Introduction to R

Greg Ridgeway
2025-11-29

Table of contents

9

Introduction

Basic Math and Functions in R

Combining values together into a collection (or vector)
Setting the working directory

Loading a first dataset, protests in the United States

5.1 Exercises

Filtering rows

6.1 Exercise e

Summarizing data

Mutate to edit and create new columns

81 Exercises e

Creating your own functions

10 Summarizing with groups of protests

10.1 Exercises

11 pivot_wider() /pivot_longer ()

12 Graphics and plots

13 Review

14 Solutions to the exercises

14
17

17

19
27

27

30
34

35
41
51

52

1 Introduction

This is the first set of notes for an introduction to R programming from criminology and
criminal justice. These notes assume that you have the latest version of R and RStudio
installed. We are also assuming that you know how to start a new script file and submit
code to the R console. From that basic knowledge about using R, we are going to start with
2+2 and by the end of this set of notes you will load in a dataset on protests in the United
States (mostly), create a few plots, count some incidents, and be able to do some basic data
manipulations. Our aim is to build a firm foundation on which we will build throughout this
set of notes.

R sometimes provides useful help as to how to do something, such as choosing the right function
or figuring what the syntax of a line of code should be. Let’s say we’re stumped as to what the
sqrt () function does. Just type ?sqrt at the R prompt to read documentation on sqrt().
Most help pages have examples at the bottom that can give you a better idea about how the
function works. R has over 7,000 functions and an often seemingly inconsistent syntax. As
you do more complex work with R (such as using new packages), the Help tab can be useful.

2 Basic Math and Functions in R

R, on a very unsophisticated level, is like a calculator.

2+2

1x2x3*4
(1+2+3-4) / (5%7)
sqrt(2)
(1+sqrt(5))/2 # golden ratio
2°3

log(2.718281828)
round(2.718281828,3)
1272

factorial(4)

abs(-4)

[1] 4

[1] 24

[1] 0.05714286
[1] 1.414214
[1] 1.618034
[1] 8

(1] 1

[1] 2.718
[1] 144
[1] 24
[1] 4

3 Combining values together into a collection (or vector)

We will use the c() function a lot. ¢() combines elements, like numbers and text to form a
vector or a collection of values. If we wanted to combine the numbers 1 to 5 we could do

c(1,2,3,4,5)

[1] 1 2345

With the ¢ () function, it’s important to separate all of the items with commas.

Conveniently, if you want to add 1 to each item in this collection, there’s no need to add 1 like
c(1+1,2+1,3+1,4+1,5+1) ... that’s a lot of typing. Instead R offers the shortcut

c(1,2,3,4,5)+1

[1] 23456

In fact, you can apply any mathematical operation to each value in the same way.

c(1,2,3,4,5)*2
sqrt(c(1,2,3,4,5))
(c(1,2,3,4,5)-3)"2
abs(c(-1,1,-2,2,-3,3))

(1] 2 4 6 8 10

[1] 1.000000 1.414214 1.732051 2.000000 2.236068
(1] 41014

(11 112233

Note in the examples below that you can also have a collection of non-numerical items. When
combining text items, remember to use quotes around each item.

c("CRIM6000", "CRIMB0OO1", "CRIM6002", "CRIM6003")
C(Ilyesll s Ilnoll , "HO“ ,NA,NA, Ilyesll)

[1] "CRIM600O" "CRIM6001" "CRIM6002" "CRIM6003"
[1] "yeS" |Inoll ||noll NA NA llyeSH

In R, NA means a missing value. We’ll do more exercises later using data containing some
NA values. In any dataset in the wild, you are virtually guaranteed to find some NAs. The
function is.na() helps determine whether there are any missing values (any NAs). In some
of the problems below, we will use is.na().

You can use double quotes or single quotes in R as long as you are consistent. When you have
quotes inside the text you need to be particularly careful.

"Lou Gehrig's disease"
'The officer shouted "halt!"'

[1] "Lou Gehrig's disease"
[1] "The officer shouted \"halt!\""

The backslashes in the above text “protect” the double quote, communicating to you and to
R that the next double quote is not the end of the text, but a character that is actually part
of the text you want to keep.

The c() function is not the only way to make a collection of values in R. For example, placing
a : between two numbers can return a collection of numbers in sequence. The functions rep()
and seq() produce repeated values or sequences.

1:10

(1] 1 2 3 4 5 6 7 8 910

Bs=5

[1] 56 4 3 2 1 0-1-2-3-4-5

c(1,1,1,1,1,1,1,1,1,1)

1] 1111111111

rep(1,10)

1] 1111111111

rep(c(1,2),each=b)

(1] 1111122222

seq(1l, 5)

[1] 12345

seq(1l, 5, 2)

[1] 1 35

R will also do arithmetic with two vectors, doing the calculation pairwise. The following will
compute 1411 and 2+12 up to 10+20.

1:10 + 11:20

[1] 12 14 16 18 20 22 24 26 28 30

Yet, other functions operate on the whole collection of values in a vector. See the following
examples:

sum(c(1,10,3,6,2,5,8,4,7,9)) # sum

[1] 55

length(c(1,10,3,6,2,5,8,4,7,9)) # how many?

[1] 10

cumsum(c(1,10,3,6,2,5,8,4,7,9)) # cumulative sum

[1] 1 11 14 20 22 27 35 39 46 55

mean(c(1,10,3,6,2,5,8,4,7,9)) # mean of collection of 10 numbers

[1] 5.5

median(c(1,10,3,6,2,5,8,4,7,9)) # median of same population

[1] 5.5

There are also some functions in R that help us find the biggest and smallest values.

example:

max(c(1,10,3,6,2,5,8,4,7,9)) # what is the biggest value in vector?

[1] 10

which.max(c(1,10,3,6,2,5,8,4,7,9)) # in which "spot" would we find it?

[1] 2

min(c(1,10,3,6,2,5,8,4,7,9)) # what is the smallest value in vector?

(1] 1

which.min(c(1,10,3,6,2,5,8,4,7,9)) # in which "spot" would we find it?

(1] 1

For

4 Setting the working directory

Now that we have covered a lot of fundamental R features, it is time to load in a real dataset.
However, before we do that, R needs to know where to find the data file. So we first need
to talk about “the working directory”. When you start R, it has a default folder or directory
on your computer where it will retrieve or save any files. You can run getwd() to get the
current working directory. Here’s our current working directory, which will not be the same
as yours.

getwd ()

[1] "C:/R4crim"

Almost certainly this default directory is mot where you plan to have all of your datasets
and files stored. Instead, you probably have an “analysis” or “project” or “Rdcrim” folder
somewhere on your computer where you would like to store your data and work.

Use setwd () to tell R what folder you want it to use as the working directory. If you do not
set the working directory, R will not know where to find the data you wish to import and will
save your results in a location in which you would probably never look. Make it a habit to
have setwd () as the first line of every script you write. If you know the working directory you
want to use, then you can just put it inside the setwd () function.

setwd("C:/Users/greg_/CRIM6002/notes/R4crim")

Note that for all platforms, Windows, Macs, and Linux, the working directory only uses forward
slashes. So Windows users be careful.. most Windows applications use backslashes, but in an
effort to make R scripts work across all platforms, R requires forward slashes. Backslashes
have a different use in R that you will meet later.

If you do not know how to write your working directory, here comes RStudio to the rescue. In
RStudio click Session -> Set Working Directory -> Choose Directory. Then click through to
navigate to the working directory that you want to use. When you find it click “Select Folder”.
Then look over at the console. RStudio will construct the right setwd () syntax for you. Copy
and paste that into your script for use later. No need to have to click through the Session
menu again now that you have your setwd() set up.

Now you can use R functions to load in any datasets that are in your working folder. If you
have done your setwd() correctly, you shouldn’t get any errors because R will know exactly
where to look for the data files. If the working directory that you’ve given in the setwd () isn’t
right, R will think the file doesn’t even exist. For example, if you give the path for, say, your
R4econ folder, R won’t be able to load data because the file isn’t stored in what R thinks is
your working directory. With that out of the way, let’s load a dataset.

