLLEGE/UNIVERSITY GROUNDS
AIRPORT TERMINAL UPPER LEVEL - SECURE AREA
VEHICLE-COMMERCIAL

CLEANING STORE

SPORTS ARENA/STADIUM

"SCHOOL, PRIVATE, GROUNDS"

POLICE FACILITY / VEHICLE PARKING LOT
NURSING / RETIREMENT HOME

VACANT LOT / LAND

DAY CARE CENTER

CAR WASH

OTHER COMMERCIAL TRANSPORTATION
TAVERN / LIQUOR STORE

MOVIE HOUSE/THEATER

GOVERNMENT BUILDING / PROPERTY
ATIRPORT TERMINAL LOWER LEVEL - NON-SECURE AREA
APPLIANCE STORE

CHA PARKING LOT / GROUNDS

CHURCH / SYNAGOGUE / PLACE OF WORSHIP

27

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

1876
1668
1641
1532
1505
1399
1389
1321
1313
1306
1306
1286
1181
1169
11565
1141
1084
1080
1012
1005
981
962
924
921
910
898
825
763
760
745
722
706
698
597
596
592
526
520
472
467
437
430
407

AIRPORT PARKING LOT

MEDICAL / DENTAL OFFICE

AUTO / BOAT / RV DEALERSHIP

ATIRPORT BUILDING NON-TERMINAL - NON-SECURE AREA
SCHOOL - PRIVATE GROUNDS
COLLEGE/UNIVERSITY RESIDENCE HALL

AUTO

AIRPORT TERMINAL UPPER LEVEL - NON-SECURE AREA
FIRE STATION

JAIL / LOCK-UP FACILITY

ATIRPORT EXTERIOR - NON-SECURE AREA

VEHICLE - COMMERCIAL
LAKEFRONT/WATERFRONT/RIVERBANK

COIN OPERATED MACHINE

ATIRPORT TERMINAL LOWER LEVEL - SECURE AREA
SCHOOL - PRIVATE BUILDING
HIGHWAY/EXPRESSWAY

FEDERAL BUILDING

AIRPORT VENDING ESTABLISHMENT

POOL ROOM

AIRCRAFT

DELIVERY TRUCK

AIRPORT BUILDING NON-TERMINAL - SECURE AREA
CTA PARKING LOT / GARAGE / OTHER PROPERTY
ANIMAL HOSPITAL

CHA HALLWAY / STAIRWELL / ELEVATOR

BOWLING ALLEY

PAWN SHOP

SPORTS ARENA / STADIUM

OTHER RAILROAD PROPERTY / TRAIN DEPOT
FACTORY / MANUFACTURING BUILDING

HOUSE

BOAT/WATERCRAFT

AIRPORT EXTERIOR - SECURE AREA

"VEHICLE - OTHER RIDE SHARE SERVICE (LYFT, UBER, ETC.)"

CREDIT UNION

LAKEFRONT / WATERFRONT / RIVERBANK
BRIDGE

FOREST PRESERVE

"VEHICLE - OTHER RIDE SHARE SERVICE (E.G., UBER, LYFT)"

CEMETARY
VEHICLE - DELIVERY TRUCK
PORCH

28

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

404
396
383
331
330
286
272
245
202
175
167
152
144
123
111
103
84
75
75
71
60
51
40
39
35
29
28
27
27
27
22
20
20
19
18
18
17
17
13
13
11
11
11

COLLEGE / UNIVERSITY - GROUNDS
SAVINGS AND LOAN

MOVIE HOUSE / THEATER

VEHICLE - OTHER RIDE SERVICE

YARD

PARKING LOT

HIGHWAY / EXPRESSWAY

NEWSSTAND

CTA TRACKS - RIGHT OF WAY

ATRPORT TRANSPORTATION SYSTEM (ATS)
BOAT / WATERCRAFT

AIRPORT TERMINAL MEZZANINE - NON-SECURE AREA
VACANT LOT

COLLEGE / UNIVERSITY - RESIDENCE HALL
HALLWAY

RETAIL STORE

CASINO/GAMBLING ESTABLISHMENT
GARAGE

GANGWAY

GAS STATION DRIVE/PROP.