5 Loading a first dataset, protests in the United States

We are going to use a dataset of protests in the United States. The data comes from CountLove.
The data is a collection of protests that occurred in the United States from 2017 through
January 2021. The data includes the date of the protest, the location, the number of attendees,
and the reason for the protest. We will load the data and explore it. They stopped collection in
February 2021, but you can find more recent crowd data at the Crowd Counting Consortium.

We start by loading in the dataset. I have created a .RData file containing the protest data.
This is stored in a special format that R can read quickly. The file is called protests.RData.
We will load this file into R using the 1load () function. Once we have loaded the data, we can
see what is in the dataset using the 1s() function. This will list all the objects in the current
environment. If you have just started using R, most likely the only object you see in your
environment is dataProtest.

load("protests.RData")
1sQ)

[1] "dataProtest"

To start exploring the protest data, have a look at how many rows (protests) and how many
columns (protest features) are in the dataset. Then use the head() function to show the first
few rows of the dataset.

how many rows?
nrow(dataProtest)

[1] 38097

how many columns?

ncol (dataProtest)
[1] 8
head(dataProtest)

Date Location Attendees
1 2017-01-15 Bowie State University, Bowie, MD 1500
2 2017-01-16 Johnson City, TN 300
3 2017-01-16 Indianapolis, IN 20

https://countlove.org/faq.html
https://ash.harvard.edu/programs/crowd-counting-consortium/

4 2017-01-16 Cincinnati, OH NA

5 2017-01-18 Hartford, CT 300
6 2017-01-19 Washington, DC NA
Event..legacy..see.tags.
1 Healthcare
2 Civil Rights
3 Environment
4 Other (Martin Luther King Jr.)
5 Healthcare (Pro-Planned Parenthood)
6 Executive
Tags Curated
1 Healthcare; For Affordable Care Act Yes
2 Civil Rights; For racial justice; Martin Luther King, Jr. Yes
3 Environment; For wilderness preservation Yes
4 Civil Rights; For racial justice; Martin Luther King, Jr. Yes
5 Healthcare; For Planned Parenthood Yes
6 Executive; Against 45th president Yes
1 http://www.capitalgazette.com/n
2 http://www.johnsoncitypress.com/Local/2017/01/16/Hundreds-march-to-honor-Martin-Luther-Kin,
3 http://wishtv.com/2017/01/16/nature-groups-pro
4 http://www.cincinnati.com/picture-gallery/news/20
5 http://www.realhartford.org
6 https://malvern-online.com/content/melee—n
Total.Articles
1 1
2 4
3 1
4 1
5 1
6 1

We learn that the dataset has 38097 rows and 8 columns. The head() function shows the
first few rows of the dataset. The first column is the date of the protest (Date), the second
is the location (Location), and the third is the number of attendees (Attendees). The fifth
column contains tags describing the purpose of the protest (Tags). The other columns contain
other details, like links to news articles about the protest. We will not be using these other

features.

Some R functionality relies on packages written by others. For certain basic data tasks, such
as selecting certain columns, filtering rows, modifying values, and summarizing data, we will
use the dplyr package (usually pronounced dee-ply-er... intended to evoke pliers for data). If
you do not have dplyr installed, you can install it by running install.packages("dplyr").

This is a one-time installation. Once per R session, you need to load the package using
library().

library(dplyr)

Now with dplyr loaded we can slice the protest data to just pick our certain rows, like the
first row.

slice(dataProtest, 1)

Date Location Attendees

1 2017-01-15 Bowie State University, Bowie, MD 1500
Event..legacy..see.tags. Tags Curated
1 Healthcare Healthcare; For Affordable Care Act Yes

Source

1 http://www.capitalgazette.com/news/ph-ac-cn-aca-rally-0116-20170115-story.html
Total.Articles
1 1

There is a more modern “grammar” in R using the pipe operator. This is a way to chain
together functions in a more readable way. The pipe operator is |>. It takes the output of the
function on the left and passes it as the first argument to the function on the right. Here is
the same code as above using the pipe operator.

dataProtest |> slice(1)

Date Location Attendees

1 2017-01-15 Bowie State University, Bowie, MD 1500
Event..legacy..see.tags. Tags Curated
1 Healthcare Healthcare; For Affordable Care Act Yes

Source

1 http://www.capitalgazette.com/news/ph-ac-cn-aca-rally-0116-20170115-story.html
Total.Articles
1 1

This code takes dataProtest and passes it in to the first argument of the slice() function.
The slice() function then returns the first row of the dataset. The code is more readable
this way.

You will also see many users using %>% in their code. The %>% pipe operator has been around
longer, but the newer |> pipe operator, created in 2021 for R 4.1.0, is faster. You can use
either one.

10

https://michaelbarrowman.co.uk/post/the-new-base-pipe/

If you want the first 3 rows you can also use slice()

dataProtest |> slice(1:3)

Date Location Attendees
1 2017-01-15 Bowie State University, Bowie, MD 1500
2 2017-01-16 Johnson City, TN 300
3 2017-01-16 Indianapolis, IN 20
Event..legacy..see.tags.
1 Healthcare
Civil Rights
3 Environment
Tags Curated
1 Healthcare; For Affordable Care Act Yes
2 Civil Rights; For racial justice; Martin Luther King, Jr. Yes
3 Environment; For wilderness preservation Yes
1 http://www.capitalgazette.com/n
2 http://www.johnsoncitypress.com/Local/2017/01/16/Hundreds-march-to-honor-Martin-Luther-Kin,
3 http://wishtv.com/2017/01/16/nature-groups-pro
Total.Articles
1 1
4
3 1

or you can use head () that we used earlier.

dataProtest |> head(3)

Date Location Attendees
1 2017-01-15 Bowie State University, Bowie, MD 1500
2 2017-01-16 Johnson City, TN 300
3 2017-01-16 Indianapolis, IN 20
Event..legacy..see.tags.
1 Healthcare
Civil Rights
3 Environment
Tags Curated
1 Healthcare; For Affordable Care Act Yes
2 Civil Rights; For racial justice; Martin Luther King, Jr. Yes
3 Environment; For wilderness preservation Yes

11

1 http://www.capitalgazette.com/n
2 http://www.johnsoncitypress.com/Local/2017/01/16/Hundreds-march-to-honor-Martin-Luther-Kin,

3 http://wishtv.com/2017/01/16/nature-groups-pro
Total.Articles

1 1

2 4

3 1

I have the general habit of running head() and tail() on any datasets I am working with
just to make sure it looks like what I expect. I encourage you to do the same. Many errors
can be avoided by just looking at the data.

We may also be interested in only a few columns of the dataset. We can use the select()
function to pick out the columns we want. For example, if we only want the date and location
of the protest, we can use the following code.

dataProtest |>
select (Date, Location) [>

head (3)
Date Location
1 2017-01-15 Bowie State University, Bowie, MD
2 2017-01-16 Johnson City, TN
3 2017-01-16 Indianapolis, IN

This code takes dataProtest and passes it to the select () function. The select () function
then returns only the Date and Location columns of the dataset. head(3) then returns the
first 3 rows of the dataset. Here you can see how the pipe operator can be used to chain
together functions in a readable way. Technically, this code is identical to

head(select(dataProtest, Date, Location), 3)

Date Location
1 2017-01-15 Bowie State University, Bowie, MD
2 2017-01-16 Johnson City, TN
3 2017-01-16 Indianapolis, IN

The computer does not care which approach you take. However, the potential problem with
this code is that there is so much distance between head and the 3 at the end. This distance

12

makes it harder to read, understand, and find errors. It will become even more important
when we chain many more functions together.

You can also get a column by name using the $ operator. For example, to get the
Date column you can use dataProtest$Date. To get the first 10 dates you can use
dataProtest$Date[1:10]. To get the first 10 locations you can use dataProtest$Location[1:10].

dataProtest$Date[1:10]

(1] "2017-01-15" "2017-01-16" "2017-01-16" "2017-01-16" "2017-01-18"
(6] "2017-01-19" "2017-01-19" "2017-01-20" "2017-01-20" "2017-01-20"

dataProtest$Location[1:10]

[1] "Bowie State University, Bowie, MD"

[2] "Johnson City, TN"

[3] "Indianapolis, IN"

[4] "Cincinnati, OH"

[6] "Hartford, CT"

[6] "Washington, DC"

[7] "Washington, DC"

[8] "University of Washington, Seattle, WA"
[9] "Westlake Park, Seattle, WA"

[10] "Columbus, OH"

So far every time we run some R code the results are dumped to the console. This is R’s
default behavior. If you do not indicate otherwise, it will dump the results to the console and
promptly forget those results. When we want to store the results, we can use the assignment
operator <-. For example, to save the first 10 dates to a variable a you can use

a <- dataProtest$Date[1:10]

To save the first 10 locations to a variable b you can use

b <- dataProtest$Location[1:10]

Now if we run 1s() we will see that we have two new variables a and b in our environment.
We can use these variables later in our code.

13

1s()

[1] "a" "p" "dataProtest"

If you want to see the contents of a variable you can just type the variable name and run the
code. For example, to see the contents of a you can run

a

(1] "2017-01-15" "2017-01-16" "2017-01-16" "2017-01-16" "2017-01-18"
(6] "2017-01-19" "2017-01-19" "2017-01-20" "2017-01-20" "2017-01-20"

If a line of R code does not have a <-, then the results will not be stored. I would like to
simplify our protest dataset by removing some columns that we will not use. I will use the
select () function to pick out the columns to keep and use the <- operator to replace the
original dataProtest with a new version of dataProtest that only has the columns I want.

dataProtest <- dataProtest |>
select(Date, Location, Attendees, Tags)

Now if you run head (dataProtest) you will see that the dataset only has the Date, Location,
Attendees, and Tags columns. The other columns have been removed. select() also allows
you to indicate which features to drop by prefixing their names with a minus sign. Instead of
listing the features we wanted to keep, we could have listed the features we wanted to drop,
using select(-Event..legacy..see.tags., -Source, -Curated, -Total.Articles).

5.1 Exercises

1. What is the date of the protest in line 10000 of the dataset?
2. Which protest type is in line 4289 of the dataset?

6 Filtering rows

We can ask every location if they equal “Philadelphia, PA”.

let's just ask the first 10, otherwise will print out the first 1,000
dataProtest$Location[1:10]=="Philadelphia, PA"

14

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Note the use of the double equal sign ==. This is the “logical” equal. It is not making Location
equal to Philadelphia, PA. It is asking if Location is equal to Philadelphia, PA. The result is
a vector of TRUE and FALSE values. If the location is Philadelphia, PA, then the result is TRUE.
If the location is not Philadelphia, PA, then the result is FALSE.

How many protests occurred in Philadelphia, PA?

dataProtest |>
filter(Location=="Philadelphia, PA") |>
nrow()

[1] 193

The filter() function is used to select rows that meet a certain condition. In this case,
we are selecting rows where the Location is equal to “Philadelphia, PA”. The expression
Location=="Philadelphia, PA" will evaluate to TRUE for any row where Location is identical
to “Philadelphia, PA” and FALSE otherwise. filter() will keep only those rows where the
logical expression evaluates to TRUE eliminating all others (NAs also get eliminated). The
nrow() function, which we met earlier, is used to count the number of rows in the dataset.
The result is the number of protests that occurred in Philadelphia, PA.

However, this count does not include those with locations like “University of Pennsylvania,

Philadelphia, PA”. For example, these ones:

dataProtest [>
filter(Location=="University of Pennsylvania, Philadelphia, PA")

Date Location Attendees

1 2018-02-22 University of Pennsylvania, Philadelphia, PA 130

2 2019-04-23 University of Pennsylvania, Philadelphia, PA 10

3 2019-04-23 University of Pennsylvania, Philadelphia, PA 50

4 2019-10-23 University of Pennsylvania, Philadelphia, PA NA
Tags

1 Guns; For greater gun control
2 Other; For animal welfare
3 Other; Against closure/relocation
4 Tmmigration; For compassionate immigration; Against invited speaker

15

The Location feature has the phrase “Philadelphia, PA”, but the Location is not exactly
identical to “Philadelphia, PA”. It is time to introduce you to grepl (), which is a very powerful
function for searching for patterns in text. For now, we will use it simply to search for
any Location containing the phrase “Philadelphia, PA”. grepl () returns TRUE if the phrase
is found and FALSE if it is not found. For example, to find all protests that occurred in
Philadelphia, PA, we can use the following code.

dataProtest |[>
filter(grepl("Philadelphia, PA", Location)) |[>

head (n=5)

Date Location Attendees
1 2017-01-21 Philadelphia, PA 50000
2 2017-01-26 Philadelphia, PA 2360
3 2017-01-29 Philadelphia International Airport, Philadelphia, PA 1910
4 2017-02-02 Philadelphia, PA 800
5 2017-02-04 Philadelphia City Hall, Philadelphia, PA 2000

Tags

1 Civil Rights; For women's rights; Women's March

2 Executive; Against 45th president

3 Immigration; Against travel ban

4 Immigration; Against travel ban

5 Immigration; Against travel ban

Now we have found many more protests in Philadelphia since some of them were at the airport
or at City Hall. Let’s redo that count.

dataProtest |>
filter(grepl("Philadelphia, PA", Location)) [>
nrow()

[1] 327

We will study grepl() and its variants a lot more later, but for now think of it as “Find”
in your word processor. If you are looking for a word in a document, you can use “Find” to

locate all instances of that word. grepl() is the same idea. It is looking for a phrase in a text
field.

We can include multiple conditions in the filter () function. For example, to find all protests
in Philadelphia, PA, before 2018 with more than 1,000 attendees, we can use the following
code. Note that & is the logical AND operator. It returns TRUE if both conditions are TRUE
and FALSE otherwise. The | operator is the logical OR operator. It returns TRUE if either
condition is TRUE and FALSE otherwise.

16

dataProtest |>
filter(grepl("Philadelphia, PA", Location) &
(Date <= "2017-12-31") &
(Attendees >= 1000))

Date Location Attendees
1 2017-01-21 Philadelphia, PA 50000
2 2017-01-26 Philadelphia, PA 2360
3 2017-01-29 Philadelphia International Airport, Philadelphia, PA 1910
4 2017-02-04 Philadelphia City Hall, Philadelphia, PA 2000
5 2017-03-02 Independence Mall, Philadelphia, PA 1000
6 2017-04-15 Philadelphia, PA 2000
7 2017-04-22 Philadelphia, PA 10000
8 2017-04-29 Philadelphia, PA 2000
9 2017-05-01 Philadelphia, PA 2000
10 2017-05-01 Philadelphia, PA 1000
11 2017-08-16 Philadelphia, PA 2000
Tags
1 Civil Rights; For women's rights; Women's March
2 Executive; Against 45th president
3 Immigration; Against travel ban
4 Immigration; Against travel ban
5 Civil Rights; For religious tolerance
6 Executive; Against 45th president; Tax returns
7 Other; For science; March for Science
8 Environment; Against climate change; People's Climate March
9 Immigration; For compassionate immigration; For worker rights; May Day
10 Collective Bargaining; For better compensation; May Day

11 Civil Rights; For racial justice; Against white supremacy; Charlottesville

6.1 Exercise

3. How many protests occurred in your home state? If not from the US just pick a state
like New York “NY” or California “CA” or Pennsylvania “PA”

4. Where did the protest in the last row of the full dataset occur?

7 Summarizing data

What is the average size of a protest? The summarize () function is used to calculate summary
statistics. For example, to calculate the average number of attendees at a protest, we can use

17

the following code.

dataProtest |>
summarize (mean (Attendees))

mean (Attendees)
1 NA

Hmmm... it looks like there are some missing values in the Attendees column. Rather than
just dropping them and computing the average of the rest, R forces us to be intentional about
handling NAs. If indeed we want to drop the NAs, then we can use the na.rm=TRUE argument
to remove the missing values before calculating the average.

dataProtest |>
summarize (mean(Attendees, na.rm=TRUE))

mean(Attendees, na.rm = TRUE)
1 643.8831

Perhaps we are interested in several data summaries at the same time. No problem. Just
include them all in summarize().