CHA PARKING LOT

CHA GROUNDS

TAVERN

CHA HALLWAY

BASEMENT

DRIVEWAY

VESTIBULE

STAIRWELL

HOTEL

BARBER SHOP/BEAUTY SALON

OFFICE

VEHICLE - COMMERCIAL: TROLLEY BUS
KENNEL

HOSPITAL

RATILROAD PROPERTY

CLUB

VEHICLE - COMMERCIAL: ENTERTAINMENT / PARTY BUS
SCHOOL YARD

LIQUOR STORE

"CTA ""L"" PLATFORM"

GARAGE/AUTO REPAIR

FARM

CTA PROPERTY

29

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

R e
O O O =

P P, R, R, R, R R DNNMNDNNMDNDNDNNDDNNDNNNNDMNDMNDMNODNDMNODNNDOWWWWOWWPS PSSP0 N NN O O

IICTA n "LII n TRAINH

VEHICLE-COMMERCIAL - TROLLEY BUS
VEHICLE-COMMERCIAL - ENTERTAINMENT/PARTY BUS

30

CHA STAIRWELL
TRUCK

CHA LOBBY

WOODED AREA

MOTEL

DUMPSTER

TAXI CAB

RIVER BANK

NURSING HOME
CHURCH

LAKE

TRAILER

RIVER

CHA PLAY LOT

YMCA

SEWER

HORSE STABLE

COACH HOUSE

CHA ELEVATOR

CHA BREEZEWAY
ROOMING HOUSE
PUBLIC HIGH SCHOOL
PUBLIC GRAMMAR SCHOOL
PRAIRIE

LIVERY STAND OFFICE
LAUNDRY ROOM
GOVERNMENT BUILDING
FACTORY

ELEVATOR

CTA SUBWAY STATION
COUNTY JAIL

CHURCH PROPERTY
BANQUET HALL
TRUCKING TERMINAL
ROOF

POOLROOM

POLICE FACILITY
LOADING DOCK
LIVERY AUTO

LAGOON

215
216
217
218
219

T

8. Plot the longitude and latitude of all “ASSAULT”s for Ward 22

a <

plo

Latitude

- dbGetQuery(con, "

SELECT Latitude, Longitude

FROM crime

WHERE PrimaryType='ASSAULT' AND Ward='22'")
t(Latitude~Longitude, data=a, pch=".")

41.80 41.82 41.84

I I I I I
-87.75 -87.74 -87.73 -87.72 -87.71

Longitude

9. What is the most common (Long,Lat) for assaults in Ward 227

b <

- dbGetQuery(con, "
SELECT COUNT (*) AS crimecount,
Latitude, Longitude
FROM crime
WHERE PrimaryType='ASSAULT' AND Ward=22
GROUP BY Latitude, Longitude
ORDER BY crimecount DESC

31

JUNK YARD/GARBAGE DUMP
FUNERAL PARLOR
EXPRESSWAY EMBANKMENT
CLEANERS/LAUNDROMAT

BEACH

LIMIT 1")

plot(Latitude~Longitude, data=a, pch=".")
points(Latitude~Longitude,

data=b,
pch=16,
col="salmon",
cex=2)
q. N -
o]
2 4
o <
o —
=]
2 o
T ©]
- — .
N anL
o] i
@ | oo
g | | | | |
-87.75 -87.74 -87.73 -87.72 -87.71
Longitude
b

crimecount Latitude Longitude
1 229 41.84905 -87.70883

[1] TRUE

32

	Introduction
	Getting the data into proper form
	Setting up the database
	SQL queries (SELECT, WHERE, FROM)
	Exercises

	GROUP BY and aggregation functions
	Exercises

	ORDER BY and UPDATE
	Exercises

	Solutions to the exercises