dataProtest |>
summarize (average = mean(Attendees, na.rm=TRUE),
median = median(Attendees, na.rm=TRUE),
minimum = min(Attendees, na.rm=TRUE),
max (Attendees, na.rm=TRUE),
sum(is.na(Attendees)))

maximum
NAcount

average median minimum maximum NAcount
1 643.8831 100 0 725000 15061

That was a lot of typing to get a complete set of summary statistics. The summary () function
is always available for that.

summary (dataProtest$Attendees)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 26.75 100.00 643.88 200.00 725000.00 15061

18

You can also use it to get a quick summary of the entire dataset.

summary (dataProtest)

Date Location Attendees Tags
Length:38097 Length:38097 Min. : 0.00 Length:38097
Class :character Class :character 1st Qu.: 26.75 Class :character
Mode :character Mode :character Median : 100.00 Mode :character

Mean : 643.88
3rd Qu.: 200.00
Max. :725000.00

NA's :15061

8 Mutate to edit and create new columns

The data does not contain a column for the state in which the protest occurred. We can create
this column by extracting the state from the Location column. The last two characters of
the Location column contain the state abbreviation. We can use the str_sub() function
from the stringr package to extract the last two characters of the Location column. The
str_sub() function is used to extract a substring from a string. For example, to extract the
last two characters of the string “Philadelphia, PA”, we can use the following code. Let’s load
the stringr and test out str_sub() on an example.

library(stringr)
str_sub("Philadelphia, PA", -2)

[1] "pA"

The first argument is the string from which to extract the substring. The second argument is
the starting position of the substring. A nice feature of str_sub() is that you can use negative
numbers which it interprets as characters from the end. So the -2 tells str_sub() to start at
the second to last character. The third argument is the ending position of the substring. Here
the -1 means the very last character of the string. If we do not include a third argument, then
str_sub() will extract the substring starting at the second argument and continuing to the
end of the string.

str_sub("Philadelphia, PA", -2)

[1] "PA"

19

There are other R functions that can extract substrings including substring(), substr(),
and gsub(). I am introducing you to str_sub() because it is the only one that lets you put
negative numbers in the second and third arguments to easily grab substrings from the end.
This is a very useful feature.

With str_sub() now in our toolbox, we can make a new column called state that contains

the state in which the protest occurred.

dataProtest <- dataProtest |>
mutate(state=str_sub(Location, -2))

head(dataProtest)
Date Location Attendees
1 2017-01-15 Bowie State University, Bowie, MD 1500
2 2017-01-16 Johnson City, TN 300
3 2017-01-16 Indianapolis, IN 20
4 2017-01-16 Cincinnati, OH NA
5 2017-01-18 Hartford, CT 300
6 2017-01-19 Washington, DC NA
Tags state
1 Healthcare; For Affordable Care Act MD
2 Civil Rights; For racial justice; Martin Luther King, Jr. TN
3 Environment; For wilderness preservation IN
4 Civil Rights; For racial justice; Martin Luther King, Jr. OH
5 Healthcare; For Planned Parenthood CT
6 Executive; Against 45th president DC

Peeking at the first few rows of dataProtest we can see that there is a new column with the
state abbreviation. Please always check that your code does what you intended to do. Run,
check, run, check, one line at a time.

So you can see that mutate () is useful for making new data features computed based on other
features. We also will use it to edit or clean up data. Let’s check what these state abbreviations
look like.

dataProtest |>
count (state)

state n

1 AK 252
AL, 281

3 AR 174

20

AZ
CA
cO0
CT
DC
DE
FL
Fl
GA
GU
HI
Hi
IA
ID
IL
IN
KS
KY
LA
MA
MD
ME
MI
MN
MO
MS
MT
Mi
NC
ND
NE
NH
NJ
NM
NV
NY
OH
0K
OR
PA
PR
RI
sSC

563
4439
813
708
536
115
1822

623
22
182

470
344
1273
700
293
821
330
1265
453
437
1410
47
800
187
294

1150
98
257
266
893
402
300
2688
1107
324
1368
1656
19
194
439

21

47 SD 101
48 TN 576
49 TX 1649
50 UT 421
51 VA 906
52 VT 337
53 WA 1375
54 WI 812
55 WV 266
56 wy 131

57 ce 1
58 co 1
59 iD 1
60 te 1
61 wA 1

Here I have used the count () function to count the number of protests in each state. It groups
the data by the state column and then counts the number of rows in each group. The result
is a new data frame with one column containing the state abbreviation (state) and another
column containing the number of protests in that state (count () will always call this one n).

Do you see some problems with our state abbreviations? I see an “F1”7, an “Hi”, and an “Mi”
and a few others that do not seem to be correctly capitalized. I also see some abbreviations
that are “CE” and “TE”, not states that I know of. Let’s take a closer look at these strange
ones. Note that I am introducing the %in% operator. This is a logical operator that asks each
value of state whether its value is in the collection to the right of %in%. It is a more compact
way to write state=="F1" | state=="Hi" | state=="Mi" | state=="ce" | state=="co"
| state=="iD" | state=="te" | state=="wA". Well, there. I have gone ahead and typed
that all out. I hope to never have to type a logical expression with so many ORs again.

dataProtest |>
filter(state %in¥ c(“Fl","Hi“,"Mi",“ce","co","iD",“te","wA")) [>
select(state, Location)

state Location
1 co Ciudad Juarez, Mexico
2 ce Space
3 F1 Panama City, F1
4 Mi Wyoming Godfrey-Lee High School, Wyoming, Mi
5 Hi Honolulu, Hi
6 wA Montesano, wA
7 iD City Hall, Pocatello, iD
8 te La Porte County Courthouse in La Porte

22

Perhaps even more straightforward, R has a built in list of state abbreviations, state.abb.
We can just filter those values of state that are not in this list (I will add Washington DC,
Puerto Rico, and Guam too).

dataProtest |>
filter(! (state %in% c(state.abb, "DC", "PR", "GU"))) |>
select(state, Location)

state Location
1 co Ciudad Juarez, Mexico
2 ce Space
3 F1 Panama City, F1
4 Mi Wyoming Godfrey-Lee High School, Wyoming, Mi
5 Hi Honolulu, Hi
6 wA Montesano, wA
7 iD City Hall, Pocatello, iD
8 te La Porte County Courthouse in La Porte

Lots of different kinds of errors here. Five of them are just lower case. One is in Mexico (we
need to drop this one). One is in Space (space is cool so let’s keep that one for fun), and one
is in La Porte, which I had to look up La Porte to find that it is in Indiana (IN). Let’s clean
this up using mutate().

dataProtest <- dataProtest |>

filter(state != "co") |> # drop Mexico
mutate(state =
case_match(state,
Ilcell ~ IISpacell,
Iltell ~ IIINII,

.default = toupper(state)))
dataProtest |>
count (state)

state n
1 AK 252
2 AL 281
3 AR 174
4 AZ 563
5 CA 4439
6 C0O 813
7 CT 708

23

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

DC
DE
FL
GA
GU
HI
IA
ID
IL
IN
KS
KY
LA
MA
MD
ME
MI
MN
MO
MS
MT
NC
ND
NE
NH
NJ
NM
NV
NY
OH
0K
OR
PA
PR
RI
SC
SD
Space
TN
TX
UT
VA
VT

536
115
1823
623
22
183
470
345
1273
701
293
821
330
1265
453
437
1411
747
800
187
294
1150
98
257
266
893
402
300
2688
1107
324
1368
1656
19
194
439
101

576
1649
421
906
337

24

51 WA 1376
52 WI 812
53 WV 266
54 wy 131

Several things are happening here. First, we are using case_match() to change the state
abbreviations. Note its structure. The first argument is the variable that we are matching
(state). Then we list all the changes that we want to make. We are changing “ce” to “Space”
and “te” to “IN”. The .default argument is used to keep all other state abbreviations the
same. The toupper () function is used to make sure that all state abbreviations are in upper
case. Finally we rerun the count() function to see if our changes worked. All looks good
now.

The last feature that we have yet to explore is the Tags column. This column contains a list of
reasons for the protest. The format of the tags is to have the reasons separated by a semicolon
and a space. For example, a protest might have the tags “Civil Rights; Against pandemic
intervention; Police brutality”. We can use the strsplit() function to split the tags into
separate reasons. For example, to split the tags in the first three rows of the dataset, we can
use the following code.

what does the tag look like originally?
dataProtest$Tags[1:3]

[1] "Healthcare; For Affordable Care Act"
[2] "Civil Rights; For racial justice; Martin Luther King, Jr."
[3] "Environment; For wilderness preservation"

now split it

strsplit(dataProtest$Tags[1:3], "; ")

[[1]1]

[1] "Healthcare" "For Affordable Care Act"
[[2]]

[1] "Civil Rights" "For racial justice"

[3] "Martin Luther King, Jr."

[[31]

(1] "Environment" "For wilderness preservation"

25

strsplit () returns a list structure. This is a structure in R that has no columns and rows.
Since each protest has a different number of tags, once we split them up, they do not fit neatly
into fixed columns. We can use unlist () to remove the list structure and create a long vector
of all of the tags. And I will use table(), sort(), and tail() to find the most common
reasons for a protest.

reasons <- strsplit(dataProtest$Tags, "; ")
reasons <- unlist(reasons)
table(reasons) |> sort() |> tail()

reasons
Immigration Other
3543 4556
Police For greater accountability
8254 8376
For racial justice Civil Rights
10575 14807

Clearly, Civil Rights has topped the list. We can use this information to create a new column
that is 1 if the protest has the tag “Civil Rights” and 0 otherwise.

dataProtest <- dataProtest |>
mutate(civilrights = as.numeric(grepl("Civil Rights", Tags)))

Just like before when we used grepl() to find any text matches for “Philadelphia, PA”, this
time we are using it to search Tags for any matches to “Civil Rights”. Again, it returns TRUE
if the pattern is found and FALSE otherwise. as.numeric() converts TRUE to 1 and FALSE to
0.

This script is getting long. I have done every step piece by piece with a lot of explanation in
between. In practice, you would not do this. You would combine everything into one pipeline
that takes in the original dataset and does all the filtering and mutating and selecting to get
you the dataset that you want. Here is everything we have done so far compactly written.

load("protests.RData")
dataProtest <- dataProtest |>
select(Date, Location, Attendees, Tags) |>
filter(Location != "Ciudad Juarez, Mexico") |>
mutate(state=str_sub(Location, -2),
state=case_match(state,
"ce" ~ "Space",
"te" ~ MIN",

26

.default = toupper(state)),
civilrights=as.numeric(grepl("Civil Rights", Tags)))
head(dataProtest)

Date Location Attendees
1 2017-01-15 Bowie State University, Bowie, MD 1500
2 2017-01-16 Johnson City, TN 300
3 2017-01-16 Indianapolis, IN 20
4 2017-01-16 Cincinnati, OH NA
5 2017-01-18 Hartford, CT 300
6 2017-01-19 Washington, DC NA
Tags state civilrights
1 Healthcare; For Affordable Care Act MD 0
2 Civil Rights; For racial justice; Martin Luther King, Jr. TN 1
3 Environment; For wilderness preservation IN 0
4 Civil Rights; For racial justice; Martin Luther King, Jr. OH 1
5 Healthcare; For Planned Parenthood CT 0
6 Executive; Against 45th president DC 0

8.1 Exercises

Which state had the most protests?
Which state had the least protests?
Which state had the most civil rights protests?

Create a new column that is 1 if the protest has the tag ‘Against pandemic intervention’

© 0 N = o

Which state had the most protests against pandemic interventions?

9 Creating your own functions

Part of what makes R so powerful and useful is that you can create your own functions. In
this way, the R user community can expand R’s capabilities to do new tasks. For example,
R does not have a built-in function to find the most common value in a collection. We can
create our own function to do this. Have a look at this sequence of steps.

a <- table(unlist(reasons))
a |> head()

27

Against 45th president Against 46th president

1543 3
Against abortion rights Against accusations
444 2
Against administrative leave Against advisor
6 12
max (a)
[1] 14807

ala==max(a)]

Civil Rights
14807

names (a[a==max(a)])

[1] "Civil Rights"

You have seen table() and unlist() in action earlier. Then I used max () to find the largest
number of protests for a single reason. Then I used the expression a[a==max(a)]. Inside the
square brackets, I ask each value of a (the table counts) if they equal the largest value. This
returns a logical vector of TRUE and FALSE values. The square brackets will then pick out
from a only those values where the logical expression a==max(a) evaluates to TRUE. I use this
approach rather than max () or head (1) because it is possible that there are multiple tags that
equal the maximum count. Finally, I used names () to get the name of the reason. I can pack
all of this into a new function called mostCommon ().

mostCommon <- function(x)

{
a <- table(x)
return(names(ala==max(a)]))

This function is now a part of our R session and we can use it as we have other functions like
max () or mean(). For example, to find the state with the most protests:

28

mostCommon (dataProtest$state)

[1] NCAM

Or the most common date for a protest.

mostCommon (dataProtest$Date)

(1] "2018-03-14"

What the most common date for civil rights protests in Texas?
dataProtest |[>

filter(state=="TX" & civilrights==1) |>
summarize (mostCommon (Date))

mostCommon (Date)
1 2020-06-06

What happened in Texas on 2020-06-067

dataProtest |>
filter(Date=="2020-06-06" & state=="TX") |>

count (Tags)
Tags n
1 Civil Rights; For racial justice; For greater accountability; Police 28
2 Civil Rights; For white supremacy; Counter protest 1
3 Guns; Against greater gun control 1

This is the height of the George Floyd protests. There were 28 protests recorded in Texas on
that day tagged with “Civil Rights; For racial justice; For greater accountability; Police”.

Let’s make a special collection of states that includes PA and all of its bordering states. We
can use this collection to filter the dataset to only include protests in these states.

PAplusBorderingstates <- c("PA","DE","MD","NJ","NY","OH","WV")
dataProtest |>

filter(state %inJ, PAplusBorderingstates) |[>

summarize (mostCommon (Date))

29

mostCommon (Date)
1 2018-03-14

As I did earlier, I used the %in% operator to ask each state in dataProtest whether it is a
member of the PAplusBorderingstates collection. This returns a logical vector of TRUE and
FALSE values. The filter () function then keeps only those rows where the logical expression
evaluates to TRUE.

Here we find that 2018-03-14 is the most common date for protests in Pennsylvania and its
bordering states. This particular pi-Day was the day of the National School Walkout to protest
gun violence.

dataProtest |[>
filter(Date=="2018-03-14" & state %inJ), PAplusBorderingstates) [>
count (Tags)

Tags

Civil Rights; For freedom of speech

Civil Rights; For racial justice; For greater accountability; Police
Environment; Against fossil fuels

Guns; Against greater gun control; Counter protest

Guns; For greater gun control

Guns; For greater gun control; National Walkout Day 262

D O WN
[N NS I e =

10 Summarizing with groups of protests

We can use the group_by() function to group the data by a certain feature. All subsequent
operations will be performed separately within each group. For example, let’s total the number
of protest attendees by state.

will double count protesters at multiple protests
dataProtest |>

group_by(state) |>

summarize (sum(Attendees, na.rm=TRUE)) |>

print (n=Inf)

A tibble: 54 x 2
state “sum(Attendees, na.rm = TRUE)"
<chr> <int>
1 AK 35987

30

© 00 NO O WN

SO PR D WWWWWWWWWWNDNNMNMMNMMNMNMNMNMNMNRERERPRPRPR,R PR PR PR R R R
D WONEFE O OO NSO P WNE O OO NOD OGP WNE,E O OWOODOUNOL O WNNE-O

AL
AR
AZ
CA
co
CT
DC
DE
FL
GA
GU
HI
IA
ID
IL
IN
KS
KY
LA
MA
MD
ME
MI
MN
MO
MS
MT
NC
ND
NE
NH
NJ
NM
NV
NY
OH
OK
OR
PA
PR
RI
SC
SD

34919
21859
224194
3190858
428654
106285
1460536
11280
413328
177400
945
65548
101200
45776
907239
95985
45736
111992
45151
507235
70662
80716
214651
253084
130153
21677
66652
230558
13599
72351
45947
166706
88496
95383
1730569
182713
74817
393032
391832
15420
35288
71799
16353

31

45 Space 0

46 TN 166575
47 TX 1136339
48 UT 93693
49 VA 127368
50 VT 68376
51 WA 490261
52 WI 211482
53 WV 31804
54 WY 11929

summarize () calculated the total number of attendees within each state. By default, R will
print only the first 10 rows of the dataset. I used print(n=Inf) to force R to print all the
rows

We can also calculate the average number of attendees at a protest in each state.

options(pillar.sigfig=5) # less rounding
dataProtest |>
group_by(state) |>
summarize (Total=sum(Attendees, na.rm=TRUE),
Average=mean (Attendees, na.rm=TRUE)) |[>
print (n=Inf)

A tibble: 54 x 3
state Total Average
<chr> <int> <dbl>

1 AK 35987 218.10
2 AL 34919 231.25
3 AR 21859 208.18
4 AZ 224194 640.55
5 CA 31908568 1191.1
6 CO 428654 865.97
7 CT 106285 238.84
8 DC 1460536 4651.4
9 DE 11280 163.48
10 FL 413328 382.36
11 GA 177400 476.88
12 GU 945 63

13 HI 65548 550.82
14 TIA 101200 328.57
15 ID 45776 293.44

32

16 IL 907239 1154.2

17 IN 956985 195.49
18 KS 45736 245.89
19 KY 111992 288.64
20 LA 45151 226.89
21 MA 507235 604.57
22 MD 70662 245.35
23 ME 80716 271.77
24 MI 214651 257.99
25 MN 253084 b562.41
26 MO 130153 309.15
27 MS 21677 216.77
28 MT 66652 320.44
29 NC 230558 347.75
30 ND 13599 209.22
31 NE 72351 411.09
32 NH 45947 268.70
33 NJ 166706 289.92
34 NM 88496 330.21
35 NV 95383 456.38
36 NY 1730569 1070.2
37 OH 182713 295.65
38 OK 74817 413.35
39 OR 393032 517.15
40 PA 391832 352.05
41 PR 15420 1401.8
42 RI 35288 273.55
43 SC 71799 276.15
44 SD 16353 247.77
45 Space 0 NaN

46 TN 166575 470.55
47 TX 1136339 1228.5
48 UT 93693 331.07
49 VA 127368 225.43
50 VT 68376 309.39
51 WA 490261 604.51
52 WI 211482 473.11
53 WV 31804 200.03
54 WY 11929 151

I used options(pillar.sigfig=5) to show more digits of precision in the output

Interested in which “state” has the largest average protest size? Use slice_max().

33

dataProtest |[>
group_by(state) |>
summarize (Average=mean(Attendees, na.rm=TRUE)) |[>
slice_max(Average)

A tibble: 1 x 2
state Average
<chr> <dbl>

1 DC 4651.4

We can also simply arrange the rows in descending order of average protest size.

dataProtest |>
group_by(state) [>
summarize (Average=mean (Attendees, na.rm=TRUE)) |>
arrange (desc(Average))

A tibble: 54 x 2
state Average
<chr> <dbl>

1 DC 4651.4
2 PR 1401.8
3 TX 1228.5
4 CA 1191.1
5 IL 1154.2
6 NY 1070.2
7 CO 865.97
8 AZ 640.55
9 MA 604 .57
10 WA 604.51

i 44 more rows

10.1 Exercises

10. Are civil rights protests larger on average than non-civil rights protests? (Hint: use
group__ by /summarize)

34

11 pivot_wider () /pivot_longer ()

Note: You may encounter code with melt (), cast(), reshape(), gather(), and spread().
All of these are legacy versions of pivot_wider () and pivot_longer().

pivot_wider () and pivot_longer() reorganize datasets between “wide” and “long” form.

pivot_longer () takes many side-by-side columns (say, one column per year) and stacks them
into two neat columns, one that says “which year” and one that shows the value, so your table
becomes taller and easier to plot or compare. pivot_wider() does the opposite. It takes a
tall list of items (like many rows per state and year) and spreads them back out so each thing
gets its own column, making the table wider and easier to read at a glance.

pivot_wider () and pivot_longer () are in the tidyr package.

library(tidyr)

Let’s say that we are interested in determining which states have fewer civil rights protesters
than non-civil rights protesters. With our existing group_by () and summarize () skills we can
tabulate the number of protesters by state and by type of protest.

dataProtest |>
group_by(state, civilrights) |[>
summarize (totAttendees = sum(Attendees, na.rm=TRUE))

“summarise()~ has grouped output by 'state'. You can override using the
T.groups’ argument.

A tibble: 107 x 3
Groups: state [54]
state civilrights totAttendees

<chr> <dbl> <int>
1 AK 0 15512
2 AK 1 20475
3 AL 0 11321
4 AL 1 23598
5 AR 0 8902
6 AR 1 12957
7 AZ 0 124949
8 AZ 1 99245
9 CA 0 701194
10 CA 1 2489664

i 97 more rows

35

Now we can see the protester counts for civil rights and non-civil rights protest for each state.
However, it is not clear how to compare the rows within each state.

This is where pivot_wider() comes in handy. We tell pivot_wider() to take the
civilrights column and spread its values across columns, creating a column for non-civil
rights protester counts and another column for civil rights protester counts. The values that
will fill the new table come from totAttendees. Since civilrights takes values 0 and 1, 1
have asked pivot_wider () to paste “CR” in front of the values so that we get valid R column
names.

dataProtest |[>
group_by(state, civilrights) [>
summarize (totAttendees = sum(Attendees, na.rm=TRUE)) |[>
pivot_wider(names_from = civilrights,
values_from = totAttendees,
names_prefix = "CR")

“summarise ()~ has grouped output by 'state'. You can override using the
T.groups’ argument.

A tibble: 54 x 3
Groups: state [54]

state CRO CR1

<chr> <int> <int>
1 AK 15512 20475
2 AL 11321 23598
3 AR 8902 12957
4 AZ 124949 99245
5 CA 701194 2489664
6 CO 88782 339872
7 CT 52659 53626
8 DC 477601 982935
9 DE 5507 5773
10 FL 222991 190337

i 44 more rows

Almost done. We just need to filter those with fewer civil rights protesters.

dataProtest |[>
group_by(state, civilrights) |[>
summarize (totAttendees = sum(Attendees, na.rm=TRUE)) |>
pivot_wider(names_from = civilrights,

36

values_from = totAttendees,
names_prefix = "CR") |[>
filter(CR1 < CRO)

“summarise ()~ has grouped output by 'state'.
T.groups” argument.

You can override using the

A tibble: 11 x 3
Groups: state [11]
state CRO CR1
<chr> <int> <int>
1 AZ 124949 99245
2 FL 222991 190337
3 GU 715 230
4 HI 36868 28680
5 ID 27156 18620
6 IN 49362 46623
7 MT 37871 28781
8 OK 50503 24314
9 PR 15320 100
10 VA 69230 58138
11 WV 24431 7373

Spreading the columns out wide made it easier to make our calculation within each state.
There is usually a way to avoid pivot_wider () and still get the right answer. For example,

dataProtest |>
group_by(state) [>

summarize (CRO = sum(if_else(civilrights == 0,
Attendees, 0, missing = 0), na.rm = TRUE),
CR1 = sum(if_else(civilrights == 1,
Attendees, 0, missing = 0), na.rm = TRUE)) |[>

filter(CR1 < CRO)

A tibble: 11 x 3
state CRO CR1
<chr> <dbl> <dbl>

1 AZ 124949 99245
2 FL 222991 190337
3 GU 715 230
4 HI 36868 28680

37

© 00 N O O

10
11

This approach requires a little trick with the if_else (), including the value of Attendees in
the sum if the associated protest is/is not a civil rights protest. Still, having pivot_wider ()

in

Let’s try an example that is a little more complicated. We will determine which states had
the largest percent increase in protesters in 2020 compared to the average annual number of
protesters 2017-2019. For each state we need a total for 2020 and an average annual number

ID 27156 18620

IN 49362 46623
MT 37871 28781
0K 50503 24314
PR 15320 100
VA 69230 58138
WV 24431 7373

your toolbox will come in handy.

across 2017, 2018, and 2019.

First, let’s derive a few helpful columns. Extract the year from Date and label that year as
either 2017-2019 or as 2020. Note that I used 2017 _2019 with an underscore as the label since

R

can confuse a hyphen for a minus sign.

dataProtest |>

o O WN -

filter(Date < "2021-01-01") |[>
mutate(year = substring(Date, 1, 4) |> as.numeric(),
timePeriod = ifelse(year %in% 2017:2019,
"2017_2019",
"2020")) |>
select (Attendees, civilrights, Date, year, timePeriod) |[>
head ()

Attendees civilrights Date year timePeriod
1500 0 2017-01-15 2017 2017_2019

300 1 2017-01-16 2017 2017_2019

20 0 2017-01-16 2017 2017_2019

NA 1 2017-01-16 2017 2017_2019

300 0 2017-01-18 2017 2017_2019

NA 0 2017-01-19 2017 2017_2019

Second, we can get the total number of protesters by state and time period.

38

dataProtest |>
filter(Date < "2021-01-01") |[>
mutate(year = substring(Date, 1, 4) |> as.numeric(),
timePeriod = ifelse(year %inj, 2017:2019,

"2017_2019",
"2020")) |>

group_by(state, timePeriod) [>

summarize (totProtesters = sum(Attendees, na.rm=TRUE))

“summarise ()~ has grouped output by 'state'. You can override using the
T.groups” argument.

A tibble: 107 x 3
Groups: state [54]
state timePeriod totProtesters

<chr> <chr> <int>
1 AK 2017_2019 30781
2 AK 2020 5196
3 AL 2017 _2019 26629
4 AL 2020 7710
5 AR 2017_2019 15652
6 AR 2020 6197
7 AZ 2017_2019 189960
8 AZ 2020 33223
9 CA 2017_2019 2797687
10 CA 2020 391038

i 97 more rows

The result is still “grouped” at this point. Be sure to ungroup() so that subsequent calcu-
lations do not just occur within each group. The sequence group()/summarize()/ungroup()
is so common that there is a shortcut using .by. Either ungroup() or use .by. Then we
pivot_wider().

dataProtest |>
filter(Date < "2021-01-01") |[>
mutate(year = substring(Date, 1, 4) |> as.numeric(),
timePeriod = ifelse(year %inj% 2017:2019,

"2017_2019",
"2020")) |>

summarize (totProtesters = sum(Attendees, na.rm=TRUE),

.by = c(state, timePeriod)) |[>

39

pivot_wider(names_from = timePeriod,

names_prefix = "year",
values_from = totProtesters,
values_£fill = 0) |[>

arrange (state)

A tibble: 54 x 3
state year2017_2019 year2020

<chr> <int> <int>

1 AK 30781 5196
2 AL 26629 7710
3 AR 15652 6197
4 AZ 189960 33223
5 CA 2797687 391038
6 CO 382137 44987
7 CT 75083 30427
8 DC 1393990 64540
9 DE 6935 4195
10 FL 331471 81351

i 44 more rows

Finally, we are in a position to compute the percent change, sort, and display those states
with the largest percentage change.

dataProtest |>
filter(Date < "2021-01-01") |>
mutate(year = substring(Date, 1, 4) |> as.numeric(),
timePeriod = ifelse(year %inj, 2017:2019,

"2017_2019",
"2020")) |>

summarize (totProtesters = sum(Attendees, na.rm=TRUE),

.by = c(state, timePeriod)) |[>
pivot_wider (names_from = timePeriod,

names_prefix = "year",
values_from = totProtesters,
values_fill = 0) |>

mutate(ave2017_2019 = year2017_2019/3,

pctChange = 100*(year2020-ave2017_2019) /ave2017_2019) |>
select(state, pctChange) |>
slice_max(pctChange, n = 5)

40

A tibble: 5 x 2
state pctChange

<chr> <dbl>
1 ND 180.08
2 SC 153.41
3 VA 128.58
4 LA 126.00
5 MS 125.13

12 Graphics and plots

We will finish our introduction to R by exploring Tags a little more through some barplots

and a word cloud.

I will start with a special version of mostCommon() that will take a collection of tags and
return the most common tag. This will allow us to find the most common protest type in the
dataset. This function splits up the tags as we did before, and then applies mostCommon () to

the resulting collection of tags.

mostCommonType <- function(x)

{

reasons <- strsplit(x, "; ")
reasons <- unlist(reasons)

return(mostCommon(reasons))

}

test it out
dataProtest$Tags[1:10]

[1]
[2]
(3]
[4]
(5]
(6]
[7]
(8]
(9]
[10]

"Healthcare; For Affordable Care Act"

"Civil Rights; For racial justice; Martin Luther King, Jr."
"Environment; For wilderness preservation"

"Civil Rights; For racial justice; Martin Luther King, Jr."
"Healthcare; For Planned Parenthood"

"Executive; Against 45th president"

"Executive; For 45th president; Counter protest"

"Civil Rights; For racial justice; Against invited speaker"
"Executive; Against 45th president"

"Civil Rights; For women's rights; Women's March"

41

mostCommonType (dataProtest$Tags[1:10])

[1] "Civil Rights"

Now we can use mostCommonType() to find the most common protest type in the dataset.
Note that mostCommonType () can return more than one value. summarize() will complain if
it gets more than one value.

dataProtest |>
group_by(state) [>
summarize (mostCommonType (Tags)) |>
print (n=Inf)

Warning: Returning more (or less) than 1 row per “summarise() group was deprecated in
dplyr 1.1.0.
i Please use “reframe() instead.
i When switching from “summarise()”~ to “reframe()~, remember that “reframe()"
always returns an ungrouped data frame and adjust accordingly.

“summarise ()~ has grouped output by 'state'. You can override using the
T.groups” argument.

A tibble: 58 x 2

Groups: state [54]
state “mostCommonType(Tags) "
<chr> <chr>

1 AK Civil Rights
2 AL Civil Rights
3 AR Civil Rights
4 AZ Civil Rights
5 CA Civil Rights
6 CO Civil Rights
7 CT Civil Rights
8 DC Civil Rights
9 DE Civil Rights
10 FL Civil Rights
11 GA Civil Rights
12 GU Civil Rights
13 GU Other

14 HI Other

42

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

IA
ID
IL
IN
KS
KY
LA
MA
MD
ME
MI
MN
MO
MS
MT
NC
ND
NE
NH
NJ
NM
NV
NY
0H
0K
OR
PA
PR
PR
PR
RI
SC
SD
Space
Space
TN
TX
UuT
VA
VT
WA
WI
Wwv

Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil

Against corruption
Against state executive

Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights

Executive

Civil
Civil
Civil

Against 45th president

Rights
Rights
Rights

Executive

Civil
Civil
Civil
Civil
Civil
Civil
Civil
Civil

Rights
Rights
Rights
Rights
Rights
Rights
Rights
Rights

43

58 WY Civil Rights

So let’s redo that with reframe() instead. reframe() is like summarize() but allows for
multiple values.

dataProtest |>
group_by(state) [>
reframe (mostCommonType(Tags)) |>
print (n=Inf)

A tibble: 58 x 2
state “mostCommonType(Tags) "
<chr> <chr>

1 AK Civil Rights
2 AL Civil Rights
3 AR Civil Rights
4 AZ Civil Rights
5 CA Civil Rights
6 CO Civil Rights
7 CT Civil Rights
8 DC Civil Rights
9 DE Civil Rights
10 FL Civil Rights
11 GA Civil Rights
12 GU Civil Rights
13 GU Other

14 HI Other

15 IA Civil Rights

16 ID Civil Rights
17 IL Civil Rights
18 IN Civil Rights
19 KS Civil Rights
20 KY Civil Rights

N
g

LA Civil Rights
MA Civil Rights
MD Civil Rights
ME Civil Rights

N NN
oW N

25 MI Civil Rights
26 MN Civil Rights
27 M0 Civil Rights

N
(o0}

MS Civil Rights
MT Civil Rights

N
©

44

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

NC Civil Rights
ND Civil Rights
NE Civil Rights
NH Civil Rights
NJ Civil Rights
NM Civil Rights
NV Civil Rights
NY Civil Rights
OH Civil Rights
OK Civil Rights
OR Civil Rights
PA Civil Rights

PR Against corruption
PR Against state executive
PR Executive

RI Civil Rights
SC Civil Rights
SD Civil Rights
Space Against 45th president
Space Executive

TN Civil Rights
TX Civil Rights
UT Civil Rights
VA Civil Rights
VT Civil Rights
WA Civil Rights
WI Civil Rights
WV Civil Rights
WY Civil Rights

So why does Puerto Rico show up three times in these results?

da

taProtest |>
filter(state=="PR") |>
pull(Tags) |>
strsplit("; ") [>
unlist() [>

table() |>

sort ()

Against austerity measures

45

Day Without a Woman

1 1

Families Families Belong Together

1 1

For greater accountability For racial justice
1 1

For women's rights For worker rights

1 1

May Day Police

1 1

Civil Rights For compassionate immigration

2 2

Immigration For Puerto Rico aid

2 3

Other Against corruption

4 11

Against state executive Executive
11 11

There are three tags all with 11 protests each, a three-way tie for the largest number of protests.
So mostCommonType () returns all three tags

R has a lot of built-in functions for creating plots and graphics. We will use the barplot ()
function to create a bar plot of the average number of attendees at protests in each state.

a <- dataProtest |>

group_by(state) |>

summarize (Attendees=mean(Attendees, na.rm=TRUE))
barplot (a$Attendees, names.arg = a$state)

46

4000

2000

oool ﬂHﬂnﬂﬂnﬂﬂﬂﬂﬂHﬂﬂHﬂHﬂﬂﬂ DHDDDDDDD

AK CT HI KS Ml NC NV PA TN Wi

0
I

The state name labels are too big so we can shrink the “character expansion” (cex) by half.

barplot(a$Attendees, names.arg = a$state, cex.names=0.5)

4000

2000

ooo ﬂHﬂnﬂﬂnﬂﬂﬂﬂﬂHﬂﬂHﬂHﬂﬂﬂ DHDDDDDDD

0
I

AK AZ CT FL HI IL KY MD MN MT NE NM OH PA SC TN VA Wi

47

We can also make the plot horizontal.

barplot(a$Attendees, names.arg = a$state,
cex.names=0.3,
horiz=TRUE,
col="seagreen",
x1im=c(0,5000))

AK CO GA ID KY MI NC NM OR SD VA Wy

I I I I I I
0 1000 2000 3000 4000 5000

We can also create a bar plot of the number of protests for the top 5 reasons.

reasons <- dataProtest$Tags |>
strsplit("; ") |>
unlist() |>

table() |>
sort (decreasing = TRUE) [>
head (5)

barplot(reasons,
ylab="Number of Protests",
xlab="Protest Reason",
cex.names = 0.6) # shrink bar labels 30

48

10000
I

Number of Protests

0 4000

Civil Rights For racial justice Police Other

Protest Reason

For figures and plots, always use a vector graphics format. That means export your graphics
using SVG or EMF. These formats are scalable and will look good at any size. You can insert
these graphics into Word, PowerPoint, or Google Docs. PNG graphics tend to look blurry in
reports and presentations. Show some pride in your data work by making sure that your final
product looks great. Stick with SVG or EMF or another vector graphics format.

We will end with a beautiful word cloud of the protest tags.

library(wordcloud?2)
dataProtest$Tags |>
strsplit(split="; ") |[>
unlist() [>
table() [|>
wordcloud2 ()

file:///C:/Users/greg_/AppData/Local/Temp/RtmpCIlu42k/file754850c72a9b/widget75486b481d79.htm

49

50

13 Review

As you saw in this script, R has a lot of functions. We started off figuring out how to set our
file path so R knows where to look for files. We loaded the data from a .RData file and we
listed all the objects in R’s environment.

o setwd() set working directory
e load() load R objects saved in a .RData file
e 1s() list objects in the R environment

R, of course, has all the basic math operations that you might need to do with a set of numbers.
Like

e sqrt()

e log(), note that log() is the natural log as it is in most mathematical programming
languages

e round() round to the nearest integer

e abs() absolute value

e length() number of elements in a collection

e cumsum() cumulative sum

e sum(), mean(), median(), min(), max()

Then we worked through some basic functions to work with R objects.

e c() combine numbers and other R objects together in a collection
e nrow(), ncol()
e head(), tail()

When working with datasets, we covered all the standard functions needed to manipulate
data.

e slice(), slice_max(), slice_min() pick out rows by their position in the dataset or
by the max/min values

e filter() pick out rows based on a logical expression about what is in that row

e select() pick out columns by name

e count() count the number of rows in a dataset or the number of rows in a dataset by
groups

e mutate() create new columns or edit existing columns

e str_sub() extract substrings from a string

e case match() used inside mutate() to create new columns based on the values in an-
other column

e group_by(), summarize(), reframe () used to summarize data by groups

e arrange() sort rows in a dataset

e pivot_wider() and pivot_longer () to organize data in wide or long form

o1

We also covered some more advanced functions.

o grepl() search for patterns in text

e summary () get a summary of a dataset or any set of numbers
e sort() sort a collection of numbers

e unlist() remove the list structure from a list

e names() get the names of the elements in a collection

e as.numeric() convert objects to numbers, we specifically converted logical values to 1s
and Os
e strsplit() split a string into a list of substrings

And we made some graphics too.

e barplot() create a bar plot
e wordcloud2() create a word cloud

In addition we even created our own new functions!

e mostCommon () find the most common value in a collection
e mostCommonType () find the most common tag in a string containing semi-colon separated
tags

Before looking at the solutions, try out the exercises for yourself. All the skills you will be
learning build on the fundamentals presented in this script. It would be a good idea to go
through this a second time to make sure you understand everything.

14 Solutions to the exercises

1. What is the date of the protest in line 10000 of the dataset?
dataProtest |>

slice(10000) |>
select (Date)

Date
1 2018-03-24

2. Which protest type is in line 4289 of the dataset?
dataProtest |>

slice(4289) [>
select(Tags)

02

Tags
1 International; For Palestine; Israel

3. How many protests occurred in your home state?

dataProtest |>
filter(state == "CA") |>
count ()

n
1 4439

4. Where did the protest in the last row of the full dataset occur?

dataProtest |>
select(state, Location) |>
tail(1)

state Location
38096 CA San Francisco, CA

5. Which state had the most protests?

dataProtest |>
count (state) |>
slice_max(n,
with_ties = TRUE) # in case of ties

state n
1 CA 4439

6. Which state had the least protests?

dataProtest |>
count (state) [>
slice_min(n, with_ties = TRUE)

state n
1 Space 1

7. Which state had the most civil rights protests?

53

dataProtest |>
filter(civilrights==1) |[>
count (state) |[>
slice_max(n, with_ties = TRUE)

state n
1 CA 1424

8. Create a new column that is 1 if the protest has the tag ‘Against pandemic intervention’

dataProtest <- dataProtest |>
mutate (pandemic = as.numeric(grepl("Against pandemic intervention", Tags)))

9. Which state had the most protests against pandemic interventions?

dataProtest |>
filter(pandemic == 1) |[>
count (state) |>
slice_max(n, with_ties = TRUE)

state n
1 CA 227

10. Are civil rights protests larger on average than non-civil rights protests?
dataProtest |>

group_by(civilrights) [>
summarize (mean(Attendees, na.rm=TRUE))

A tibble: 2 x 2
civilrights ‘mean(Attendees, na.rm = TRUE)"

<dbl> <dbl>
1 0 342.17
1 1113.0

Yes, civil rights protests are larger on average than non-civil rights protests.

54

	Introduction
	Basic Math and Functions in R
	Combining values together into a collection (or vector)
	Setting the working directory
	Loading a first dataset, protests in the United States
	Exercises

	Filtering rows
	Exercise

	Summarizing data
	Mutate to edit and create new columns
	Exercises

	Creating your own functions
	Summarizing with groups of protests
	Exercises

	pivot_wider()/pivot_longer()
	Graphics and plots
	Review
	Solutions to the exercises

